Growth and Yield of Sweet Sorghum (Sorgum bicolor L. Moench) Planted in Tidal Soil Applied with Dolomite and Vermicompost

by Yakup Parto

Submission date: 25-Sep-2025 08:33PM (UTC+0700)

Submission ID: 2715926995

File name: Applied_with_Dolomite_and_Vermicompost,_Journal_of_SAET_2024.pdf (813.66K)

Word count: 3762 Character count: 18432

Journal of Smart Agriculture and Environmental Technology

Vol. 2, No. 3, December 2024

https://josaet.com | https://doi.org/10.60105/josaet.2024.2.3.115-119

Research Paper

Growth and Yield of Sweet Sorghum (Sorghum bicolor L. Moench) Planted in Tidal Soil Applied with Dolomite and Vermicompost

Yakup1*, Rofigoh Purnama Ria1, Dedik Budianta2, M Haffidz Sumantri3

- ¹ Department of Agronomy, Faculty of Agriculture, Sriwijaya University, Inderalaya 30662, Indonesia
- ²Department of Soil Science, Faculty of Agriculture, Sriwijaya University, Inderalaya 30662, Indonesia
 ³Previously, Student of Agroecotechnology, Faculty of Agriculture, Sriwijaya University, Inderalaya 30662, Indonesia

*Corresponding author: yakup@fp.unsri.ac.id

Article History: Received: May 31, 2024, Accepted: July 20, 2024

Sorghum (Sorghum bicolor Limench) plant is native to tropical and subtropical countries with high suitability for planting on marginal land. Therefore, this research aimed to determine the use of dolomite and vermicompost in tidal swamp soil the growth and yield of sweet sorghum plants at the Experimental Garden and the Chemistry, Biology and Soil Fertility Laboratory, Department of Soil Science, Faculty of Agriculture, Sriwijaya University. A factorial randomized complete Sock design (FRCBD) consisting of two factors was used. The first factor was dolomite namely 0 ton.ha⁻¹, 6 ton.ha⁻¹, 9 ton.ha⁻¹, and 12 ton.ha⁻¹, while second factor was vermicompost including 0 ton.ha⁻¹, 3 ton.ha⁻¹, 6 ton.ha⁻¹, and 9 ton.ha⁻¹. The results showed that the application of Dolomite had a very significant effect on soil pH, N-total, P-available, and potassium exchangeability. In addition, dolomite increased plant height, number of leaves, chlorophyll content, fresh and dry weight shoot, number of grains, and weight of 1000 grains.

Dolomite, Sorghum, Tidal swamp, Vermicompost

1. INTRODUCTION

Sorghum (Sorghum bicolor L. Moench) plants are native to tropical and subtropical countries in the southeastern Pacific and Australasia, namely Australia, New Zealand and Papua. This plant is tolerant to drought and does not require a lot of water during the growth period. In addition, sorghum is considered suitable for growing on marginal land and is tolerant to environmental stress. A superior variety is the Bioguma 3 agritan cultivar, which can also produce ratoons and can grow to a height of 254 cm (Lestari, 2019). Bioguma 3 agritan variety has a 50% flowering age of around 61 days and a harvest age between 91 and 105 days. Efforts need to be made to develop swamp land to keep pace with population growth. On a national scale, swamp land plays a role in agricultural development efforts, especially in support of national food security. Indonesia has tidal swamp land covering an area of 20.1 million ha with a potential land typology of 2.1 million ha, acid sulfate 6.7 million ha, peat 10.9 million ha, and saline area of 0.4 million ha. In the future use of tidal swamp land, development is need to increase agricultural production (Susilo et al., 2019). Peat soil has a low pH level, high cation exchange capacity, low base saturation, low K, Ca, Mg, P content

and also low micronutrient content (such as Cu, Zn, Mn and B). Addition of nutrients to peat soil can increase plant growth and development (Baharuddin and Sutriana, 2019). Vermicompost is an organic fertilizer that comes from a mixture of earthworm faeces and organic materials subjected to a composting process using worms (Dhani et al., 2014). The provision of 4 tons/hectare of vermicompost increases sweet corn yields (Dailami et al., 2015). In addition, the application of dolomite can increase soil pH in swamp land and improve other chemical properties (Paripurna et al., 2017). According to Susilo et al. (2019), optimal soil pH for growing sorghum is 6.0 - 7.5. In swamp soil, the pH is usually below 5 and 3e low pH can reduce sorghum yields by 10%. Therefore, this research aimed to determine the efficiency of dolomite application in improving soil chemical properties, adding vermicompost fertilizer to increase sorghum production in swampy soil and observing the

2. EXPERIMENTAL SECTION

2.1 Material and Method

This research was carried out in 2020 at the Experimental Garden, Faculty of Agriculture, Sriwijaya University and 7) il analysis was performed at the Chemistry, Biology and Soil Fertility Laboratory, Soil Science Lipartment, Faculty of Agriculture, Sriwijaya University. A factorial randomized complete block design (FRCBD) consisting of two factors with 4 treatment levels was used. The fire 3 factor was dolomite namely 0 ton.ha⁻¹, 6 ton.ha⁻¹, 9 ton.ha⁻¹, and 12 ton.ha⁻² while the second factor was Vermicompost including 0 ton.ha⁻¹, 3 ton.ha⁻¹, 6 ton.ha⁻¹, and 9 ton.ha⁻¹.

Sorghum planting is carried out one week after the media has been treated. Planting is conducted in a single method by making 3 holes + 3 cm deep and leaving a distance between one hole and another. Subsequently, 3 seeds are inserted into the soil/planting hole, and covered by the soil. Vermicompost and dolomite treatment was carried out one week before planting. Additionally, fertilization was given based on the results of calculating the need for vermicompost and dolomite. Each treatment received basic fertilizer N 100 kg.ha $^{-1}$, P_2O_5 100 kg.ha $^{-1}$ and K_2O_5 50 kg.ha $^{-1}$. N and P were given in two stages, namely 40% at planting and 70% at 30 days after planting (DAP). Meanwhile, K is given at the beginning of planting 100%.

2.2 Data Analysis

Data analysis uses ANOVA by comparing the calculated F value with the F table. The treatment has no significant effect when the calculated F is smaller than the F table of 5%. In addition, the treatment has significant and very significant effect when the calculated F is greater than the F table of 5% and 1%, respectively. The Least Significant Difference (LSD) test is carried out when the treatment is having significant effect.

3. RESULT AND DISCUSSION

3.1 Soil Characteristics Analysis

Laboratory analysis showed initial soil characteristics, as reported in Table 1. The soil pH analysis was reported in acidic criteria with value of 3.27, where this soil was used as a planting medium for sorghum growth.

Table 1. Initial Soil Characteristics was used for Sorghum Growth

Variable	Unit	Result	Criteria*
pН	-	3.27	Acidic
N-total	$ m g~kg^{-1}$	0.18	low
P-available (Bray 1)	${ m mg~kg^{-1}}$	13.5	high
Potasium Levels	${ m cmolkg^{-1}}$	0.26	low

^{*)}Soil Reserach Institute, 2009

The soil analysis before adding dolomite showed a pH of 3.27. Under conditions of pH <4, the solubility of Fe and Mn increases, which can form Ferrous ions $({\rm Fe}^{2+})$ and manganese ions $({\rm Mn}^{2+})$ under anaerobic conditions (Napsiah and Ningsih, 2013). Low total N levels occur because

Table 2. Nutrient Content in Vermicompost

Variable		Result -	Criteria*	
variable		Result -	Min	Max
pН	-	5.64	6.80	7.49
C-Organic	%	19.1	20.00	58
Organic matter	%	32.9	20.00	58
N	%	0.61	0.40	-
P	%	0.11	0.10	-
K	%	0.12	0.20	-
C/N ratio	-	31.31	10.00	20

*Compost quality standards (SNI: 19-7030-2004).

N is dynamic and easily evaporates due to the combustion process (Onwuka et al., 2017; Nurmegawati et al., 2012) The high available P content is useful in providing P elements for plant needs (Manurung et al., 2017). High soil acidity can inhibit the soil nitrification process because pH drives the rate of nitrification. According to Li et al. (2020), the nitrification process is significantly greater in soil with a high pH.

Table 3. F Value Test on the Soil after Harvesting

Variable	F value			
variable	Dolomite	Vermicompost	Interaction	
pН	12.08**	1.82 ns	2.72 *	
N-Total	11.02**	0.59 ns	0.97 ns	
P-available	3.34*	0.33 ns	0.34 ns	
Potassium	6.63**	0.95 ns	1.12 ns	
levels				
F Table 5%	2.92	2.92	2.21	
F Table 1%	4.51	4.51	3.06	

**showed significantly different ns showed not significantly different

The application of dolomite had a significant effect on soil pH, total N, available P and soil Pottasium levels. This can increase soil pH but affects nitrogen uptake. In this research, high doses showed low total N, as reported in Table 4. Soil P-bray at the start of the research was 13.5 mg kg $^{-1}$ (classified as high) and increased drastically. The Pottasium levels concentration in the soil decreased with the high dose of dolomite administered. An important factor causing high P-availability is the provision of basic fertilizer before planting.

Vermicompost contains growth regulators out as gibberellin, cytokinin and auxin, as well as the nutrients N, P, K, Mg and Ca and Azotobacter sp (Setiawan et al., 2015). However, the application of dolomite fertilizer had a significant effect compared to vermicompost. Liming can increase P availability by stimulating soil organic phosphorus mineralization explained by increasing pH. The accumulation of P elements occurs due to immobility and reduced avail-

© 2024 The Authors. Page 116 of 119

Table 4. Effect of Dolomite on pH, N-total, and K-exchangeability after Harvesting Sorghum

Dolomite	pН	N-total	P-available	Pottasium
		(%)	$(mg kg^{-1})$	levels
				(cmol/kg)
0 ton/ha	3.80a	0.25c	49.49a	0.38b
3 ton/ha	4.46 ab	0.23bc	52.46ab	0.28a
6 ton/ha	4.83bc	0.22ab	54.25b	0.27a
12 ton/ha	5.11c	0.20a	59.63c	0.27a
1SD	1.1	0.03	4.02	0.09

Means followed by the different small letters within each column are significantly different at LSD 5 %

ability (Yuniarti et al., 2020). The provision of dolomite increases the pH of the planting medium needed by plants. The application can increase soil pH in influencing nitrogen uptake to reduce total soil nitrogen (Tando and Edi, 2019). The concentration of K-exchangeable decreased with the high dose of dolomite applied. Han et al. (2019) stated that the decrease in K-exchangeable could be attributed to the entry of divalent cations. In addition, decreasing soil acidity can retain organic acids produced by K-solubilizing bacteria and inhibit the release of K⁺ from minerals. The results of diversity analysis showed that dolomite treatment had a significant effect on chlorophyll levels, plant height and number of leaves Table 5. The high levels of chlorophyll in sorghum plants are directly proportional to the dose. The provision of dolomite also has a good effect on plant growth. The application can neutralize organic acids which cause the unavailability of nutrients. The availability of nitrogen can also be increased to enhance plant vegetative growth, a constituent of leaf chlorophyll and healthy leaf growth.

Table 5. Effect of Dolomite on Chlorophyll Content, Plant Height and Number of Leaves on Sorghum

Dolomite	Chlorophyll	Height	Number
		(cm)	of leaves
0 ton/ha	20.99a	22.50a	5.00a
3 ton/ha	25.70 ab	27.50ab	6.17ab
6 ton/ha	27.63ab	27.50ab	6.67 b
12 ton/ha	27.73b	29.17b	6.83b
1SD	5.49	6.59	1.49

Means followed by the different small letters within each column are significantly different at LSD 5 %

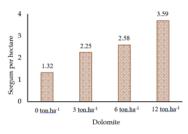
The application of dolomite affects the growth variables of sorghum plants, including height, number of leaves and amount of chlorophyll. The increase in chlorophyll levels is directly proportional to the dose of dolomite. (Septina et al., 2020) stated that the Mg content affects several proteins in the leaves. The addition of dolomite is useful as

a soil amendment in neutralizing Al, and increasing Mg and Ca (Suntoro. et al., 2028). In addition, the application of dolomite also affects reducing hydrogen ions and increasing the availability of N by enhancing the rate of decomposition. Nitrogen functions in tissue development thereby increasing plant growth (Fatirahma and Kastono, 2020). The application of dolomite can neutralize organic acids which cause the unavailability of nutrients. Mwende and Esther (2015) stated that soil with a low pH had high Al and Fe levels, which caused poisoning for plants. Liming can increase the growth response by improving Al toxicity. In addition, the administration attracts H⁺ ions from exchange to form H₂0. Research conducted by (Vishwakarma et al., 2012) stated that the addition reduced hydrogen ions and increased pH, N availability and rate of decomposition of organic matter. According to Saputri et al. (2018), N functions to increase plant vegetative growth and leaf chlorophyll as well as promote healthy leaf growth. This is because plants cannot use nutrients N, P, and K in acidic soil. High soil acidity causes low panicle yields because Al can interfere with the absorption and use of water. Dolomite reduces the level of Al poisoning which inhibits plant growth. Therefore, increasing the dose of dolomite significantly enhanced the fresh weight of the seeds and fruit set Table

Table 6. Effect of Dolomite on Fresh and Dry Weight of Sorghum Grains and Shoot of Sorghum

Dolomite	FW	DW	Shoot	Shoot
_	Spikelet	Spikelet	FW(g)	root
2	(g)	(g)		DW (g)
0 ton/ha	18.62a	10,06a	56.80a	29.06a
3 ton/ha	35.52b	18.07b	99.50b	51.41bc
6 ton/ha	38.87b	20.67b	125.83bc	62.65c
12 ton/ha	49.38c	29.57c	135.58c	70.65c
LSD	10.49	6.46	33.74	19.23

Table 7. Number of Grains and Weight of 1000 Grains of Sorghum Affected by Dolomite Application


Dolomite	Number of grains	Weight of
		1000 grains (g)
0 ton/ha	253.08a	136.05a
3 ton/ha	432.83	137.00a
6 ton/ha	523.75b	147.30ab
12 ton/ha	773.67b	155.05b
15D	253.39	13.64

Means followed by the different small letters within each column are significantly different at LSD 5 %

Nutrient \overline{P} plays an important role in the formation of seeds in plants. This is very related because P has an impor-

© 2024 The Authors. Page 117 of 119

tant role in the formation of seed protein. The application of dolomite increases the availability of P in the soil. Therefore, in this research increasing the dose of dolomite significantly enhances the number and weight of seeds (Table 7), as well as increasing plant yield per hectare Figure 1.

Figure 1. Sorghum Yield per Hectare Influenced by Dolomite Application

High soil acidity causes a decrease in the number of panicles. This is because Al can interfere with the absorption and use of water. Nutrient P plays an important role in the formation of seeds because the P element can enhance growth and ripening (Sholikah et al., 2013). The provision of dolomite increases plant efficiency in absorbing available phosphate in the soil and reduces Al toxicity. Mwende and Esther (2015) explained that the decrease in crop yields was associated with a lack of micronutrients due to high pH, Al poisoning, and low P uptake in acidic soil. Meanwhile, phosphorus has an important role in the formation of seed protein, as an energy source and stimulates the process of plant root development (Pradana et al., 2015). High soil acidity results in low yields from sorghum panicles and the weight of grain is directly proportional to the dose of dolomite applied. This is because dolomite reduces the level of Al toxicity in line with (Noza et al., 2014) where the increase in soil pH is due to the application. In seed formation, the element P has an important role as an energy source and stimulates the process of plant root development (Pradana et al., 2015). Grain production data per hectare was obtained by converting dry weight per panicle. Based on the description, the average yield of Bioguma 3 sweet sorghum is 6.98 tons ha⁻¹. The highest yield was obtained at a dolomite dosage of 12 tons/ha, and the result was 3.69 tons per hectare. Subagio et al. (2013) stated that soil with a pH of 4.42 reduced yields by 10-30%. Aluminium poisoning in cereal plants could also reduce yields by 28-63% (Fauzi et al., 2020).

4. Conclusion

The application of dolomite was reported to have a significant effect on soil pH, N-total, P-5 ailable, Potassium level, chlorophyll content, increase in plant height, number of leaves, fresh and dry weight of panicle, fresh and dry weight of shoot, number of grains, weight of 1000 grains. The application of vermicompost had a real influence on soil pH after harvest and plant height.

Acknowledgements

The authors are grateful to the editor and reviewers who provided valuable comments and suggestions to improve the quality of the research.

REFERENCES

Baharuddin, R. and S. Sutriana (2019). Pertumbuhan dan produksi tanaman tumpangsari cabai dengan bawang merah melalui pengaturan jarak tanam dan pemupukan NPK pada tanah gambut. *Dinamika Pertanian*, **35**(3); 73– 80

Dailami, A., H. Yetti, and S. Yoseva (2015). Pengaruh Pemberian Pupuk Kascing dan NPK terhadap Pertumbuhan dan Produksi Tanaman Jagung Manis. *JOM Faperta*, 2(2): 1–121

Dhani, H., W. Wardati, and R. Rosmimi (2014). Pengaruh Pupuk Vermikompos pada Tanah Inceptisol Terhadap Pertumbuhan dan Hasil Sawi Hijau (Brassica juncea L.). Jurnal Online Mahasiswa Fakultas Pertanian Universitas Riau, 1(1); 1–11

Fatirahma, F. and D. Kastono (2020). Pengaruh Pupuk Organik Cair Terhadap Hasil Bawang Merah (Allium cepa L. Aggregatum) di Lahan Pasir. Vegetalika, 9(1); 305– 315

Fauzi, R., T. B. H. Zulkifli, K. Tampubolon, I. A. Putra, Y. Berliana, D. Kurniawan, and O. S. Sijabat (2020). Soil variability and Sugarcane (Saccharum officinarum L.) biomass along Ultisol toposequences. Agrinula: Jurnal Agroteknologi dan Perkebunan, 3(1); 37–48

Han, T., A. Cai, K. Liu, J. Huang, B. Wang, D. Li, M. Qaswar, G. Feng, and H. Zhang (2019). The Links Between Potassium Availability and Soil Exchangeable Calcium, Magnesium, And Aluminum Are Mediated by Lime in Acidic Soil. Journal of Soils and Sediments. 19(3): 1382–1392

Lestari, U. (2019). Predictive mapping for soil pH and phosphate based on Kriging Interpolation. Master's thesis, Universitas Lampung

Li, Z., Z. Zeng, D. Tian, J. Wang, Z. Fu, F. Zhang, R. Zhang, W. Chen, Y. Luo, and S. Niu (2020). Global Patterns and Controlling Factors of Soil Nitrification Rate. Glob Change Biol, 26; 4147–4157

Manurung, R., J. Gunawan, R. Hazriani, and J. Suharmoko (2017). Pemetaan Status Unsur Hara N, P Dan K Tanah pada Perkebunan Kelapa Sawit di Lahan Gambut. Pe-

© 2024 The Authors. Page 118 of 119

- dontropika: Jurnal Ilmu Tanah dan Sumber Daya Lahan, **3**(1); 89–92
- Mwende, M. and Esther (2015). Effects of Lime-Aluminium-Phosphate Interactions on Maize Growth and Yields in Acid Soils of the Kenya Highlands. *American Journal of Agriculture and Forestry*, 3(6): 244–252
- Napsiah, K. and R. D. Ningsih (2013). Penggunaan Pupuk Organik untuk Mengurangi Pupuk Anorganik Dan Peningkatan Poduktivitas Padi di Lahan Pasang Surut. Technical report, Seminar Nasional Inovasi Pertanian
- Noza, L., A, H. Yetti, and M. A. Khoiri (2014). Pengaruh Pemberian Dolomit dan Pupuk N, P, K Terhadap Pertumbuhan dan Produksi Tanaman Jagung Manis (Zea Mays Saccharata Sturt) di Lahan Gambut. Jom Faperta, 1(2)
- Nurmegawati, W. Wibawa, E. Makruf, D. Sugandi, and T. Rahman (2012). Tingkat Kesuburan dan Rekomendasi Pemupukan N, P, dan K Tanah Sawah Kabupaten Bengkulu Selatan. *Solum*, 9(2); 11–18
- Onwuka, I., M, E. O. V, and A. O. Ano (2017). Use of Liming Materials to Reduce Soil Acidity and Affect Maize (Zea mays L) Growth Parameters in Umudike, Southeast Nigeria. PAtnsuk Journal. 5(2): 386–396
- Paripurna, A., D. Budianta, and A. Napoleon (2017). Respon Aplikasi Kapur Terhadap Beberapa Sifat Kimia Tanah Lahan Pasang Surut. Jurnal Lahan Suboptimal: Journal of Suboptimal Lands, 6(1): 59–70
- Pradana, G. B. S., T. Islami, and N. E. Suminarti (2015). Kajian dan Kombinasi Phospor dan Hasil Dua Varietas Tanaman Sorgum (Sorghum Bicolor (L.) Moench). *Jurnal Produksi Tanaman*, 3(6); 469–471
- Saputri, L., E. D. Hastuti, and R. B. Hastuti (2018). Respon Pemberian Pupuk Urea dan Pupuk Kandang Sapi Terhadap Pertumbuhan dan Kandungan Minyak Atsiri Tanaman Jahe Merah (Zingiber officinale (L.) Rosc var. Rubrum). Jurnal Akademika Biologi, 7(1): 1–7
- Septina, I., B. R. Sembiring, and A. Adiwirman (2020). Pengaruh Pemberian Dolomit dan Npk Slow Release Fertil-

- ize r Terhadap Fisiologi Dan Pertumbuhan Jagung Manis (Zea Mays Saccharata Sturt) pada Tanah Gambut. *Jurnal Agrotek Tropika*, **3**(1); 46–62
- Setiawan, I. G. P., A. Niswati, K. Hendarto, and S. Yusnaini (2015). Pengaruh Dosis Vermikompos Terhadap Pertumbuhan Tanaman Pakcoy (Brassica rapa L.) dan Perubahan Beberapa Sifat Kimia Tanah Ultisol Taman Bogo. *Jurnal Agrotek Tropika*, 3(1); 170–173
- Sholikah, N., R, Usmadi, and Slameto (2013). Pertumbuhan dan Hasil Biji Sorgum pada Sistim Tumpangsari Sorgum-Kacang Tanah dengan Penambahan Mikoriza dan Berbagai Jenis Pupuk Fosfat. Berkala Ilmiah Pertanian, 10(10);
- Subagio, Herman, and M. Aqil (2013). Pengembangan Produksi Sorgum di Indonesia. In *Prosiding Seminar Nasional Inovasi Teknologi Pertanian*, volume - pages 199–214
- Suntoro., H. Widijanto, J. Syamsiyah, D. W. Afi, N. R. Dimasyuri, and V. Triyas (2028). Effect of cow manure and dolomite on nutrient uptake and growth of corn (Zea mays L.). Bulgarian Journal of Agriculture Science, 24(6); 1020–1026
- Susilo, E., Fahrurrozi, and Sumard (2019). Optimasi Lahan Pada Sistem Tumpang Sari Jagung Manis. *Jurnal Agroqua*, 17(2); 115–125
- Tando and Edi (2019). Upaya Efisiensi dan Peningkatan Ketersediaan Nitrogen dalam Tanah Serta Serapan Nitrogen pada Tanaman Padi Sawah. Buana Sains. *Buana* Sains. 18(2): 171
- Vishwakarma, K., A, K. A. Pathak, and B. S. Kherawat (2012). Effect of Varying Doses of Lime on Yield and Attributes of Maize in Mizoram. *An Asian Journal of Soil Science*, 7(2); 271–273
- Yuniarti, A., E. Solihin, and A. T. A. Putri (2020). Aplikasi pupuk organik dan N, P, K terhadap pH tanah, P-tersedia, serapan P, dan Hasil Padi Hitam (Oryza sativa L.) pada Inceptisol. kultivasi, 19(1); 1040-1046

© 2024 The Authors. Page 119 of 119

Growth and Yield of Sweet Sorghum (Sorgum bicolor L. Moench) Planted in Tidal Soil Applied with Dolomite and Vermicompost

ORIGINALITY REI	PORT			
8% SIMILARITY IN	DEX	8% INTERNET SOURCES	0% PUBLICATIONS	0% STUDENT PAPERS
PRIMARY SOURC	ES			
	/w.ajo			1 %
	rints.r net Sourc	mercubuana-yo ^e	gya.ac.id	1 %
	OSito net Sourc	ry.unja.ac.id		1 %
	nal.ut	u.ac.id		1 9
	urnal net Sourc	.uniska-kediri.a	c.id	1 9
6 eprints.umm.ac.id Internet Source				1 9
7 ojs.pps.unsri.ac.id Internet Source				1 %
	jim.unsyiah.ac.id Internet Source			1 9
	nal.its	science.org		1 9