

Rozirwan ROZIRWAN <rozirwan@unsri.ac.id>

## [IK.IJMS] Submission Acknowledgement

1 pesan

Ambariyanto <ijms@live.undip.ac.id> Balas Ke: "Dr Rozirwan M.Sc. Rozirwan" <rozirwan@unsri.ac.id> Kepada: "Dr Rozirwan M.Sc. Rozirwan" <rozirwan@unsri.ac.id> 28 Januari 2025 pukul 08.30

#### Dr Rozirwan M.Sc. Rozirwan:

Thank you for submitting the manuscript, "SCREENING AND PROFILING OF ANTIOXIDANT ACTIVITY IN MUD CRAB (Scylla serrata) FROM BANYUASIN WATERS" to ILMU KELAUTAN: Indonesian Journal of Marine Sciences. With the online journal management system that we are using, you will be able to track its progress through the editorial process by logging in to the journal web site:

Manuscript URL: https://ejournal.undip.ac.id/index.php/ijms/author/submission/70658

Username: rozirwan

If you have any questions, please contact me. Thank you for considering this journal as a venue for your work.

Ambarivanto

ILMU KELAUTAN: Indonesian Journal of Marine Sciences

INDONESIAN JOURNAL OF MARINE SCIENCE http://ejournal.undip.ac.id/index.php/ijms



Rozirwan ROZIRWAN <rozirwan@unsri.ac.id>

# [IK.IJMS] SCREENING AND PROFILING OF ANTIOXIDANT ACTIVITY IN MUD CRAB (Scylla serrata) FROM BANYUASIN WATERS

3 pesan

Indonesian Journal of Marine Science <ejournal@rumahjurnalundip.id>

16 Februari 2025 pukul 06.09

Balas Ke: Indonesian Journal of Marine Science <ijms.undip@gmail.com>

Kepada: Rozirwan Rozirwan <rozirwan@unsri.ac.id>, Ning Intan Lestari <ningintanlestari00@gmail.com>, Yoga Winarta <rolazyoga96@gmail.com>, Isnaini Isnaini <isnaini@mipa.unsri.ac.id>, Wike Ayu Eka Putri <wike\_ayu\_ep@unsri.ac.id>, Muhammad Hendri <muhammad.hendri@unsri.ac.id>, Tengku Zia Ulqodry <zia\_uul@unsri.ac.id>, Fauziyah Fauziyah <siti\_fauziyah@yahoo.com>, Melki Melki <melki@unsri.ac.id>, Redho Yoga Nugroho <redhoyoganugroho@mipa.unsri.ac.id>, Che Abd Rahim Mohamed <carmohd@ukm.edu.my>

Dear Authors

Thank you for submitting your manuscript "SCREENING AND PROFILING OF ANTIOXIDANT ACTIVITY IN MUD CRAB (Scylla serrata) FROM BANYUASIN WATERS" to ILMU KELAUTAN: Indonesian Journal of Marine Sciences. The editorial team and a group of expert reviewers have assessed your submission and feel that it has potential for publication. We would like to invite you to revise the paper and resubmit it for further review.

#### Comments:

- abstract must be 250 words
- Keywords must five words
- reference published in 2019-2024, 80 % from international journals (minimum 25 references)
- Check reference using Harvard Style (check format reference in manuscript publish 2024)
- use SI unit (ex: mg.L-1)
- delete Table 6, we think it is not necessary
- Please send us at least five international reviewers (could be international and national experts but not from your university or institute) within the same field of your manuscript. Kindly include the suggested reviewers' full names, affiliations, nationalities, and emails.

We ask that you submit the revised version of your manuscript by uploading it to Review - Author Version. Please note that your revised manuscript should accompany a summary of your responses to the reviewers' comments.

You resubmit the request ending on February 23, 2025, after which we will presume that you have withdrawn your submission from ILMU KELAUTAN: Indonesian Journal of Marine Sciences.

Please feel free to contact me with any questions.

Sincerely,

Editorial office IJMS

INDONESIAN JOURNAL OF MARINE SCIENCE

INDONESIAN JOURNAL OF MARINE SCIENCE http://ejournal.undip.ac.id/index.php/ijms

Rozirwan ROZIRWAN <rozirwan@unsri.ac.id> Kepada: redhoyoganugroho@mipa.unsri.ac.id 16 Februari 2025 pukul 13.43

[Kutipan teks disembunyikan]

Prof. Dr. Rozirwan

Head of Marine Bioecology Laboratory
Department of Marine Science
Faculty of Mathematics and Natural Sciences
Sriwijaya University
Jalan Raya Palembang-Prabumulih KM 32, Indralaya
Ogan Ilir, Sumatera Selatan, Indonesia, Pos Code: 30862
Email: rozirwan@unsri.ac.id, rozirwan@gmail.com

Rozirwan ROZIRWAN <rozirwan@unsri.ac.id>

Kepada: Indonesian Journal of Marine Science <ijms.undip@gmail.com>

23 Februari 2025 pukul 22.16

Dear Editor,

We have carefully reviewed the comments and have made the necessary revisions as per reviewer's instructions. Here, we attach

Email Sriwijaya University - [IK.IJMS] SCREENING AND PROFILING OF ANTIOXIDANT ACTIVITY IN MUD CRAB (Scylla ser... 10/2/25, 9:38 PM

the revision of our article "SCREENING AND PROFILING OF ANTIOXIDANT ACTIVITY IN MUD CRAB (Scylla serrata) FROM BANYUASIN WATERS".

We believe that these revisions address the issues raised, and we hope that they meet the requirements for publication in your journal. Please let me know if any further revisions are needed.

#### Thank you Best regards

[Kutipan teks disembunyikan] [Kutipan teks disembunyikan]

#### 2 lampiran



Response to Reviewer\_3\_IJMS.docx



Draft Revision\_Rozirwan\_IJMS.docx 7758K

## **Response to Reviewers**

| Reviewer Comments                                            | Response                                                                                   |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Abstract must be 250 words                                   | The abstract has been revised to ensure it contains                                        |
|                                                              | exactly 250 words as requested.                                                            |
| Keywords must be five words                                  | The keywords have been adjusted to include                                                 |
|                                                              | exactly five words.                                                                        |
| Reference published in 2019-2024,                            | We have updated the references to ensure that at                                           |
| 80% from international journals                              | least 80% are from international journals published between 2019-2024. The total number of |
| (minimum 25 references)                                      | between 2019-2024. The total number of references now meets the required minimum of 25.    |
| Check reference using Harvard Style                          | The references have been formatted according to                                            |
| (check format reference in manuscript                        | the Harvard Style, following the guidelines from a                                         |
| published 2024)                                              | 2024 published manuscript.                                                                 |
| Use SI unit (ex: mg.L <sup>-1</sup> )                        | All measurement units have been revised to follow                                          |
|                                                              | the SI unit system (e.g., mg·L <sup>-1</sup> ).                                            |
| Delete Table 6, we think it is not                           | Table 6 has been removed as per the reviewer's                                             |
| necessary                                                    | suggestion.                                                                                |
| Please send us at least five                                 | 1. Mohamad Fawzi Mahomoodally                                                              |
| international reviewers (could be                            | Department of Health Sciences, Faculty of                                                  |
| international and national experts but                       | Science, University of Mauritius, 230 Réduit,                                              |
| not from your university or institute)                       | Mauritius                                                                                  |
| within the same field of your manuscript. Kindly include the | f.mahomoodally@uom.ac.mu  2. Muthu Thiruvengadam                                           |
| suggested reviewers' full names,                             | Department of Applied Bioscience, Konkuk                                                   |
| affiliations, nationalities, and emails.                     | University, Seoul                                                                          |
| ,                                                            | muthu@konkuk.ac.kr                                                                         |
|                                                              | 3. Benjamin Boucherle                                                                      |
|                                                              | Université Grenoble Alpes · Departement de                                                 |
|                                                              | Pharmacochimie Moléculaire                                                                 |
|                                                              | Benjamin.boucherle@univ-grenoble-alpes.fr                                                  |
|                                                              | 4. Hefni Efendi                                                                            |
|                                                              | Department of Aquatic Resources                                                            |
|                                                              | Management, Faculty of Fisheries and Marine Sciences, Bogor Agricultural Institute         |
|                                                              | hefni.effendi@apps.ipb.ac.id                                                               |
|                                                              | 5. Bintal Amin                                                                             |
|                                                              | Marine Science Department, Faculty of                                                      |
|                                                              | fisheries and marine Science, University of                                                |
|                                                              | Riau                                                                                       |
|                                                              | bintal.amin@lecturer.unri.ac.id                                                            |

# SCREENING AND PROFILING OF ANTIOXIDANT ACTIVITY IN MUD CRAB (Scylla serrata) FROM BANYUASIN WATERS

Rozirwan<sup>1\*</sup>, Ning Intan Lestari<sup>1</sup>, Yoga Winarta<sup>1</sup>, Isnaini<sup>1</sup>, Wike Ayu Eka Putri<sup>1</sup>, Muhammad Hendri<sup>1</sup>, Tengku Zia Ulqodry<sup>1</sup>, Fauziyah<sup>1</sup>, Melki<sup>1</sup>, Redho Yoga Nugroho<sup>1</sup>, Che Abd Rahim Mohamed<sup>2</sup>

<sup>1</sup>Department of Marine Science, Faculty of Mathematics and Natural Sciences, Sriwijaya
University, Indralaya 30862, South Sumatra, Indonesia

<sup>2</sup>Faculty of Science and Technology,Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor,
Malaysia

Email: rozirwan@unsri.ac.id

#### Abstract

Mangrove crab (Scylla serrata) as one of the crustacean species, has a variety of bioactive compounds that can be utilized in the field of pharmacology. Antioxidant compounds act as therapeutic agents against degenerative diseases. Banyuasin waters have mangrove vegetation with associated marine organisms that have the potential to be studied for bioactive compounds. This study aims to identify the phytochemical profile quantitatively and qualitatively, samples were collected from mud flats near mangrove ecosystems in Banyuasin waters, South Sumatra, Samples were tested for antioxidant activity using the DPPH test, and IC50 values, qualitative phytochemical identification, and phytochemical profiles were calculated using Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Based on the results of antioxidant testing, the IC50 value of Scylla serrata extract is 2.25 ppm, the sample is included in the category of very strong antioxidants. Phytochemical test results showed that the compound is thought to contain antioxidant activity from flavonoids and triterpenoids. GC-MS analysis detected major compound groups of alkaloids, purines, and vitamins. Minor compound groups detected amines, terpenoids, monosaccharides, amino acids, fatty acids, silanes, formamides, heterocycles, carboxylic acids, aminoglycosides, naphthalene derivatives, nitriles, amides, glycosides, and peptides. Scylla serrata extract shows very strong antioxidant activity, with major compounds such as alkaloids, purines, and vitamins. Scylla serrata extract detected compounds that have been reported as anti-inflammatory, anticancer, antimicrobial, and antiviral. These findings highlight the pharmaceutical potential of Scylla serrata as a source of bioactive compounds. The results of this study provide valuable information for the development of alternative medicines derived from marine organisms.

Keywords: Antioxidant, Bioactive compounds, DPPH, GC-MS, Scylla serrata

## Introduction

Scylla serrata or mud crab, as one of the crustacean species, has great potential in the field of beauty and health (De Castro et al., 2023), because of its diverse bioactive compounds (Yusof et al., 2020; Beslin and Geni, 2021; Neelima et al., 2022). The diversity of bioactive compounds triggers great potential in the search for alternative medicinal ingredients from marine organisms, including antioxidant compounds (Yogeshwaran et al., 2020; Karnila and Ramadhani, 2021; Fajriaty et al., 2024). Antioxidant compounds in mud crabs have a role as therapeutic agents (Wu et al., 2021) in fighting degenerative diseases such as cancer (Nagarajan et al., 2024), cardiovascular diseases (Nanda et al., 2021), and neurodegenerative disorders (Galal-Khallaf et al., 2024), caused by oxidative stress due to free radicals.

Antioxidant is the reaction of a compound in neutralizing free radicals (Delta *et al.*, 2021; Rozirwan *et al.*, 2023; Rozirwan *et al.*, 2023). This process involves a highly efficient electron donation mechanism. Antioxidants work by donating electrons to free radicals (Frías-Espericueta *et al.*, 2022; Pati *et al.*, 2022; Yang *et al.*, 2023; Fajriaty *et al.*, 2024). Free radicals, which have one or more unpaired electrons, are highly reactive and can cause oxidative damage to DNA, proteins, and cellular lipids (Alkadi, 2020; Di Meo and Venditti, 2020). Free radicals are often generated as byproducts of various metabolic processes in the body or due to environmental exposures such as pollution and ultraviolet radiation (Martemucci *et al.*, 2022; Sadiq, 2023). The damage caused by free radicals can contribute to the development of various degenerative diseases, including cancer, heart disease, and neurodegenerative disorders (Teleanu *et al.*, 2022; Chaudhary *et al.*, 2023). In inhibiting free radicals, antioxidant compounds such as carotenoids and polyphenols will interact with free radicals to enhance the activity of detoxification enzymes resulting in accelerated elimination of free radicals and strengthened antibodies (Pisoschi *et al.*, 2021; Tumilaar *et al.*, 2024).

The analysis of antioxidant compounds in *Scylla serrata* requires an accurate technique to ensure identification and quantification are targeted (Baag and Mandal, 2023; Yao *et al.*, 2023). The gas Chromatography-Mass Spectrometry (GC-MS) analysis method was chosen as an effective method in the analysis of bioactive compounds (Jabbar *et al.*, 2022; Musa *et al.*, 2022; Palma *et al.*, 2023; Rozirwan *et al.*, 2024). This method allows the separation and identification of compounds based on their density and chemical characteristics. This method is able to identify the diversity of antioxidant compounds in *Scylla serrata* meat with high accuracy while being able to measure the concentration of each compound analyzed. Antioxidant compounds such as carotenoids and polyphenols were identified through GC-MS analysis, showing significant therapeutic potential (Berwal *et al.*, 2021; Vellapandian, 2022; Palaniyappan *et al.*, 2023). The identified antioxidant content offers substantial health benefits to humans as an alternative medicine.

Previous studies have extracted various body parts of *Scylla serrata* and shown the content of antioxidant compounds such as flavonoids, carotenoids, and polyphenols (Yogeshwaran *et al.*, 2020; Karnila and Ramadhani, 2021; Neelima *et al.*, 2022; Yang *et al.*, 2023; Fajriaty *et al.*, 2024). The results showed that some of these compounds are classified with high antioxidant characteristics. However, specific data on the type and quantity of antioxidant substances from this organism are still limited. Therefore, in-depth and comprehensive research is needed to reveal the potential of *Scylla serrata* as a source of antioxidants. This study aims to identify the profile of antioxidant compounds in *Scylla serrata*. Thus, the potential of *Scylla serrata* as a source of alternative medicinal ingredients can be further explored and optimally utilized.

#### **Materials and Methods**

## Sampling Area

Mangrove crab samples were collected in January 2023 from Banyuasin Waters, South Sumatra, Indonesia (Figure 1). At this location, numerous crustacean and gastropod populations were found inhabiting the intertidal zone (Almaniar, Rozirwan and Herpandi, 2021; Rozirwan *et al.*, 2021; Nugroho, Rozirwan and Fauziyah, 2022). The crab fishing area had a mud substrate with a depth of 1–2 m and was located within a mangrove vegetation zone directly connected to port and pond activities (Fitria *et al.*, 2023). Anthropogenic pollutants that accumulate in these waters are known to trigger an increase in the defense mechanisms of organisms, such as the production of antioxidant compounds derived from secondary metabolites (Rozirwan *et al.*, 2023).



Figure 1. Map of Sampling Location in Banyuasin Waters Area

## Samples Catch, Collage, Storage and Identification

Crustacean samples were taken using folding trawl gear. The samples were collected and stored in a cool box. The crab identification process was conducted based on the examination of morphological characteristics, such as body shape, color pattern, claw shape, and leg shape (Hidir et al., 2021; Vermeiren, Lennard and Trave, 2021). Morphometric measurements were performed on the crab samples, and the identification process was completed in the laboratory. Taxon determination was carried out using data from the World Register of Marine Species (WoRMS) accessed in January 2023 (WoRMS, 2023).

## **Environmental Characteristics of Sampling Area**

Environmental quality calculations were conducted to assess the condition of the sampling environment. Environmental parameter data were measured, including salinity, temperature, pH, and dissolved oxygen (DO) (Fitria *et al.*, 2023; Rozirwan *et al.*, 2024). Each parameter was measured in three repetitions to ensure consistency, and the results were then averaged. Environmental parameter measurements are typically used to evaluate habitat conditions, as they provide insights into the physical and chemical characteristics of the ecosystem. Repetition in measurements is a standard approach to improve data reliability.

#### Sample Preparation

The preparation method described by Ambekar *et al.* (2023), involves cleaning the crab to remove contaminants. In this study, the carapace and crab meat were separated and rinsed with distilled water to eliminate any remaining impurities. The wet weight of the crab meat was measured, and the samples were then dried in an oven at 40°C for 3 × 24 h. After drying, the samples were ground into powder using a blender. The dry weight of the crab meat was recorded for data analysis.

## Sample Maceration and Extraction

The wet maceration method was used in this study. A total of 250 g of *Scylla serrata* meat powder was weighed and immersed in 1000 mL of 96% ethanol solvent at a ratio of 1:4 (b/v). The soaking process was conducted for 3 × 24 h, with stirring performed periodically to ensure optimal extraction. The maceration results were filtered using filter paper (No. 42, 125 mm). The extraction process was then carried out using a rotary evaporator at 40°C with a rotating speed of 3000 rpm (Hashim *et al.*, 2021). The resulting extract was stored as a stock solution. A total of 0.05 g of *Scylla serrata* extract was used as an additive for the stock solution (Habib *et al.*, 2022). Wet maceration is a commonly

employed extraction method due to its ability to preserve heat-sensitive compounds. Stirring during the maceration process enhances solute dissolution, while rotary evaporation ensures efficient solvent removal under controlled temperature conditions.

## Determination of Antioxidant Activity and IC50 Value

Antioxidant testing was conducted using the DPPH method (Vásquez, Cian and Drago, 2023). The stock solution of *Scylla serrata* extract was used as the test solution for antioxidant activity, while vitamin C solution served as a reference. The sample was dissolved in 96% ethanol. A total of 1 mL of sample solution was prepared for each concentration: 100 mg.L<sup>-1</sup>, 150 mg.L<sup>-1</sup>, 200 mg.L<sup>-1</sup>, 250 mg.L<sup>-1</sup>, and 300 mg.L<sup>-1</sup>. Each concentration was mixed with 40 μg.mL<sup>-1</sup> DPPH solution and incubated in the dark for 30 min. The absorbance values were measured at 517 nm using UV-Vis spectrophotometry. The percentage of inhibition and IC50 value were calculated (Naveed *et al.*, 2022). The characterization of antioxidant activity is determined based on the IC50 value, which represents the concentration of the sample required to inhibit 50% of DPPH radicals. The strength of antioxidant activity is classified according to IC50 values, as shown in Table 1. The IC50 value is calculated using the following formula.

$$inhibisi = \frac{blank\ abs - sample\ abs.}{blank\ abs} \times 100\ \%$$

The IC50 results were entered in the linear regression equation Y = AX + B. The sample concentration is the abscissa (X-axis), and the percentage of antioxidant inhibition is the ordinate (Y-axis) (Yuniarti *et al.*, 2020).

**Table 1.** Characteristic concentration value of IC50

| Concentration Value (µg.mL <sup>-1</sup> ) | Characteristic |
|--------------------------------------------|----------------|
| <50                                        | Very Strong    |
| 50-100                                     | Strong         |
| 100-150                                    | Moderate       |
| 150-200                                    | Low            |

#### Phytochemical analysis

## Phytochemical Screening

Phytochemical tests of *Scylla serrata* meat extracts were conducted using qualitative methods to identify the presence of bioactive compounds. The analysis included steroid and triterpenoid tests, which were performed using the Liebermann-Burchard method; alkaloid tests using Mayer and Dragendorff reagents; flavonoid tests with the Shinoda staining method; tannin tests using the FeCl<sub>3</sub> reaction; and saponin tests using the foam test method. Each test was carried out following the procedures described in standard literature (Suwandi, Ula and Pertiwi, 2020; Dinesh *et al.*, 2022).

## Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

The identification of bioactive compound components in *Scylla serrata* meat extract was performed using the GC-MS analysis method. GC-MS analysis was conducted following the method described by Rozirwan *et al.* (2022). A total of 1 µL of extract was injected into the column (rt x 5 ms) with helium as the carrier gas and a split ratio of 1:50. The oven temperature was set at 50°C for 5 min, then gradually increased at a rate of 5°C per minute to a maximum temperature of 280°C, which was maintained for 5 min. Samples were injected 280°C. The Wiley 7 Library database was used as a reference for comparing the spectra of the analyzed compounds (Rafferty *et al.*, 2020).

## Data Analysis

Further data processing was performed by conducting normality tests (Shapiro-Wilk) and homogeneity tests (Levene) (Gebruk *et al.*, 2021; Ebadzadeh, Shojaei and Seyfabadi, 2024). All experiments were conducted in triplicate, and the results were expressed as mean ± standard deviation. Statistical analysis was carried out using SPSS software. One-way analysis of variance (ANOVA), followed by Duncan's multiple range test for post hoc comparisons, was used to identify significant differences among groups. Statistical significance was determined at p < 0.05.

#### **Result and Discussion**

## Samples Catch, Collage, Storage and Identification

Taxon determination was conducted using data from the World Register of Marine Species (WoRMS) accessed in January 2023 (WoRMS, 2023). Based on their morphological characteristics, the crustacean samples were identified as *Scvlla serrata*.

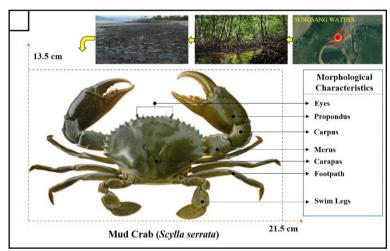



Figure 2. Crustacean species, Scylla serrata

Mangrove crabs of this species were caught using folding traps. The fishing process was carried out during low tide to facilitate crab capture. In this study, 2–5 crabs were used as stock samples. The crabs obtained were weighed, with weights ranging from 200 to 320 g, widths of approximately 21.5 cm, and lengths of around 13.5 cm. The crabs were then stored in a cool box filled with ice cubes for preservation.

The species identification of mangrove crabs is based on morphological characteristics, which include features such as the eyes, propound, carpus, merus, carapace, claws, walking legs, and swimming legs (Figure 2). Taxonomic data from databases such as WoRMS is widely used to confirm species classification accurately.

## **Environmental Characteristics of Sampling Area**

Table 2. Observation of Environmental Parameters of the Research Site

|                                        | Station         |
|----------------------------------------|-----------------|
| Environment Parameter Quality          | Sungsang Waters |
| Dissolved oxygen (mg.L <sup>-1</sup> ) | 4.2             |
| рН                                     | 7               |
| Temperature (°C)                       | 28              |

Salinity (%)

The results of environmental quality measurements in the *Scylla serrata* sampling areas in Banyuasin waters revealed diverse conditions. Measurements of water physicochemical parameters, including dissolved oxygen, pH, temperature, and salinity, were taken to assess the habitat suitability for *Scylla serrata* (Rozirwan *et al.*, 2021). The dissolved oxygen concentration was found to be 4.2 mg.L<sup>-1</sup>, which is sufficient to support the respiration process of aquatic organisms (Ouyang *et al.*, 2021). The pH value of the water at the sampling location was 7, indicating neutral pH, which represents optimal ecological conditions (Chowdhury *et al.*, 2021). This is consistent with previous studies (Yusni and Haq, 2020; Muhtar and Lanuru, 2021; Putri *et al.*, 2022), which state that waters with a pH between 6.5 and 7.5 are ideal for the survival of mangrove crabs. The water temperature was measured at 28°C, indicating favorable conditions for mangrove crab growth (Indarjo *et al.*, 2020; Ren *et al.*, 2021) Water salinity was recorded at 18 ‰, reflecting typical conditions in estuarine areas or areas directly influenced by tidal movements (Wang *et al.*, 2021). *Scylla serrata* grows best in salinities between 15‰ and 25‰ but grows more slowly at salinities greater than 25 to 30‰ (Triajie *et al.*, 2020; Pati *et al.*, 2023; Adnan *et al.*, 2024).

## Determination of Antioxidant Activity by DPPH Assay

Antioxidant analysis using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method on *Scylla serrata* meat extract showed promising results. The DPPH solution changed from purple to yellow, indicating the presence of antioxidants in the extract. The test results revealed that the *Scylla serrata* extract had an IC50 value of 2.25 ppm, while Vitamin C, used as a comparison solution, had an IC50 value of 2.16 ppm (Table 3). Both solutions demonstrated low IC50 values, categorizing them as very strong antioxidant compounds. The IC50 value, which is the concentration required to inhibit 50% of DPPH radical activity, is a critical parameter for assessing the antioxidant potential of a compound (Martinez-Morales *et al.*, 2020). The results indicate that *Scylla serrata* extract possesses an IC50 value comparable to that of Vitamin C. The percentage inhibition of DPPH free radicals by *Scylla serrata* meat extract increased as the extract concentration increased. This suggests that the extract has the ability to donate electrons or hydrogen to the DPPH radical, neutralizing it and converting it into a more stable form (Gulcin and Alwasel, 2023).

Table 3. Calculation results of antioxidant activity of Scylla serrata in Sungsang waters

| Comple         | Li     | near Regressi | on             | — ICEO Valua                   | Cotogony    |
|----------------|--------|---------------|----------------|--------------------------------|-------------|
| Sample -       | а      | b             | R <sup>2</sup> | <ul> <li>IC50 Value</li> </ul> | Category    |
| Scylla serrata | 6.9429 | 52.808        | 0.9327         | 2.25 mg.L <sup>-1</sup>        | Very Strong |
| Asorbic Acid   | 6.7135 | 55.866        | 0.9435         | 2.16 mg.L <sup>-1</sup>        | Very Strong |

The discovery of compounds such as flavonoids and triterpenoids, which were identified in the phytochemical analysis of *Scylla serrata* extracts, suggests that they may possess high antioxidant activity (Akinwumi *et al.*, 2022; Hajar-Azira *et al.*, 2023). Flavonoids are well known for their ability to capture free radicals and interrupt the chain of oxidative reactions. Triterpenoids are also recognized for their significant antioxidant activity through a similar mechanism. The combination of these compounds in *Scylla serrata* extract creates a synergistic effect, enhancing the overall capacity of the extract to neutralize free radicals.

Scylla serrata is known for its rich antioxidant system and strong enzymatic defense system, which help it survive in the dynamic and often challenging mangrove environment (Pati et al., 2023). Mud

crabs also possess defense enzymes such as superoxide dismutase (SOD), catalase, and glutathione peroxidase, which work synergistically to detoxify reactive oxygen species (ROS) and maintain redox balance in the body (Jerome, Hassan and Chukwuka, 2020; Bal *et al.*, 2021; Costantini, Esposito and Ruocco, 2022; Zeng *et al.*, 2024). These enzymes play a crucial role in protecting the crab from oxidative stress generated by fluctuating environmental conditions, pollution, and pathogens.

This combination of antioxidant compounds and defense enzymes not only ensures the survival of mud crabs in their habitat but also positions them as a potential source for the development of natural health products that can harness their protective mechanisms.

Antioxidants and defense enzymes play a vital role in organisms' survival, especially in harsh environments. The synergy between these compounds and enzymes contributes significantly to mitigating oxidative stress and preserving cellular function, which can be explored for potential therapeutic applications.

## Phytochemical Analysis

## Phytochemical Screening

Phytochemical tests were carried out to identify the compounds present in gastropod and crustacean extracts using ethanol as the solvent (Fitria *et al.*, 2023; Rozirwan *et al.*, 2024) The phytochemical test aimed to determine the compounds in the test extract (Chen *et al.*, 2022), allowing for the identification of compounds that influence the strong or weak antioxidant activity of the extract (Baliyan *et al.*, 2022). The results of the phytochemical test, after UV-Vis spectrophotometric analysis of the extract, are presented in Table 4. The test results showed that only certain compounds were extracted by the ethanol solvent (Yuniarti *et al.*, 2020).

Table 4. Phytochemical screening results of Scylla serrata

| No. | Parameters Analysis Result |   | Analysis Type |  |
|-----|----------------------------|---|---------------|--|
| 1   | Alkaloids                  | - | Qualitative   |  |
| 2   | Flavonoids                 | + | Qualitative   |  |
| 3   | Triterpenoids              | + | Qualitative   |  |
| 4   | Saponin                    | - | Qualitative   |  |
| 5   | Tannins                    | - | Qualitative   |  |
| 6   | Steroid                    | - | Qualitative   |  |

Qualitative phytochemical analysis of *Scylla serrata* extract showed significant results in identifying the content of bioactive compounds. Based on the test results, *Scylla serrata* extract tested positive for flavonoid and triterpenoid compounds. A similar finding was reported by Elshaarawy *et al.* (2023) for *Scylla olivacea* samples. These two compounds offer various health benefits and therapeutic potential, particularly due to their strong antioxidant properties. Flavonoids are a group of polyphenolic compounds that are widely recognized for their potent antioxidant activity (Shen *et al.*, 2022). These compounds can neutralize free radicals and prevent oxidative damage to cells and tissues. Additionally, flavonoids possess anti-inflammatory, anticancer, and cardioprotective properties (Mounika *et al.*, 2021; Jain *et al.*, 2024; Ullah *et al.*, 2024). The identification of flavonoid compounds in *Scylla serrata* indicates that mud crabs are not only valuable as food but also hold potential as an alternative source of medicine from marine organisms.

Triterpenoids are a group of terpenoid compounds that have potential biological activities (Mabou and Yossa, 2021; Zang *et al.*, 2022). These compounds are known to possess anti-inflammatory, antitumor, antimicrobial, and immunomodulatory properties (Harun *et al.*, 2020; Ahmad *et al.*, 2021). As antioxidant agents, triterpenoids have been used in pharmacology to treat inflammatory diseases and cancer. Similar to flavonoids, these compounds can neutralize free radicals caused by oxidative stress on body tissues. The discovery of triterpenoid compounds in *Scylla serrata* shows promising results, given their antioxidant potential that can be applied to address various diseases. Thus, the opportunity to explore alternative medicinal raw materials from *Scylla serrata* extract is increasingly attractive for further research. Overall, the phytochemical results focusing on flavonoid and triterpenoid compounds confirm the importance of *Scylla serrata* as a potential source of bioactive compounds. Further research is encouraged at the stage of isolation and purification of these compounds, so that alternative medicinal materials derived from this marine organism can contribute to the development of therapeutic agents from marine organisms.

## Phytochemical Profile Screening

The antioxidant compound profile in *Scylla serrata* was determined using GC-MS (Gas Chromatography-Mass Spectrometry) analysis on the ethanol extract of mud crab. Figure 3 shows the chromatogram with 37 peaks identified in the extract. Each peak on the chromatogram represents a distinct chemical compound found in the extract, which was analyzed using GC-MS.

GC-MS analysis is a powerful technique for identifying and quantifying individual compounds in complex mixtures, providing insights into the chemical composition of the extract. This method is widely used for its ability to separate and identify volatile compounds, making it an essential tool for profiling bioactive compounds, such as antioxidants, in natural products.

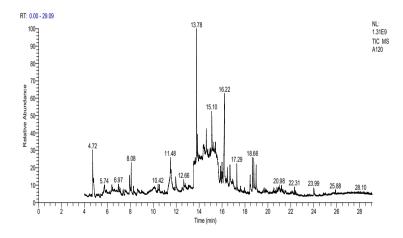



Figure 3. GC-MS chromatogram of ethanol extract Scylla serrata

Terpenoid, alkaloid, steroid, and tannin groups were among the pure compounds successfully detected using GC-MS. Based on the GC-MS analysis of the ethanol extract compound components presented in Table 5, the main components identified in the extract were Calycotomine, N-methyl-, with a value of 8.31% of the total area, and uric acid, with a value of 8.71% of the total area.

At a retention time of 4.72 minutes, the compound 2-Cyclohexylpiperidine was detected with an area of 3.45%, a probability of 6.07, and a chemical formula of C11H21N, which belongs to the alkaloid compound group. At a retention time of 5.74 minutes, the compound 2-Pyridinamine, 3,6-dimethyl was detected with an area of 1.69%, a probability of 7.02, and a chemical formula of C7H10N2, which belongs to the aminopyridine compound group. Furthermore, at a retention time of 6.97 minutes, the compound Pentanoic acid, dodec-9-ynyl ester was detected with an area of 1.00%, a

probability of 8.47, and a chemical formula of C17H30O2, which belongs to the protein compound group.

At a retention time of 8.08 minutes, the compound L-Homoserine lactone, N, N-dimethyl was detected with an area of 1.97%, a probability of 82.23, and a chemical formula of C6H11NO2, which belongs to the amino acid compound group. At a retention time of 10.42 minutes, the compound Thieno[2,3-c]furan-3-carbonitrile, 2-amino-4,6-dihydro-4,4,6,6-tetramethyl was detected with an area of 0.74%, a probability of 43.35, and a chemical formula of C11H14N2OS, which belongs to the EPA compound group. At a retention time of 11.48 minutes, the compound 1H-2-Indenol, 2,3,4,5,6,7-hexahydro-1-(2-hydroxy-2-methylpropyl) was detected with an area of 4.83%, a probability of 12.26, and a chemical formula of C13H22O2, which belongs to the lactone compound group.

At a retention time of 12.66 minutes, the compound dl-Lysine was detected with an area of 0.86%, a probability of 23.13, and a chemical formula of C6H14N2O2, which belongs to the amino acid compound group. At a retention time of 13.78 minutes, the compound Calycotomine, N-methyl- was detected with an area of 8.31%, a probability of 43.35, and a chemical formula of C13H19NO3, which belongs to the alkaloid compound group. At a retention time of 15.10 minutes, the compound Dasycarpidan-8(16H)-ethanol, 3,18-dihydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)- was detected with an area of 4.14%, a probability of 12.00, and a chemical formula of C20H28N2O2, which belongs to the group of molport compounds.

At a retention time of 16.22 minutes, the uric acid compound was detected with an area of 8.71%, a probability of 55.93, and a chemical formula of C5H4N4O3, which belongs to the allantoin compound group. At a retention time of 17.29 minutes, the compound Actinomycin C2 was detected with an area of 1.49%, a probability of 30.73, and a chemical formula of C63H88N12O16, which belongs to a group of peptide compounds that are derivatives of peptide compounds.

Animals produce a diverse mixture of secondary metabolites such as phenols, alkaloids, flavonoids, tannins, and saponins. Several animal studies have shown the potential use of these metabolites as antibacterial agents due to the presence of abundant biomolecules. Synthetic drugs often have high secondary failure rates and severe side effects, while animal products contain a variety of free radical scavenging molecules with substantial antioxidant properties.

Research by Waluyo and Wahyuni (2021) on *Conus miles* bacteria identified three dominant compounds through GC-MS analysis, namely Acetic acid (CAS), Ethylic acid, Proanoic acid, 2-methyl-(CAS), and Isobutyric acid and Iso Valeric acid. Research on the ethanol extract of *Enhalus acoroides* conducted Mediarman *et al.*, (2021) using GC-MS showed nine compounds dominated by alkaloids, flavonoids, terpenoids, and polyphenols. Some of the compounds found in *Enhalus acoroides* have similarities with the GC-MS results on *S. serrata*, but the percentage area of the alkaloid compound group in *S. serrata* was only 8.31%, compared to the ethanol extract of *Enhalus acoroides*, which reached 53.88%.

In the GC-MS results, the highest peak was identified as coming from the antioxidant compounds of the alkaloid group. However, in the phytochemical test, alkaloid compounds were not detected in the *S. serrata* sample. This could be due to differences in the analytical methods used. Phytochemical tests are qualitative, while GC-MS analysis is quantitative. Quantitative analysis methods are known to be more accurate than qualitative methods.

The difference in the results of phytochemical tests and GC-MS analysis can be influenced by the type of solvent used during the maceration process of mangrove crab (*S. serrata*) extracts. In this study, the solvent used was ethanol, which is polar and able to bind bioactive compounds quickly and is relatively safe for humans compared to methanol. Methanol solvent is more polar than ethanol

but is more toxic. This is in accordance with research conducted by Rahmawati *et al.*, (2023); Shofinita *et al.*, (2024), which show that methanol is more polar but also more toxic than ethanol.

**Table 5.** Proposed peak order, retention time, probability, area, compound name, and molecular formula

| Peak# | # R. Time Probability Area% Name |       | Molecular formula |                                                                                                                                        |               |
|-------|----------------------------------|-------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1     | 4.72                             | 6.07  | 3.45              | 2-Cyclohexylpiperidine                                                                                                                 | C11H21N       |
| 2     | 4.81                             | 18.58 | 1.37              | Edulan II                                                                                                                              | C13H20O       |
| 3     | 5.74                             | 7.02  | 1.69              | 2-Pyridinamine, 3,6-dimethyl                                                                                                           | C7H10N2       |
| 4     | 6.39                             | 8.12  | 0.83              | Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate                                                                                             | C16H28O3      |
| 5     | 6.61                             | 11.07 | 0.66              | d-Mannose                                                                                                                              | C6H12O6       |
| 6     | 6.81                             | 50.91 | 0.89              | Deoxyspergualin                                                                                                                        | C17H37N7O3    |
| 7     | 6.97                             | 8.47  | 1.00              | Pentanoic acid, dodec-9-ynyl ester                                                                                                     | C17H30O2      |
| 8     | 7.93                             | 51.03 | 1.42              | trans-(2 Chlorovinyl)dimethylethoxysil ane                                                                                             | C6H13CIOSi    |
| 9     | 8.08                             | 82.23 | 1.97              | L-Homoserine lactone, N,N-dimethyl-                                                                                                    | C6H11NO2      |
| 10    | 8.28                             | 32.09 | 0.64              | 2-Propyl-tetrahydropyran-3-ol                                                                                                          | C8H16O2       |
| 11    | 8.62                             | 32.45 | 0.93              | Imidazole                                                                                                                              | C3H4N2        |
| 12    | 10.00                            | 11.83 | 0.76              | Tertbutyloxyformamide, N-methyl-N-[4-(1-pyrrolidinyl)-2-buty nyl]-                                                                     | C14H24N2O2    |
| 13    | 10.42                            | 15.27 | 0.74              | Thieno[2,3-c]furan-3-carbonitrile, 2-amino-4,6-dihydro-4,4,6,6-tetrameth yl                                                            | C11H14N2OS    |
| 14    | 11.48                            | 12.26 | 4.83              | 1H-2-Indenol, 2,3,4,5,6,7-hexahydro-1-(2-hydroxy-2-methylpropyl)                                                                       | C13H22O2      |
| 15    | 11.55                            | 48.75 | 2.53              | dl-Citrulline                                                                                                                          | C6H13N3O3     |
| 16    | 11.96                            | 7.38  | 1.45              | 2-Pyridineacetic acid, hexahydro-                                                                                                      | C7H13NO2      |
| 17    | 12.66                            | 23.13 | 0.86              | dl-Lysine                                                                                                                              | C6H14N2O2     |
| 18    | 13.51                            | 60.28 | 1.62              | D-Streptamine, O-6-amino-6-deoxy-à-D-glucopyranosy I-(1-4)-O-(3-deoxy-4-C-methyl-3-(meth ylamino)-á-L-arabinopyranosyl-(1-6))- 2-deoxy | C6H13NO2      |
| 19    | 13.78                            | 43.35 | 8.31              | Calycotomine, N-methyl-                                                                                                                | C13H19NO3     |
| 20    | 13.99                            | 17.84 | 2.38              | 4-[4-Diethylamino-1-methylbutylamino ]-1,2-dimethoxy-6-bromonaphthalene                                                                | C21H31BrN2O2  |
| 21    | 14.35                            | 32.83 | 1.22              | Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)-                                                         | C20H28N2O2    |
| 22    | 14.62                            | 12.2  | 2.67              | 4-[4-Diethylamino-1-methylbutylamino ]-1,2-dimethoxy-6-bromonaphthalene                                                                | C21H31BrN2O2  |
| 23    | 15.10                            | 12.00 | 4.14              | Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)-                                                         | C20H28N2O2    |
| 24    | 15.21                            | 32.49 | 0.87              | Cystine                                                                                                                                | C6H12N2O4S2   |
| 25    | 15.65                            | 33.28 | 1.26              | 3-[N-[2-Diethylaminoethyl]-1-cyclopes tenylamino]propionitrile                                                                         | C14H25N3      |
| 26    | 15.86                            | 16.52 | 0.92              | á-Hydroxyquebrachamine                                                                                                                 | CH3CH(OH)COOL |
| 27    | 15.99                            | 14.23 | 1.02              | 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropyl ester, (Z,Z,Z)-                                                                     | C21H36O4      |
| 28    | 16.22                            | 55.93 | 8.71              | Uric acid                                                                                                                              | C5H4N403      |
| 29    | 16.45                            | 8.30  | 1.33              | Aminoacetamide, N-methyl-N-[4-(1-pyrrolidinyl)-2-buty nyl]-                                                                            | C5H4N4O3      |
| 30    | 16.69                            | 32.32 | 2.06              | Glucopyranuronamide, 1-(4-amino-2-oxo-1(2H)-pyrimidinyl)- 1,4-dideoxy-4-(D-2-(2-(methylamino) acetamido)hydracrylamido)-, á-D          | C10H14N2O     |
| 31    | 16.90                            | 29.78 | 0.80              | 1,2,4-Trioxolane-2-octanoic acid, 5-octyl-, methyl ester                                                                               | C6H11NO6      |
| 32    | 17.29                            | 30.73 | 1.49              | Actinomycin C2                                                                                                                         | C19H36O5      |
| 33    | 18.45                            | 37.85 | 2.00              | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-                                                                        | C63H88N12O16  |
| 34    | 18.66                            | 90.13 | 2.23              | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-                                                                        | C63H88N12O16  |
| 35    | 18.76                            | 60.11 | 2.62              | 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6 H-dipyrrolo[1,2-a:1',2'-d]pyrazine                                                               | C11H18N2O2    |
| 36    | 18.97                            | 36    | 2.13              | I-(+)-Ascorbic acid                                                                                                                    | C14H22        |
| 37    | 20.98                            | 13.19 | 1.29              | cis-13-Octadecenoic acid                                                                                                               | C6H8O6        |
| 38    | 21.17                            | 13.49 | 0.94              | Ricinoleic acid                                                                                                                        | C18H34O2      |
| 39    | 23.99                            | 31.48 | 0.89              | Ergotaman-3',6',18-trione, 12'-hydroxy-2'-methyl-5'-(phenylmeth yl)-, (5'à)-                                                           | C18H34O3      |

The main group of compounds in the ethanol extract of mud crab (*S. serrata*) was represented by three peaks on the GC chromatogram, which had a higher percentage area than the others. These peaks were identified as Calycotomine, N-methyl- (8.31%), uric acid (8.71%), and Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-(2.xi.,4.xi.)- (4.14%). Antioxidant compounds detected in the GC-MS analysis included 2-Cyclohexylpiperidine with an area of 3.45%, which belongs to the alkaloid group. In addition, the Edullan II compound with an area of 1.37% belongs to the volatile compound group. The compound Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate, with an area of 0.83%, belongs to the terpenoid compound group, and Imidazole with an area of 0.93% also belongs to the alkaloid group.

In a study conducted by Rasyid (2016) on sea cucumber biota (*Bohadschia* sp.), steroid compounds consisting of cholest-2-ene (3.91%), stigmastan-3,5-diene (3.29%), cholest-5-en-3-yl nonanoate (4.89%), and cholest-5-ene, 3.beta.-chloro- (3.12%) were found. The compound Calycotomine, N-methyl- with an area of 8.31% belongs to the alkaloid group. The compound I-(+)-Ascorbic acid with an area of 2.13%, as well as 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6H-dipyrrolo[1,2-a:1',2'-d]pyrazine with an area of 2.62%, belong to the alkaloid group, and Ergotaman-3',6',18-trione, 12'-hydroxy-2'-

methyl-5'-(phenylmethyl)-, (5'à)- with an area of 0.89%, also belongs to the alkaloid group. Lalitha *et al.*, (2021), in their research on antioxidants in mangrove *Avicennia officinalis* L. through GC-MS testing, identified a group of antioxidant compounds such as Trans-cinnamic acid, with a peak area percentage of 27.7%.

The group of compounds found in mud crabs (*S. serrata*) were alkaloids. Alkaloid compounds can also be found in marine plants such as seagrasses. This is consistent with the findings of Shaffai *et al.*, (2023); Tjandrawinata and Nurkolis, (2024), who identified a group of alkaloid compounds in the ethanol extract of *Enhalus acoroides*, such as Phenyl-N-methylindole with a peak area of 53.88%, N-Methyldeacetylcolchicine with a peak area of 1.55%, and Phenyl-5-methylindole with a peak area of 28.98%

#### Conclusion

The results of antioxidant testing with the DPPH method on *Scylla serrata* extracts showed IC50 values at very strong antioxidant characteristics. Phytochemical identification shows the extract contains strong bioactive compounds in the flavonoid and triterpenoid compound groups. GC-MS compound profile identification showed GC-MS analysis detected major compound groups consisting of alkaloids, purines, and vitamins. Minor compound groups were detected from volatile compounds, amines, terpenoids, monosaccharides, amino acids, fatty acids, silanes, formamides, heterocycles, carboxylic acids, aminoglycosides, naphthalene derivatives, nitriles, amides, glycosides, and peptides. *Scylla serrata* extract has been reported to have potential as antioxidant, anti-inflammatory, anticancer, antimicrobial, and antiviral. The results of this study are expected to provide important information in the disclosure of alternative medicinal materials from marine organisms.

#### Acknowledgement

The research/publication of this article was funded by DIPA of Public Service Agency of Universitas Sriwijaya 2024. Nomor SP DIPA 023.17.2.677515/2024, On November 24, 2023. In accordance with the Rector's Degree Number: 0013/UN9/LP2M.PT/2024, On May 20, 2024.

#### References

Adnan, A.-S. *et al.* (2024) 'Moulting performances evaluation of female orange mud crab, Scylla olivacea (Herbst, 1796) in-captivity: effects of water salinity and limb autotomy', *Tropical Life Sciences Research*, 35(1), p. 197.

Ahmad, M.F. *et al.* (2021) 'Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties', *International Journal of Biological Macromolecules*, 187, pp. 769–779.

Akinwumi, K.A. *et al.* (2022) 'Acrostichium aureum Linn: traditional use, phytochemistry and biological activity', *Clinical Phytoscience*, 8(1), p. 18.

Alkadi, H. (2020) 'A review on free radicals and antioxidants', *Infectious Disorders-Drug Targets* (Formerly Current Drug Targets-Infectious Disorders), 20(1), pp. 16–26.

Almaniar, S., Rozirwan and Herpandi (2021) 'Abundance and diversity of macrobenthos at Tanjung Api-Api waters, South Sumatra, Indonesia.'

Ambekar, A.A. *et al.* (2023) 'Effect of temperature changes on antioxidant enzymes and oxidative stress in gastropod Nerita oryzarum collected along India's first Tarapur Atomic Power Plant site', *Environmental Research*, 216, p. 114334.

Baag, S. and Mandal, S. (2023) 'Do global environmental drivers' ocean acidification and warming exacerbate the effects of oil pollution on the physiological energetics of Scylla serrata?', *Environmental Science and Pollution Research*, 30(9), pp. 23213–23224.

Bal, A. et al. (2021) 'Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms', Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 241, p. 108971.

Baliyan, S. et al. (2022) 'Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa', *Molecules*, 27(4), p. 1326.

Berwal, M.K. *et al.* (2021) 'GC-MS/MS-based phytochemical screening of therapeutic potential of Calligonum polygonoides L. flower bud against chronic diseases', *Pharmacognosy Magazine*, 17(05).

Beslin, L.G. and Geni, G. (2021) 'Biochemical Profile and Antibacterial Examination of Freshwater Crab Scylla Serrata (FORSKAL, 1775)', *International Journal of Clinical Inventions and Medical Sciences (IJCIMS)*, 3(2), pp. 53–65.

De Castro, J.D.Y. *et al.* (2023) 'Pangasinan's Best: Microplastics Properties Found in Pangasinan Mangrove crab (Scylla serrata) Production'.

Chaudhary, P. et al. (2023) 'Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases', *Frontiers in chemistry*, 11, p. 1158198.

Chen, X. *et al.* (2022) 'Phytochemical composition, antioxidant activity, α-glucosidase and acetylcholinesterase inhibitory activity of quinoa extract and its fractions', *Molecules*, 27(8), p. 2420.

Chowdhury, M. *et al.* (2021) 'Effects of temperature, relative humidity, and carbon dioxide concentration on growth and glucosinolate content of kale grown in a plant factory', *Foods*, 10(7), p. 1524.

Costantini, M., Esposito, R. and Ruocco, N. (2022) 'Crustaceans as Good Marine Model Organisms to Study Stress Responses by—Omics Approaches', in *Crustaceans*. CRC Press, pp. 82–106.

Delta, M., Rozirwan and Hendri, M. (2021) 'Aktivitas antioksidan ekstrak daun dan kulit batang mangrove Sonneratia alba di Tanjung Carat, Kabupaten Banyuasin, Provinsi Sumatera Selatan', *Maspari Journal: Marine Science Research*, 13(2), pp. 129–144. Available at: https://doi.org/10.56064/maspari.v13i2.14577.

Dinesh, D. *et al.* (2022) 'Salvia leucantha essential oil encapsulated in chitosan nanoparticles with toxicity and feeding physiology of cotton bollworm Helicoverpa armigera', in *Biopesticides*. Elsevier, pp. 159–181.

Ebadzadeh, H., Shojaei, M.G. and Seyfabadi, J. (2024) 'The effect of habitat structural complexity on gastropods in an arid mangrove wetland', *Wetlands Ecology and Management*, 32(1), pp. 139–151.

Elshaarawy, R. et al. (2023) 'Preliminary assessment of bioactive ingredients and antioxidant activity of some Red Sea invertebrates' extracts.', *Egyptian Journal of Aquatic Biology & Fisheries*, 27(4).

Fajriaty, I. *et al.* (2024) 'In vitro and in silico studies of the potential cytotoxic, antioxidant, and HMG CoA reductase inhibitory effects of chitin from Indonesia mangrove crab (Scylla serrata) shells', *Saudi Journal of Biological Sciences*, 31(5), p. 103964.

Fitria, Y. *et al.* (2023) 'Gastropods as bioindicators of heavy metal pollution in the Banyuasin estuary shrimp pond area, South Sumatra, Indonesia', *Acta Ecologica Sinica*, 43(6), pp. 1129–1137.

Frías-Espericueta, M.G. *et al.* (2022) 'Metals and oxidative stress in aquatic decapod crustaceans: A review with special reference to shrimp and crabs', *Aquatic Toxicology*, 242, p. 106024.

Galal-Khallaf, A. *et al.* (2024) 'As healthy as invasive: Charybdis natator shell extract reveals beneficial metabolites with promising antioxidant and anti-inflammatory potentials', *Frontiers in Marine Science*, 11, p. 1376768.

Gebruk, A. *et al.* (2021) 'Trophic niches of benthic crustaceans in the Pechora Sea suggest that the invasive snow crab Chionoecetes opilio could be an important competitor', *Polar Biology*, 44, pp. 57–71.

Gulcin, İ. and Alwasel, S.H. (2023) 'DPPH radical scavenging assay', *Processes*, 11(8), p. 2248.

Habib, M.R. *et al.* (2022) 'Thais savignyi tissue extract: bioactivity, chemical composition, and molecular docking', *Pharmaceutical Biology*, 60(1), pp. 1899–1914.

Hajar-Azira, Z. et al. (2023) 'Preliminary investigation on the effect of fiddlehead fern, Diplazium esculentum, extract to the growth performance of giant freshwater prawn, Macrobrachium rosenbergii, postlarvae', *Aquaculture International*, 31(1), pp. 81–101.

Harun, N.H. *et al.* (2020) 'Immunomodulatory effects and structure-activity relationship of botanical pentacyclic triterpenes: A review', *Chinese Herbal Medicines*, 12(2), pp. 118–124.

Hashim, N. *et al.* (2021) 'A study of neem leaves: Identification of method and solvent in extraction', *Materials Today: Proceedings*, 42, pp. 217–221.

Hidir, A. et al. (2021) 'Sexual dimorphism of mud crab, genus Scylla between sexes based on morphological and physiological characteristics', *Aquaculture Research*, 52(12), pp. 5943–5961.

Indarjo, A. et al. (2020) 'The population and mortality characteristics of mangrove crab (Scylla serrata) in the mangrove ecosystem of Tarakan City, Indonesia', *Biodiversitas Journal of Biological Diversity*, 21(8).

Jabbar, A.A. *et al.* (2022) 'GC-MS Analysis of Bioactive Compounds in Methanolic Extracts of Papaver decaisnei and Determination of Its Antioxidants and Anticancer Activities', *Journal of Food Quality*, 2022(1), p. 1405157.

Jain, A. *et al.* (2024) 'Chemical diversity, traditional uses, and bioactivities of Rosa roxburghii Tratt: A comprehensive review', *Pharmacology & Therapeutics*, p. 108657.

Jerome, F.C., Hassan, A. and Chukwuka, A.V. (2020) 'Metalloestrogen uptake, antioxidant modulation and ovotestes development in Callinectes amnicola (blue crab): a first report of crustacea intersex in the Lagos lagoon (Nigeria)', *Science of the Total Environment*, 704, p. 135235.

Karnila, R. and Ramadhani, N.R. (2021) 'Antioxidant Activity of Astaxanthin Flour Extract of Mud Crab (Scylla Serrata) with Different Acetone Concentrations', in *IOP Conference Series: Earth and Environmental Science*. IOP Publishing, p. 12047.

Lalitha, P. et al. (2021) 'Antibacterial and antioxidant potential of GC-MS analysis of crude ethyl acetate extract from the tropical mangrove plant Avicennia officinalis L.', South African Journal of Botany, 142, pp. 149–155.

Mabou, F.D. and Yossa, I.B.N. (2021) 'TERPENES: Structural classification and biological activities', *IOSR J Pharm Biol Sci*, 16, pp. 25–40.

Martemucci, G. *et al.* (2022) 'Free radical properties, source and targets, antioxidant consumption and health', *Oxygen*, 2(2), pp. 48–78.

Martinez-Morales, F. *et al.* (2020) 'Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants', *Chemical Papers*, 74, pp. 3325–3334.

Mediarman, G.N. et al. (2021) 'Potentials of CaO powder result of calcination from green shells (Perna viridis), scallops (Placuna placenta), and blood clams (Anadara granosa) as antibacterial

agent', in IOP Conference Series: Earth and Environmental Science. IOP Publishing, p. 12043.

Di Meo, S. and Venditti, P. (2020) 'Evolution of the knowledge of free radicals and other oxidants', Oxidative medicine and cellular longevity, 2020(1), p. 9829176.

Mounika, S. *et al.* (2021) 'A comprehensive review of medicinal plants for cardioprotective potential', *International Journal of Advances in Pharmacy and Biotechnology*, 7(1), pp. 24–29.

Muhtar, K.M.Y. and Lanuru, M. (2021) 'Water quality assessment for the development of silvofishery pattern mangrove crabs in Coastal Area, Polewali Mandar, West Sulawesi', *Intl J Sci Res Publ*, 11(11), pp. 391–395.

Musa, M. et al. (2022) 'Pharmacological activities and gas chromatography-mass spectrometry analysis for the identification of bioactive compounds from Justicia adhatoda L.', *Frontiers in pharmacology*, 13, p. 922388.

Nagarajan, P. et al. (2024) 'Therapeutic potential of biologically active peptides from marine organisms for biomedical applications', *Studies in Natural Products Chemistry*, 81, pp. 467–500.

Nanda, P.K. *et al.* (2021) 'Nutritional aspects, flavour profile and health benefits of crab meat based novel food products and valorisation of processing waste to wealth: A review', *Trends in Food Science & Technology*, 112, pp. 252–267.

Naveed, M. et al. (2022) 'Characterization and evaluation of the antioxidant, antidiabetic, antiinflammatory, and cytotoxic activities of silver nanoparticles synthesized using Brachychiton populneus leaf extract', *Processes*, 10(8), p. 1521.

Neelima, S. *et al.* (2022) 'Characterisation of a novel crustin isoform from mud crab, Scylla serrata (Forsskål, 1775) and its functional analysis in silico', *In Silico Pharmacology*, 11(1), p. 2.

Nugroho, R.Y., Rozirwan, R. and Fauziyah, F. (2022) 'Biodiversitas Gastropoda dan Krustasea di Zona Intertidal Hutan Mangrove Estuari Sungai Musi, Sumatera Selatan', *SIMBIOSA*, 11(2), pp. 61–71.

Ouyang, Z. et al. (2021) 'Effects of different concentrations of dissolved oxygen on the growth, photosynthesis, yield and quality of greenhouse tomatoes and changes in soil microorganisms', Agricultural Water Management, 245, p. 106579.

Palaniyappan, S. et al. (2023) 'Evaluation of phytochemical screening, pigment content, in vitro antioxidant, antibacterial potential and GC-MS metabolite profiling of green seaweed Caulerpa racemosa', *Marine Drugs*, 21(5), p. 278.

Palma, A. et al. (2023) 'Optimization of bioactive compounds by ultrasound extraction and gas chromatography-mass spectrometry in fast-growing leaves', *Microchemical Journal*, 193, p. 109231.

Pati, S.G. *et al.* (2022) 'Effects of soil trace metals, organic carbon load and physicochemical stressors on active oxygen species metabolism in Scylla serrata sampled along the Bay of Bengal in Odisha state, India', *Frontiers in Environmental Science*, 10, p. 994773.

Pati, S.G. *et al.* (2023) 'Impacts of habitat quality on the physiology, ecology, and economical value of mud crab Scylla sp.: a comprehensive review', *Water*, 15(11), p. 2029.

Pisoschi, A.M. *et al.* (2021) 'Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status', *European Journal of Medicinal Chemistry*, 209, p. 112891.

Putri, A. et al. (2022) 'Mangrove Habitat Structure of Mud Crabs (Scylla serrata and S. olivacea) in the Bee Jay Bakau Resort Probolinggo, Indonesia.', *Ilmu Kelautan: Indonesian Journal of Marine Sciences*, 27(2).

Rafferty, C. et al. (2020) 'Analysis of chemometric models applied to Raman spectroscopy for

monitoring key metabolites of cell culture', Biotechnology progress, 36(4), p. e2977.

Rahmawati, R. et al. (2023) 'Effect of decaffeination time on the chemical profile of green bean arabica coffee (Coffea arabica L.)', in AIP Conference Proceedings. AIP Publishing.

Ren, X. et al. (2021) 'Effects of low temperature on shrimp and crab physiology, behavior, and growth: a review', Frontiers in Marine Science, 8, p. 746177.

Rozirwan *et al.* (2023) 'An assessment of Pb and Cu in waters, sediments, and mud crabs (Scylla serrata) from mangrove ecosystem near Tanjung Api-Api port area, South Sumatra, Indonesia.'

Rozirwan, R. *et al.* (2021) 'Assessment the macrobenthic diversity and community structure in the Musi Estuary, South Sumatra, Indonesia', *Acta Ecologica Sinica*, 41(4), pp. 346–350.

Rozirwan, R. *et al.* (2022) 'Phytochemical profile and toxicity of extracts from the leaf of Avicennia marina (Forssk.) Vierh. collected in mangrove areas affected by port activities', *South African Journal of Botany*, 150, pp. 903–919.

Rozirwan, R., Hananda, H., *et al.* (2023) 'Antioxidant Activity, Total Phenolic, Phytochemical Content, and HPLC Profile of Selected Mangrove Species from Tanjung Api-Api Port Area, South Sumatra, Indonesia.', *Tropical Journal of Natural Product Research*, 7(7).

Rozirwan, R., Nanda, N., *et al.* (2023) 'Phytochemical composition, total phenolic content and antioxidant activity of Anadara granosa (Linnaeus, 1758) collected from the east coast of South Sumatra, Indonesia', *Baghdad Science Journal*, 20(4), p. 1258.

Rozirwan, R., Siswanto, A., *et al.* (2024) 'Anti-Inflammatory Activity and Phytochemical Profile from the Leaves of the Mangrove Sonneratia caseolaris (L.) Engl. for Future Drug Discovery', *Science and Technology Indonesia*, 9(2), pp. 502–516.

Rozirwan, R., Az-Zahrah, S.A.F., *et al.* (2024) 'Ecological Risk Assessment of Heavy Metal Contamination in Water, Sediment, and Polychaeta (Neoleanira Tetragona) from Coastal Areas Affected by Aquaculture, Urban Rivers, and Ports in South Sumatra.', *Journal of Ecological Engineering*, 25(1).

Sadiq, I.Z. (2023) 'Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation', *Current Molecular Medicine*, 23(1), pp. 13–35.

Shaffai, A. El, Mettwally, W.S.A. and Mohamed, S.I.A. (2023) 'A comparative study of the bioavailability of Red Sea seagrass, Enhalus acoroides (Lf) Royle (leaves, roots, and rhizomes) as anticancer and antioxidant with preliminary phytochemical characterization using HPLC, FT-IR, and UPLC-ESI-TOF-MS spectroscopic a', *Beni-Suef University Journal of Basic and Applied Sciences*, 12(1), p. 41.

Shen, N. *et al.* (2022) 'Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity', *Food chemistry*, 383, p. 132531.

Shofinita, D. *et al.* (2024) 'Effects of different decaffeination methods on caffeine contents, physicochemical, and sensory properties of coffee', *International Journal of Food Engineering*, 20(8), pp. 561–581.

Suwandi, R., Ula, M.Z. and Pertiwi, R.M. (2020) 'Characteristics of chemical compounds of horseshoe crabs Tachypleus gigas in different body proportions', in *IOP Conference Series: Earth and Environmental Science*. IOP Publishing, p. 12029.

Teleanu, D.M. *et al.* (2022) 'An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases', *International journal of molecular sciences*, 23(11), p. 5938.

Tjandrawinata, R.R. and Nurkolis, F. (2024) 'A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in

Seagrass Enhalus acoroides: In Silico and In Vitro Study', Marine Drugs, 22(8), p. 365.

Triajie, H. *et al.* (2020) 'Time of mangrove crabs Scylla paramamosain final premolt stadia (D4) to reach ecdysis of the male and female growth under different salinity', *Eurasian Journal of Biosciences*, 14(2), pp. 7889–7897.

Tumilaar, S.G. *et al.* (2024) 'A Comprehensive Review of Free Radicals, Oxidative Stress, and Antioxidants: Overview, Clinical Applications, Global Perspectives, Future Directions, and Mechanisms of Antioxidant Activity of Flavonoid Compounds', *Journal of Chemistry*, 2024(1), p. 5594386.

Ullah, A. *et al.* (2024) 'Phytoconstituents with cardioprotective properties: A pharmacological overview on their efficacy against myocardial infarction', *Phytotherapy Research*, 38(9), pp. 4467–4501.

Vásquez, P., Cian, R.E. and Drago, S.R. (2023) 'Marine Bioactive Peptides (Fishes, Algae, Cephalopods, Molluscs, and Crustaceans)', *Handbook of Food Bioactive Ingredients: Properties and Applications*, pp. 1–30.

Vellapandian, C. (2022) 'Phytochemical studies, antioxidant potential, and identification of bioactive compounds using GC–MS of the ethanolic extract of Luffa cylindrica (L.) fruit', *Applied Biochemistry and Biotechnology*, 194(9), pp. 4018–4032.

Vermeiren, P., Lennard, C. and Trave, C. (2021) 'Habitat, sexual and allometric influences on morphological traits of intertidal crabs', *Estuaries and Coasts*, 44(5), pp. 1344–1362.

Waluyo, J. and Wahyuni, D. (2021) 'Antibacterial effects of Pheretima javanica extract and bioactive chemical analysis using Gas Chromatography Mass Spectrum', in *Journal of Physics: Conference Series*. IOP Publishing, p. 12055.

Wang, J. et al. (2021) 'Satellite-observed decreases in water turbidity in the Pearl River Estuary: potential linkage with sea-level rise', *Journal of Geophysical Research: Oceans*, 126(4), p. e2020JC016842.

Wu, Q. et al. (2021) 'Chinese gallnut (Galla chinensis) against Vibrio parahaemolyticus: in vitro activity and the use of medicated bath method to treat infected mud crab Scylla paramamosain', *Aguaculture*, 539, p. 736632.

Yang, Y. *et al.* (2023) 'How does the internal distribution of microplastics in Scylla serrata link with the antioxidant response in functional tissues?', *Environmental Pollution*, 324, p. 121423.

Yao, J. et al. (2023) 'Untargeted Lipidomics Method for the Discrimination of Five Crab Species by Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry Combined with Chemometrics', *Molecules*, 28(9), p. 3653.

Yogeshwaran, A. *et al.* (2020) 'Bioaccumulation of heavy metals, antioxidants, and metabolic enzymes in the crab Scylla serrata from different regions of Tuticorin, Southeast Coast of India', *Marine pollution bulletin*, 158, p. 111443.

Yuniarti, R. *et al.* (2020) 'Characterization, phytochemical screenings and antioxidant activity test of kratom leaf ethanol extract (Mitragyna speciosa Korth) using DPPH method', in *Journal of Physics: Conference Series.* IOP Publishing, p. 12026.

Yusni, E. and Haq, F.A. (2020) 'Inventory and prevalence of ectoparasites Octolasmis sp. in the mangrove crab (Scylla tranquebarica) in Lubuk Kertang, Langkat', in *IOP Conference Series: Earth and Environmental Science*. IOP Publishing, p. 12121.

Yusof, W.R.W. *et al.* (2020) 'Nutritional composition, antioxidants and antimicrobial activities in muscle tissues of mud crab, Scylla paramamosain', *Research Journal of Biotechnology Vol*, 15, p. 4.

Zang, L. *et al.* (2022) 'A link between chemical structure and biological activity in triterpenoids', *Recent Patents on Anti-Cancer Drug Discovery*, 17(2), pp. 145–161.

Zeng, L. *et al.* (2024) 'Differential effects of oxytetracycline on detoxification and antioxidant defense in the hepatopancreas and intestine of Chinese mitten crab under cadmium stress', *Science of The Total Environment*, 930, p. 172633.



Rozirwan ROZIRWAN <rozirwan@unsri.ac.id>

## [IK.IJMS] [ID-70658] Revised Version Acknowledgement

1 pesan

Ambariyanto <ijms@live.undip.ac.id> Balas Ke: "Dr Rozirwan M.Sc. Rozirwan" <rozirwan@unsri.ac.id> Kepada: "Dr Rozirwan M.Sc. Rozirwan" <rozirwan@unsri.ac.id> 23 Februari 2025 pukul 22.11

#### Dr Rozirwan M.Sc. Rozirwan:

Thank you for submitting the revision of manuscript, "SCREENING AND PROFILING OF ANTIOXIDANT ACTIVITY IN MUD CRAB (Scylla serrata) FROM BANYUASIN WATERS" to ILMU KELAUTAN: Indonesian Journal of Marine Sciences. With the online journal management system that we are using, you will be able to track its progress through the editorial process by logging in to the journal web site:

Manuscript URL: https://ejournal.undip.ac.id/index.php/ijms/author/submission/70658

Username: rozirwan Editor: Ambariyanto

If you have any questions, please contact me. Thank you for considering this journal as a venue for your work.

Ambariyanto

ILMU KELAUTAN: Indonesian Journal of Marine Sciences

INDONESIAN JOURNAL OF MARINE SCIENCE http://ejournal.undip.ac.id/index.php/ijms



Rozirwan ROZIRWAN <rozirwan@unsri.ac.id>

## [IK.IJMS] Editor Decision

2 pesan

Indonesian Journal of Marine Science <ejournal@rumahjurnalundip.id>Balas Ke: Indonesian Journal of Marine Science <ijms.undip@gmail.com>Kepada: "Dr Rozirwan M.Sc. Rozirwan" <rozirwan@unsri.ac.id>Cc: Che Abd Rahim Mohamed <carmohd@ukm.edu.my>

9 Agustus 2025 pukul 05.25

Dr Rozirwan M.Sc. Rozirwan:

We have reached a decision regarding your submission to ILMU KELAUTAN: Indonesian Journal of Marine Sciences, "SCREENING AND PROFILING OF ANTIOXIDANT ACTIVITY IN MUD CRAB (Scylla serrata) FROM BANYUASIN WATERS".

Our decision is to: Revision

. . . . . .

Indonesian Journal of Marine Science ijms.undip@gmail.com

#### Reviewer B:

#### 1. Introduction

The introduction provides a good background on Scylla serrata as a source of bioactive compounds, particularly antioxidants, and their potential therapeutic roles. It includes relevant citations to recent studies and explains the importance of antioxidants in mitigating oxidative stress-related diseases. However, while it cites several previous works on antioxidant compounds in S. serrata, the "state of the art" — meaning the current research frontier and what is still unknown — could be presented more explicitly. The gap is mentioned ("specific data on the type and quantity... are still limited"), but it would be stronger if the authors clearly positioned their study in comparison to the latest findings and emphasized how their approach is novel compared to prior research.

#### 2. Methods and Relation to the Results

The methods are described in detail, covering sampling, environmental parameter measurements, sample preparation, extraction, antioxidant activity determination (DPPH assay), phytochemical screening, and GC-MS analysis. The methodology appears appropriate for the objectives and is standard for antioxidant profiling. The inclusion of environmental parameters is useful for context. The described procedures align well with the results obtained, and the choice of ethanol as the extraction solvent is justified. However, while the methods are adequate for generating the reported data, the reproducibility could be further supported by specifying some operational parameters in GC-MS analysis (e.g., column dimensions, flow rate) and clarifying the statistical approach used for IC<sub>50</sub> comparisons.

#### 3. Results and Discussion Coherence

The results are presented clearly, with IC<sub>50</sub> values showing very strong antioxidant activity, followed by qualitative and GC-MS-based compound identification. The discussion effectively connects the identified compounds (flavonoids, triterpenoids, alkaloids, purines, vitamins) with their known biological activities, citing relevant literature. However, there are some areas where the discussion could be more critical — for instance, interpreting why alkaloids were not detected in qualitative phytochemical screening but appeared in GC-MS, beyond the method differences. Additionally, more comparative analysis with similar studies (quantitative differences in compound abundance) would strengthen the interpretation.

#### 4. Suitability of Results and Discussion

Overall, the results and discussion are consistent and support the conclusion that S. serrata extracts have strong antioxidant potential. The integration of phytochemical screening and GC-MS profiling provides a comprehensive view of the bioactive composition. Nonetheless, the discussion tends to be more descriptive than analytical in parts — stronger linkage between environmental conditions, extraction efficiency, and compound diversity could enhance the scientific depth.

| INDONESIAN JOURNAL OF MARINE SCIENCE http://ejournal.undip.ac.id/index.php/ijms |
|---------------------------------------------------------------------------------|
|                                                                                 |

Rozirwan ROZIRWAN <rozirwan@unsri.ac.id> Kepada: redhoyoganugroho@mipa.unsri.ac.id 9 Agustus 2025 pukul 06.09

[Kutipan teks disembunyikan]

\_\_

**Prof. Dr. Rozirwan, S.Pi., M.Sc** Head of Marine Bioecology Laboratory Department of Marine Science Faculty of Mathematics and Natural Sciences Sriwijaya University Jalan Raya Palembang-Prabumulih KM 32, Indralaya Ogan Ilir, Sumatera Selatan, Indonesia, Pos Code: 30862 Email: rozirwan@unsri.ac.id, rozirwan@gmail.com

70658-234500-1-ED.docx 7733K

# SCREENING AND PROFILING OF ANTIOXIDANT ACTIVITY IN MUD CRAB (Scylla serrata) FROM BANYUASIN WATERS

Rozirwan<sup>1\*</sup>, Ning Intan Lestari<sup>1</sup>, Yoga Winarta<sup>1</sup>, Isnaini<sup>1</sup>, Wike Ayu Eka Putri<sup>1</sup>, Muhammad Hendri<sup>1</sup>, Tengku Zia Ulqodry<sup>1</sup>, Fauziyah<sup>1</sup>, Melki<sup>1</sup>, Redho Yoga Nugroho<sup>1</sup>, Che Abd Rahim Mohamed<sup>2</sup>

<sup>1</sup>Department of Marine Science, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Indralaya 30862, South Sumatra, Indonesia <sup>2</sup>Faculty of Science and Technology,Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor, Malaysia

Email: rozirwan@unsri.ac.id

#### Abstract

Mangrove crab (Scylla serrata) as one of the crustacean species, has a variety of bioactive compounds that can be utilized in the field of pharmacology. Antioxidant compounds act as therapeutic agents against degenerative diseases. Banyuasin waters have mangrove vegetation with associated marine organisms that have the potential to be studied for bioactive compounds. This study aims to identify the phytochemical profile quantitatively and qualitatively, samples were collected from mud flats near mangrove ecosystems in Banyuasin waters. South Sumatra. Samples were tested for antioxidant activity using the DPPH test, and IC50 values, qualitative phytochemical identification, and phytochemical profiles were calculated using Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Based on the results of antioxidant testing, the IC50 value of Scylla serrata extract is 2.25 ppm, the sample is included in the category of very strong antioxidants. Phytochemical test results showed that the compound is thought to contain antioxidant activity from flavonoids and triterpenoids. GC-MS analysis detected major compound groups of alkaloids, purines, and vitamins. Minor compound groups detected amines, terpenoids, monosaccharides, amino acids, fatty acids, silanes, formamides, heterocycles, carboxylic acids, aminoglycosides, naphthalene derivatives, nitriles, amides, glycosides, and peptides. Scylla serrata extract shows very strong antioxidant activity, with major compounds such as alkaloids, purines, and vitamins. Scylla serrata extract detected compounds that have been reported as anti-inflammatory, anticancer, antimicrobial, and antiviral. These findings highlight the pharmaceutical potential of Scylla serrata as a source of bioactive compounds. The results of this study provide valuable information for the development of alternative medicines derived from marine organisms.

Keywords: Antioxidant, Bioactive compounds, DPPH, GC-MS, Scylla serrata

#### Introduction

Scylla serrata or mud crab, as one of the crustacean species, has great potential in the field of beauty and health (De Castro et al., 2023), because of its diverse bioactive compounds (Yusof et al., 2020; Beslin and Geni, 2021; Neelima et al., 2022). The diversity of bioactive compounds triggers great potential in the search for alternative medicinal ingredients from marine organisms, including antioxidant compounds (Yogeshwaran et al., 2020; Karnila and Ramadhani, 2021; Fajriaty et al., 2024). Antioxidant compounds in mud crabs have a role as therapeutic agents (Wu et al., 2021) in fighting degenerative diseases such as cancer (Nagarajan et al., 2024), cardiovascular diseases (Nanda et al., 2021), and neurodegenerative disorders (Galal-Khallaf et al., 2024), caused by oxidative stress due to free radicals.

Antioxidant is the reaction of a compound in neutralizing free radicals (Delta *et al.*, 2021; Rozirwan *et al.*, 2023; Rozirwan *et al.*, 2023). This process involves a highly efficient electron donation mechanism. Antioxidants work by donating electrons to free radicals (Frías-Espericueta *et al.*, 2022; Pati *et al.*, 2022; Yang *et al.*, 2023; Fajriaty *et al.*, 2024). Free radicals, which have one or more unpaired electrons, are highly reactive and can cause oxidative damage to DNA, proteins, and cellular lipids (Alkadi, 2020; Di Meo and Venditti, 2020). Free radicals are often generated as byproducts of various metabolic processes in the body or due to environmental exposures such as pollution and ultraviolet radiation (Martemucci *et al.*, 2022; Sadiq, 2023). The damage caused by free radicals can contribute to the development of various degenerative diseases, including cancer, heart disease, and neurodegenerative disorders (Teleanu *et al.*, 2022; Chaudhary *et al.*, 2023). In inhibiting free radicals, antioxidant compounds such as carotenoids and polyphenols will interact with free radicals to enhance the activity of detoxification enzymes resulting in accelerated elimination of free radicals and strengthened antibodies (Pisoschi *et al.*, 2021; Tumilaar *et al.*, 2024).

The analysis of antioxidant compounds in *Scylla serrata* requires an accurate technique to ensure identification and quantification are targeted (Baag and Mandal, 2023; Yao *et al.*, 2023). The gas Chromatography-Mass Spectrometry (GC-MS) analysis method was chosen as an effective method in the analysis of bioactive compounds (Jabbar *et al.*, 2022; Musa *et al.*, 2022; Palma *et al.*, 2023; Rozirwan *et al.*, 2024). This method allows the separation and identification of compounds based on their density and chemical characteristics. This method is able to identify the diversity of antioxidant compounds in *Scylla serrata* meat with high accuracy while being able to measure the concentration of each compound analyzed. Antioxidant compounds such as carotenoids and polyphenols were identified through GC-MS analysis, showing significant therapeutic potential (Berwal *et al.*, 2021; Vellapandian, 2022; Palaniyappan *et al.*, 2023). The identified antioxidant content offers substantial health benefits to humans as an alternative medicine.

Previous studies have extracted various body parts of *Scylla serrata* and shown the content of antioxidant compounds such as flavonoids, carotenoids, and polyphenols (Yogeshwaran *et al.*, 2020; Karnila and Ramadhani, 2021; Neelima *et al.*, 2022; Yang *et al.*, 2023; Fajriaty *et al.*, 2024). The results showed that some of these compounds are classified with high antioxidant characteristics. However, specific data on the type and quantity of antioxidant substances from this organism are still limited. Therefore, in-depth and comprehensive research is needed to reveal the potential of *Scylla serrata* as a source of antioxidants. This study aims to identify the profile of antioxidant compounds in *Scylla serrata*. Thus, the potential of *Scylla serrata* as a source of alternative medicinal ingredients can be further explored and optimally utilized.

## **Materials and Methods**

#### Sampling Area

Mangrove crab samples were collected in January 2023 from Banyuasin Waters, South Sumatra, Indonesia (Figure 1). At this location, numerous crustacean and gastropod populations were found inhabiting the intertidal zone (Almaniar, Rozirwan and Herpandi, 2021; Rozirwan et al., 2021; Nugroho, Rozirwan and Fauziyah, 2022). The crab fishing area had a mud substrate with a depth of 1–2 m and was located within a mangrove vegetation zone directly connected to port and pond activities (Fitria et al., 2023). Anthropogenic pollutants that accumulate in these waters are known to trigger an increase in the defense mechanisms of organisms, such as the production of antioxidant compounds derived from secondary metabolites (Rozirwan et al., 2023).



Figure 1. Map of Sampling Location in Banyuasin Waters Area

#### Samples Catch, Collage, Storage and Identification

Crustacean samples were taken using folding trawl gear. The samples were collected and stored in a cool box. The crab identification process was conducted based on the examination of morphological characteristics, such as body shape, color pattern, claw shape, and leg shape (Hidir et al., 2021; Vermeiren, Lennard and Trave, 2021). Morphometric measurements were performed on the crab samples, and the identification process was completed in the laboratory. Taxon determination was carried out using data from the World Register of Marine Species (WoRMS) accessed in January 2023 (WoRMS, 2023).

#### **Environmental Characteristics of Sampling Area**

Environmental quality calculations were conducted to assess the condition of the sampling environment. Environmental parameter data were measured, including salinity, temperature, pH, and dissolved oxygen (DO) (Fitria et al., 2023; Rozirwan et al., 2024). Each parameter was measured in three repetitions to ensure consistency, and the results were then averaged. Environmental parameter measurements are typically used to evaluate habitat conditions, as they provide insights into the physical and chemical characteristics of the ecosystem. Repetition in measurements is a standard approach to improve data reliability.

## Sample Preparation

The preparation method described by Ambekar *et al.* (2023), involves cleaning the crab to remove contaminants. In this study, the carapace and crab meat were separated and rinsed with distilled water to eliminate any remaining impurities. The wet weight of the crab meat was measured, and the samples were then dried in an oven at  $40^{\circ}$ C for  $3 \times 24$  h. After drying, the samples were ground into powder using a blender. The dry weight of the crab meat was recorded for data analysis.

#### Sample Maceration and Extraction

The wet maceration method was used in this study. A total of 250 g of *Scylla serrata* meat powder was weighed and immersed in 1000 mL of 96% ethanol solvent at a ratio of 1:4 (b/v). The soaking process was conducted for 3 × 24 h, with stirring performed periodically to ensure optimal extraction. The maceration results were filtered using filter paper (No. 42, 125 mm). The extraction process was then carried out using a rotary evaporator at 40°C with a rotating speed of 3000 rpm (Hashim *et al.*, 2021). The resulting extract was stored as a stock solution. A total of 0.05 g of *Scylla serrata* extract was used as an additive for the stock solution (Habib *et al.*, 2022). Wet maceration is a commonly

employed extraction method due to its ability to preserve heat-sensitive compounds. Stirring during the maceration process enhances solute dissolution, while rotary evaporation ensures efficient solvent removal under controlled temperature conditions.

#### Determination of Antioxidant Activity and IC50 Value

Antioxidant testing was conducted using the DPPH method (Vásquez, Cian and Drago, 2023). The stock solution of *Scylla serrata* extract was used as the test solution for antioxidant activity, while vitamin C solution served as a reference. The sample was dissolved in 96% ethanol. A total of 1 mL of sample solution was prepared for each concentration: 100 mg.L<sup>-1</sup>, 150 mg.L<sup>-1</sup>, 200 mg.L<sup>-1</sup>, 250 mg.L<sup>-1</sup>, and 300 mg.L<sup>-1</sup>. Each concentration was mixed with 40 µg.mL<sup>-1</sup> DPPH solution and incubated in the dark for 30 min. The absorbance values were measured at 517 nm using UV-Vis spectrophotometry. The percentage of inhibition and IC50 value were calculated (Naveed *et al.*, 2022). The characterization of antioxidant activity is determined based on the IC50 value, which represents the concentration of the sample required to inhibit 50% of DPPH radicals. The strength of antioxidant activity is classified according to IC50 values, as shown in Table 1. The IC50 value is calculated using the following formula.

$$inhibistion = \frac{blank\ abs - sample\ abs.}{blank\ abs} \times 100\ \%$$

The IC50 results were entered in the linear regression equation Y = AX + B. The sample concentration is the abscissa (X-axis), and the percentage of antioxidant inhibition is the ordinate (Y-axis) (Yuniarti *et al.*, 2020).

Table 1. Characteristic concentration value of IC50

| Concentration Value (µg.mL <sup>-1</sup> ) | Characteristic |
|--------------------------------------------|----------------|
| <50                                        | Very Strong    |
| 50-100                                     | Strong         |
| 100-150                                    | Moderate       |
| 150-200                                    | Low            |

#### Phytochemical analysis

## Phytochemical Screening

Phytochemical tests of *Scylla serrata* meat extracts were conducted using qualitative methods to identify the presence of bioactive compounds. The analysis included steroid and triterpenoid tests, which were performed using the Liebermann-Burchard method; alkaloid tests using Mayer and Dragendorff reagents; flavonoid tests with the Shinoda staining method; tannin tests using the FeCl<sub>3</sub> reaction; and saponin tests using the foam test method. Each test was carried out following the procedures described in standard literature (Suwandi, Ula and Pertiwi, 2020; Dinesh *et al.*, 2022).

## Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

The identification of bioactive compound components in *Scylla serrata* meat extract was performed using the GC-MS analysis method. GC-MS analysis was conducted following the method described by Rozirwan *et al.* (2022). A total of 1  $\mu$ L of extract was injected into the column (rt x 5 ms) with helium as the carrier gas and a split ratio of 1:50. The oven temperature was set at 50°C for 5 min, then gradually increased at a rate of 5°C per minute to a maximum temperature of 280°C, which was maintained for 5 min. Samples were injected 280°C. The Wiley 7 Library database was used as a reference for comparing the spectra of the analyzed compounds (Rafferty *et al.*, 2020).

#### Data Analysis

Further data processing was performed by conducting normality tests (Shapiro-Wilk) and homogeneity tests (Levene) (Gebruk *et al.*, 2021; Ebadzadeh, Shojaei and Seyfabadi, 2024). All experiments were conducted in triplicate, and the results were expressed as mean ± standard deviation. Statistical analysis was carried out using SPSS software. One-way analysis of variance (ANOVA), followed by Duncan's multiple range test for post hoc comparisons, was used to identify significant differences among groups. Statistical significance was determined at p < 0.05.

#### **Result and Discussion**

#### Samples Catch, Collage, Storage and Identification

Taxon determination was conducted using data from the World Register of Marine Species (WoRMS) accessed in January 2023 (WoRMS, 2023). Based on their morphological characteristics, the crustacean samples were identified as *Scylla serrata*.

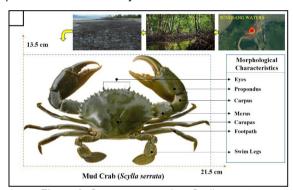



Figure 2. Crustacean species, Scylla serrata

Mangrove crabs of this species were caught using folding traps. The fishing process was carried out during low tide to facilitate crab capture. In this study, 2–5 crabs were used as stock samples. The crabs obtained were weighed, with weights ranging from 200 to 320 g, widths of approximately 21.5 cm, and lengths of around 13.5 cm. The crabs were then stored in a cool box filled with ice cubes for preservation.

The species identification of mangrove crabs is based on morphological characteristics, which include features such as the eyes, propound, carpus, merus, carapace, claws, walking legs, and swimming legs (Figure 2). Taxonomic data from databases such as WoRMS is widely used to confirm species classification accurately.

## **Environmental Characteristics of Sampling Area**

Table 2. Observation of Environmental Parameters of the Research Site

|                                        | Station         |
|----------------------------------------|-----------------|
| Environment Parameter Quality          | Sungsang Waters |
| Dissolved oxygen (mg.L <sup>-1</sup> ) | 4.2             |
| рН                                     | 7               |
| Temperature (°C)                       | 28              |

The results of environmental quality measurements in the *Scylla serrata* sampling areas in Banyuasin waters revealed diverse conditions. Measurements of water physicochemical parameters, including dissolved oxygen, pH, temperature, and salinity, were taken to assess the habitat suitability for *Scylla serrata* (Rozirwan *et al.*, 2021). The dissolved oxygen concentration was found to be 4.2 mg.L<sup>-1</sup>, which is sufficient to support the respiration process of aquatic organisms (Ouyang *et al.*, 2021). The pH value of the water at the sampling location was 7, indicating neutral pH, which represents optimal ecological conditions (Chowdhury *et al.*, 2021). This is consistent with previous studies (Yusni and Haq, 2020; Muhtar and Lanuru, 2021; Putri *et al.*, 2022), which state that waters with a pH between 6.5 and 7.5 are ideal for the survival of mangrove crabs. The water temperature was measured at 28°C, indicating favorable conditions for mangrove crab growth (Indarjo *et al.*, 2020; Ren *et al.*, 2021) Water salinity was recorded at 18 <del>%, psu, reflecting typical conditions in estuarine areas or areas directly influenced by tidal movements (Wang *et al.*, 2021). *Scylla serrata* grows best in salinities between 15<del>% psu</del> and 25<del>% psu</del> but grows more slowly at salinities greater than 25 to 30<del>% psu</del> (Triajie *et al.*, 2020; Pati *et al.*, 2023; Adnan *et al.*, 2024).</del>

#### Determination of Antioxidant Activity by DPPH Assay

Antioxidant analysis using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method on *Scylla serrata* meat extract showed promising results. The DPPH solution changed from purple to yellow, indicating the presence of antioxidants in the extract. The test results revealed that the *Scylla serrata* extract had an IC50 value of 2.25 ppm, while Vitamin C, used as a comparison solution, had an IC50 value of 2.16 ppm (Table 3). Both solutions demonstrated low IC50 values, categorizing them as very strong antioxidant compounds. The IC50 value, which is the concentration required to inhibit 50% of DPPH radical activity, is a critical parameter for assessing the antioxidant potential of a compound (Martinez-Morales *et al.*, 2020). The results indicate that *Scylla serrata* extract possesses an IC50 value comparable to that of Vitamin C. The percentage inhibition of DPPH free radicals by *Scylla serrata* meat extract increased as the extract concentration increased. This suggests that the extract has the ability to donate electrons or hydrogen to the DPPH radical, neutralizing it and converting it into a more stable form (Gulcin and Alwasel, 2023).

Table 3. Calculation results of antioxidant activity of Scylla serrata in Sungsang waters

| Comple         | Li     | near Regressi | on     | ─ IC50 Value            | Cotogoni    |
|----------------|--------|---------------|--------|-------------------------|-------------|
| Sample -       | a b    |               | R²     | - icso value            | Category    |
| Scylla serrata | 6.9429 | 52.808        | 0.9327 | 2.25 mg.L <sup>-1</sup> | Very Strong |
| Asorbic Acid   | 6.7135 | 55.866        | 0.9435 | 2.16 mg.L <sup>-1</sup> | Very Strong |

The discovery of compounds such as flavonoids and triterpenoids, which were identified in the phytochemical analysis of *Scylla serrata* extracts, suggests that they may possess high antioxidant activity (Akinwumi *et al.*, 2022; Hajar-Azira *et al.*, 2023). Flavonoids are well known for their ability to capture free radicals and interrupt the chain of oxidative reactions. Triterpenoids are also recognized for their significant antioxidant activity through a similar mechanism. The combination of these compounds in *Scylla serrata* extract creates a synergistic effect, enhancing the overall capacity of the extract to neutralize free radicals.

Scylla serrata is known for its rich antioxidant system and strong enzymatic defense system, which help it survive in the dynamic and often challenging mangrove environment (Pati et al., 2023). Mud

crabs also possess defense enzymes such as superoxide dismutase (SOD), catalase, and glutathione peroxidase, which work synergistically to detoxify reactive oxygen species (ROS) and maintain redox balance in the body (Jerome, Hassan and Chukwuka, 2020; Bal *et al.*, 2021; Costantini, Esposito and Ruocco, 2022; Zeng *et al.*, 2024). These enzymes play a crucial role in protecting the crab from oxidative stress generated by fluctuating environmental conditions, pollution, and pathogens.

This combination of antioxidant compounds and defense enzymes not only ensures the survival of mud crabs in their habitat but also positions them as a potential source for the development of natural health products that can harness their protective mechanisms.

Antioxidants and defense enzymes play a vital role in organisms' survival, especially in harsh environments. The synergy between these compounds and enzymes contributes significantly to mitigating oxidative stress and preserving cellular function, which can be explored for potential therapeutic applications.

## Phytochemical Analysis

#### Phytochemical Screening

Phytochemical tests were carried out to identify the compounds present in gastropod and crustacean extracts using ethanol as the solvent (Fitria *et al.*, 2023; Rozirwan *et al.*, 2024) The phytochemical test aimed to determine the compounds in the test extract (Chen *et al.*, 2022), allowing for the identification of compounds that influence the strong or weak antioxidant activity of the extract (Baliyan *et al.*, 2022). The results of the phytochemical test, after UV-Vis spectrophotometric analysis of the extract, are presented in Table 4. The test results showed that only certain compounds were extracted by the ethanol solvent (Yuniarti *et al.*, 2020).

Table 4. Phytochemical screening results of Scylla serrata

| No. | Parameters    | Analysis Result | Analysis Type |  |
|-----|---------------|-----------------|---------------|--|
| 1   | Alkaloids     | -               | Qualitative   |  |
| 2   | Flavonoids    | +               | Qualitative   |  |
| 3   | Triterpenoids | +               | Qualitative   |  |
| 4   | Saponin       | -               | Qualitative   |  |
| 5   | Tannins       | -               | Qualitative   |  |
| 6   | Steroid       | -               | Qualitative   |  |

Qualitative phytochemical analysis of *Scylla serrata* extract showed significant results in identifying the content of bioactive compounds. Based on the test results, *Scylla serrata* extract tested positive for flavonoid and triterpenoid compounds. A similar finding was reported by Elshaarawy *et al.* (2023) for *Scylla olivacea* samples. These two compounds offer various health benefits and therapeutic potential, particularly due to their strong antioxidant properties. Flavonoids are a group of polyphenolic compounds that are widely recognized for their potent antioxidant activity (Shen *et al.*, 2022). These compounds can neutralize free radicals and prevent oxidative damage to cells and tissues. Additionally, flavonoids possess anti-inflammatory, anticancer, and cardioprotective properties (Mounika *et al.*, 2021; Jain *et al.*, 2024; Ullah *et al.*, 2024). The identification of flavonoid compounds in *Scylla serrata* indicates that mud crabs are not only valuable as food but also hold potential as an alternative source of medicine from marine organisms.

Triterpenoids are a group of terpenoid compounds that have potential biological activities (Mabou and Yossa, 2021; Zang et al., 2022). These compounds are known to possess anti-inflammatory, antitumor, antimicrobial, and immunomodulatory properties (Harun et al., 2020; Ahmad et al., 2021). As antioxidant agents, triterpenoids have been used in pharmacology to treat inflammatory diseases and cancer. Similar to flavonoids, these compounds can neutralize free radicals caused by oxidative stress on body tissues. The discovery of triterpenoid compounds in *Scylla serrata* shows promising results, given their antioxidant potential that can be applied to address various diseases. Thus, the opportunity to explore alternative medicinal raw materials from *Scylla serrata* extract is increasingly attractive for further research. Overall, the phytochemical results focusing on flavonoid and triterpenoid compounds confirm the importance of *Scylla serrata* as a potential source of bioactive compounds. Further research is encouraged at the stage of isolation and purification of these compounds, so that alternative medicinal materials derived from this marine organism can contribute to the development of therapeutic agents from marine organisms.

#### Phytochemical Profile Screening

The antioxidant compound profile in *Scylla serrata* was determined using GC-MS (Gas Chromatography-Mass Spectrometry) analysis on the ethanol extract of mud crab. Figure 3 shows the chromatogram with 37 peaks identified in the extract. Each peak on the chromatogram represents a distinct chemical compound found in the extract, which was analyzed using GC-MS.

GC-MS analysis is a powerful technique for identifying and quantifying individual compounds in complex mixtures, providing insights into the chemical composition of the extract. This method is widely used for its ability to separate and identify volatile compounds, making it an essential tool for profiling bioactive compounds, such as antioxidants, in natural products.

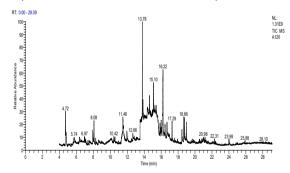



Figure 3. GC-MS chromatogram of ethanol extract Scylla serrata

Terpenoid, alkaloid, steroid, and tannin groups were among the pure compounds successfully detected using GC-MS. Based on the GC-MS analysis of the ethanol extract compound components presented in Table 5, the main components identified in the extract were Calycotomine, N-methyl-, with a value of 8.31% of the total area, and uric acid, with a value of 8.71% of the total area.

At a retention time of 4.72 minutes, the compound 2-Cyclohexylpiperidine was detected with an area of 3.45%, a probability of 6.07, and a chemical formula of C11H21N, which belongs to the alkaloid compound group. At a retention time of 5.74 minutes, the compound 2-Pyridinamine, 3,6-dimethyl was detected with an area of 1.69%, a probability of 7.02, and a chemical formula of C7H10N2, which belongs to the aminopyridine compound group. Furthermore, at a retention time of 6.97 minutes, the compound Pentanoic acid, dodec-9-ynyl ester was detected with an area of 1.00%, a

probability of 8.47, and a chemical formula of C17H30O2, which belongs to the protein compound group.

At a retention time of 8.08 minutes, the compound L-Homoserine lactone, N, N-dimethyl was detected with an area of 1.97%, a probability of 82.23, and a chemical formula of C6H11NO2, which belongs to the amino acid compound group. At a retention time of 10.42 minutes, the compound Thieno[2,3-c]furan-3-carbonitrile, 2-amino-4,6-dihydro-4,4,6,6-tetramethyl was detected with an area of 0.74%, a probability of 43.35, and a chemical formula of C11H14N2OS, which belongs to the EPA compound group. At a retention time of 11.48 minutes, the compound 1H-2-Indenol, 2,3,4,5,6,7-hexahydro-1-(2-hydroxy-2-methylpropyl) was detected with an area of 4.83%, a probability of 12.26, and a chemical formula of C13H22O2, which belongs to the lactone compound group.

At a retention time of 12.66 minutes, the compound dl-Lysine was detected with an area of 0.86%, a probability of 23.13, and a chemical formula of C6H14N2O2, which belongs to the amino acid compound group. At a retention time of 13.78 minutes, the compound Calycotomine, N-methyl- was detected with an area of 8.31%, a probability of 43.35, and a chemical formula of C13H19NO3, which belongs to the alkaloid compound group. At a retention time of 15.10 minutes, the compound Dasycarpidan-8(16H)-ethanol, 3,18-dihydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)- was detected with an area of 4.14%, a probability of 12.00, and a chemical formula of C20H28N2O2, which belongs to the group of molport compounds.

At a retention time of 16.22 minutes, the uric acid compound was detected with an area of 8.71%, a probability of 55.93, and a chemical formula of C5H4N4O3, which belongs to the allantoin compound group. At a retention time of 17.29 minutes, the compound Actinomycin C2 was detected with an area of 1.49%, a probability of 30.73, and a chemical formula of C63H88N12O16, which belongs to a group of peptide compounds that are derivatives of peptide compounds.

Animals produce a diverse mixture of secondary metabolites such as phenols, alkaloids, flavonoids, tannins, and saponins. Several animal studies have shown the potential use of these metabolites as antibacterial agents due to the presence of abundant biomolecules. Synthetic drugs often have high secondary failure rates and severe side effects, while animal products contain a variety of free radical scavenging molecules with substantial antioxidant properties.

Research by Waluyo and Wahyuni (2021) on *Conus miles* bacteria identified three dominant compounds through GC-MS analysis, namely Acetic acid (CAS), Ethylic acid, Proanoic acid, 2-methyl-(CAS), and Isobutyric acid and Iso Valeric acid. Research on the ethanol extract of *Enhalus acoroides* conducted Mediarman *et al.*, (2021) using GC-MS showed nine compounds dominated by alkaloids, flavonoids, terpenoids, and polyphenols. Some of the compounds found in *Enhalus acoroides* have similarities with the GC-MS results on *S. serrata*, but the percentage area of the alkaloid compound group in *S. serrata* was only 8.31%, compared to the ethanol extract of *Enhalus acoroides*, which reached 53.88%.

In the GC-MS results, the highest peak was identified as coming from the antioxidant compounds of the alkaloid group. However, in the phytochemical test, alkaloid compounds were not detected in the *S. serrata* sample. This could be due to differences in the analytical methods used. Phytochemical tests are qualitative, while GC-MS analysis is quantitative. Quantitative analysis methods are known to be more accurate than qualitative methods.

The difference in the results of phytochemical tests and GC-MS analysis can be influenced by the type of solvent used during the maceration process of mangrove crab (*S. serrata*) extracts. In this study, the solvent used was ethanol, which is polar and able to bind bioactive compounds quickly and is relatively safe for humans compared to methanol. Methanol solvent is more polar than ethanol

but is more toxic. This is in accordance with research conducted by Rahmawati et al., (2023); Shofinita et al., (2024), which show that methanol is more polar but also more toxic than ethanol.

Table 5. Proposed peak order, retention time, probability, area, compound name, and molecular formula

| Peak# | R. Time | Probability | Area% | Name                                                                                                                                       | Molecular formula |
|-------|---------|-------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1     | 4.72    | 6.07        | 3.45  | 2-Cyclohexylpiperidine                                                                                                                     | C11H21N           |
| 2     | 4.81    | 18.58       | 1.37  | Edulan II                                                                                                                                  | C13H20O           |
| 3     | 5.74    | 7.02        | 1.69  | 2-Pyridinamine, 3,6-dimethyl                                                                                                               | C7H10N2           |
|       | 6.39    | 8.12        | 0.83  | Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate                                                                                                 | C16H28O3          |
|       | 6.61    | 11.07       | 0.66  | d-Mannose                                                                                                                                  | C6H12O6           |
|       | 6.81    | 50.91       | 0.89  | Deoxyspergualin                                                                                                                            | C17H37N7O3        |
|       | 6.97    | 8.47        | 1.00  | Pentanoic acid, dodec-9-ynyl ester                                                                                                         | C17H30O2          |
|       | 7.93    | 51.03       | 1.42  | trans-(2 Chlorovinyl)dimethylethoxysil ane                                                                                                 | C6H13CIOSi        |
|       | 8.08    | 82.23       | 1.97  | L-Homoserine lactone, N,N-dimethyl-                                                                                                        | C6H11NO2          |
| 0     | 8.28    | 32.09       | 0.64  | 2-Propyl-tetrahydropyran-3-ol                                                                                                              | C8H16O2           |
| 1     | 8.62    | 32.45       | 0.93  | Imidazole                                                                                                                                  | C3H4N2            |
| 2     | 10.00   | 11.83       | 0.76  | Tertbutyloxyformamide, N-methyl-N-[4-(1-pyrrolidinyl)-2-buty nyl]-                                                                         | C14H24N2O2        |
| 3     | 10.42   | 15.27       | 0.74  | Thieno[2,3-c]furan-3-carbonitrile, 2-amino-4,6-dihydro-4,4,6,6-tetrameth yl                                                                | C11H14N2OS        |
| 4     | 11.48   | 12.26       | 4.83  | 1H-2-Indenol, 2,3,4,5,6,7-hexahydro-1-(2-hydroxy-2-<br>methylpropyl)                                                                       | C13H22O2          |
| 5     | 11.55   | 48.75       | 2.53  | dl-Citrulline                                                                                                                              | C6H13N3O3         |
| 6     | 11.96   | 7.38        | 1.45  | 2-Pyridineacetic acid, hexahydro-                                                                                                          | C7H13NO2          |
| 7     | 12.66   | 23.13       | 0.86  | dl-Lysine                                                                                                                                  | C6H14N2O2         |
| 8     | 13.51   | 60.28       | 1.62  | D-Streptamine, O-6-amino-6-deoxy-à-D-glucopyranosy I-(1-4)-O-(3-deoxy-4-C-methyl-3-<br>(meth ylamino)-á-L-arabinopyranosyl-(1-6))- 2-deoxy | C6H13NO2          |
| 9     | 13.78   | 43.35       | 8.31  | Calycotomine, N-methyl-                                                                                                                    | C13H19NO3         |
| 0     | 13.99   | 17.84       | 2.38  | 4-[4-Diethylamino-1-methylbutylamino ]-1,2-dimethoxy-6-bromonaphthalene                                                                    | C21H31BrN2O2      |
| 11    | 14.35   | 32.83       | 1.22  | Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)-                                                             | C20H28N2O2        |
| 2     | 14.62   | 12.2        | 2.67  | 4-[4-Diethylamino-1-methylbutylamino ]-1,2-dimethoxy-6-bromonaphthalene                                                                    | C21H31BrN2O2      |
| 3     | 15.10   | 12.00       | 4.14  | Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)-                                                             | C20H28N2O2        |
| 4     | 15.21   | 32.49       | 0.87  | Cystine                                                                                                                                    | C6H12N2O4S2       |
| 5     | 15.65   | 33.28       | 1.26  | 3-[N-[2-Diethylaminoethyl]-1-cyclopes tenylamino]propionitrile                                                                             | C14H25N3          |
| 6     | 15.86   | 16.52       | 0.92  | á-Hydroxyquebrachamine                                                                                                                     | CH3CH(OH)COC      |
| 7     | 15.99   | 14.23       | 1.02  | 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropyl ester, (Z,Z,Z)-                                                                         | C21H36O4          |
| 8     | 16.22   | 55.93       | 8.71  | Uric acid                                                                                                                                  | C5H4N403          |
| 9     | 16.45   | 8.30        | 1.33  | Aminoacetamide, N-methyl-N-[4-(1-pyrrolidinyl)-2-buty nyll-                                                                                | C5H4N4O3          |
| 30    | 16.69   | 32.32       | 2.06  | Glucopyranuronamide, 1-(4-amino-2-oxo-1(2H)-pyrimidinyl)- 1,4-dideoxy-4-(D-2-(2-(methylamino) acetamido)hydracrylamido)-, á-D              | C10H14N2O         |
| 1     | 16.90   | 29.78       | 0.80  | 1,2,4-Trioxolane-2-octanoic acid, 5-octyl-, methyl ester                                                                                   | C6H11NO6          |
| 2     | 17.29   | 30.73       | 1.49  | Actinomycin C2                                                                                                                             | C19H36O5          |
| 3     | 18.45   | 37.85       | 2.00  | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-                                                                            | C63H88N12O16      |
| 4     | 18.66   | 90.13       | 2.23  | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-                                                                            | C63H88N12O16      |
| 5     | 18.76   | 60.11       | 2.62  | 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6 H-dipyrrolo[1,2-a:1',2'-d]pyrazine                                                                   | C11H18N2O2        |
| 6     | 18.97   | 36          | 2.13  | I-(+)-Ascorbic acid                                                                                                                        | C14H22            |
| 7     | 20.98   | 13.19       | 1.29  | cis-13-Octadecenoic acid                                                                                                                   | C6H8O6            |
| 88    | 21.17   | 13.49       | 0.94  | Ricinoleic acid                                                                                                                            | C18H34O2          |
| 9     | 23.99   | 31.48       | 0.89  | Ergotaman-3',6',18-trione, 12'-hydroxy-2'-methyl-5'-(phenylmeth yl)-, (5'à)-                                                               | C18H34O3          |

The main group of compounds in the ethanol extract of mud crab (*S. serrata*) was represented by three peaks on the GC chromatogram, which had a higher percentage area than the others. These peaks were identified as Calycotomine, N-methyl- (8.31%), uric acid (8.71%), and Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-(2.xi.,4.xi.)- (4.14%). Antioxidant compounds detected in the GC-MS analysis included 2-Cyclohexylpiperidine with an area of 3.45%, which belongs to the alkaloid group. In addition, the Edullan II compound with an area of 1.37% belongs to the volatile compound group. The compound Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate, with an area of 0.83%, belongs to the terpenoid compound group, and Imidazole with an area of 0.93% also belongs to the alkaloid group.

In a study conducted by Rasyid (2016) on sea cucumber biota (*Bohadschia* sp.), steroid compounds consisting of cholest-2-ene (3.91%), stigmastan-3,5-diene (3.29%), cholest-5-en-3-yl nonanoate (4.89%), and cholest-5-ene, 3.beta.-chloro- (3.12%) were found. The compound Calycotomine, N-methyl- with an area of 8.31% belongs to the alkaloid group. The compound I-(+)-Ascorbic acid with an area of 2.13%, as well as 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6H-dipyrrolo[1,2-a:1',2'-d]pyrazine with an area of 2.62%, belong to the alkaloid group, and Ergotaman-3',6',18-trione, 12'-hydroxy-2'-

methyl-5'-(phenylmethyl)-, (5'à)- with an area of 0.89%, also belongs to the alkaloid group. Lalitha *et al.*, (2021), in their research on antioxidants in mangrove *Avicennia officinalis* L. through GC-MS testing, identified a group of antioxidant compounds such as Trans-cinnamic acid, with a peak area percentage of 27.7%.

The group of compounds found in mud crabs (*S. serrata*) were alkaloids. Alkaloid compounds can also be found in marine plants such as seagrasses. This is consistent with the findings of Shaffai *et al.*, (2023); Tjandrawinata and Nurkolis, (2024), who identified a group of alkaloid compounds in the ethanol extract of *Enhalus acoroides*, such as Phenyl-N-methylindole with a peak area of 53.88%, N-Methyldeacetylcolchicine with a peak area of 1.55%, and Phenyl-5-methylindole with a peak area of 28.98%

#### Conclusion

The results of antioxidant testing with the DPPH method on *Scylla serrata* extracts showed IC50 values at very strong antioxidant characteristics. Phytochemical identification shows the extract contains strong bioactive compounds in the flavonoid and triterpenoid compound groups. GC-MS compound profile identification showed GC-MS analysis detected major compound groups consisting of alkaloids, purines, and vitamins. Minor compound groups were detected from volatile compounds, amines, terpenoids, monosaccharides, amino acids, fatty acids, silanes, formamides, heterocycles, carboxylic acids, aminoglycosides, naphthalene derivatives, nitriles, amides, glycosides, and peptides. *Scylla serrata* extract has been reported to have potential as antioxidant, anti-inflammatory, anticancer, antimicrobial, and antiviral. The results of this study are expected to provide important information in the disclosure of alternative medicinal materials from marine organisms.

#### Acknowledgement

The research/publication of this article was funded by DIPA of Public Service Agency of Universitas Sriwijaya 2024. Nomor SP DIPA 023.17.2.677515/2024, On November 24, 2023. In accordance with the Rector's Degree Number: 0013/UN9/LP2M.PT/2024, On May 20, 2024.

#### References

Adnan, A.-S. *et al.* (2024) 'Moulting performances evaluation of female orange mud crab, Scylla olivacea (Herbst, 1796) in-captivity: effects of water salinity and limb autotomy', *Tropical Life Sciences Research*, 35(1), p. 197.

Ahmad, M.F. *et al.* (2021) 'Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties', *International Journal of Biological Macromolecules*, 187, pp. 769–779.

Akinwumi, K.A. et al. (2022) 'Acrostichium aureum Linn: traditional use, phytochemistry and biological activity', Clinical Phytoscience, 8(1), p. 18.

Alkadi, H. (2020) 'A review on free radicals and antioxidants', *Infectious Disorders-Drug Targets* (Formerly Current Drug Targets-Infectious Disorders), 20(1), pp. 16–26.

Almaniar, S., Rozirwan and Herpandi (2021) 'Abundance and diversity of macrobenthos at Tanjung Api-Api waters, South Sumatra, Indonesia.'

Ambekar, A.A. *et al.* (2023) 'Effect of temperature changes on antioxidant enzymes and oxidative stress in gastropod Nerita oryzarum collected along India's first Tarapur Atomic Power Plant site', *Environmental Research*, 216, p. 114334.

000 Rozirwan et al., 2024

**Commented [A1]:** Follow IJMS Format See article publish 2025

Baag, S. and Mandal, S. (2023) 'Do global environmental drivers' ocean acidification and warming exacerbate the effects of oil pollution on the physiological energetics of Scylla serrata?', *Environmental Science and Pollution Research*, 30(9), pp. 23213–23224.

Bal, A. et al. (2021) 'Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms', Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 241, p. 108971.

Baliyan, S. et al. (2022) 'Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa', *Molecules*, 27(4), p. 1326.

Berwal, M.K. *et al.* (2021) 'GC-MS/MS-based phytochemical screening of therapeutic potential of Calligonum polygonoides L. flower bud against chronic diseases', *Pharmacognosy Magazine*, 17(05).

Beslin, L.G. and Geni, G. (2021) 'Biochemical Profile and Antibacterial Examination of Freshwater Crab Scylla Serrata (FORSKAL, 1775)', *International Journal of Clinical Inventions and Medical Sciences (IJCIMS*), 3(2), pp. 53–65.

De Castro, J.D.Y. *et al.* (2023) 'Pangasinan's Best: Microplastics Properties Found in Pangasinan Mangrove crab (Scylla serrata) Production'.

Chaudhary, P. et al. (2023) 'Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases', *Frontiers in chemistry*, 11, p. 1158198.

Chen, X. et al. (2022) 'Phytochemical composition, antioxidant activity, α-glucosidase and acetylcholinesterase inhibitory activity of quinoa extract and its fractions', *Molecules*, 27(8), p. 2420.

Chowdhury, M. et al. (2021) 'Effects of temperature, relative humidity, and carbon dioxide concentration on growth and glucosinolate content of kale grown in a plant factory', *Foods*, 10(7), p. 1524.

Costantini, M., Esposito, R. and Ruocco, N. (2022) 'Crustaceans as Good Marine Model Organisms to Study Stress Responses by—Omics Approaches', in *Crustaceans*. CRC Press, pp. 82–106.

Delta, M., Rozirwan and Hendri, M. (2021) 'Aktivitas antioksidan ekstrak daun dan kulit batang mangrove Sonneratia alba di Tanjung Carat, Kabupaten Banyuasin, Provinsi Sumatera Selatan', *Maspari Journal: Marine Science Research*, 13(2), pp. 129–144. Available at: https://doi.org/10.56064/maspari.v13i2.14577.

Dinesh, D. *et al.* (2022) 'Salvia leucantha essential oil encapsulated in chitosan nanoparticles with toxicity and feeding physiology of cotton bollworm Helicoverpa armigera', in *Biopesticides*. Elsevier, pp. 159–181.

Ebadzadeh, H., Shojaei, M.G. and Seyfabadi, J. (2024) 'The effect of habitat structural complexity on gastropods in an arid mangrove wetland', *Wetlands Ecology and Management*, 32(1), pp. 139–151

Elshaarawy, R. et al. (2023) 'Preliminary assessment of bioactive ingredients and antioxidant activity of some Red Sea invertebrates' extracts.', Egyptian Journal of Aquatic Biology & Fisheries, 27(4).

Fajriaty, I. et al. (2024) 'In vitro and in silico studies of the potential cytotoxic, antioxidant, and HMG CoA reductase inhibitory effects of chitin from Indonesia mangrove crab (Scylla serrata) shells', Saudi Journal of Biological Sciences, 31(5), p. 103964.

Fitria, Y. *et al.* (2023) 'Gastropods as bioindicators of heavy metal pollution in the Banyuasin estuary shrimp pond area. South Sumatra, Indonesia', *Acta Ecologica Sinica*, 43(6), pp. 1129–1137.

Frías-Espericueta, M.G. *et al.* (2022) 'Metals and oxidative stress in aquatic decapod crustaceans: A review with special reference to shrimp and crabs', *Aquatic Toxicology*, 242, p. 106024.

Galal-Khallaf, A. *et al.* (2024) 'As healthy as invasive: Charybdis natator shell extract reveals beneficial metabolites with promising antioxidant and anti-inflammatory potentials', *Frontiers in Marine Science*, 11, p. 1376768.

Gebruk, A. *et al.* (2021) 'Trophic niches of benthic crustaceans in the Pechora Sea suggest that the invasive snow crab Chionoecetes opilio could be an important competitor', *Polar Biology*, 44, pp. 57–71.

Gulcin, İ. and Alwasel, S.H. (2023) 'DPPH radical scavenging assay', Processes, 11(8), p. 2248.

Habib, M.R. et al. (2022) 'Thais savignyi tissue extract: bioactivity, chemical composition, and molecular docking', *Pharmaceutical Biology*, 60(1), pp. 1899–1914.

Hajar-Azira, Z. *et al.* (2023) 'Preliminary investigation on the effect of fiddlehead fern, Diplazium esculentum, extract to the growth performance of giant freshwater prawn, Macrobrachium rosenbergii, postlarvae', *Aguaculture International*, 31(1), pp. 81–101.

Harun, N.H. et al. (2020) 'Immunomodulatory effects and structure-activity relationship of botanical pentacyclic triterpenes: A review', *Chinese Herbal Medicines*, 12(2), pp. 118–124.

Hashim, N. et al. (2021) 'A study of neem leaves: Identification of method and solvent in extraction', *Materials Today: Proceedings*, 42, pp. 217–221.

Hidir, A. et al. (2021) 'Sexual dimorphism of mud crab, genus Scylla between sexes based on morphological and physiological characteristics', *Aquaculture Research*, 52(12), pp. 5943–5961.

Indarjo, A. et al. (2020) 'The population and mortality characteristics of mangrove crab (Scylla serrata) in the mangrove ecosystem of Tarakan City, Indonesia', *Biodiversitas Journal of Biological Diversity*, 21(8).

Jabbar, A.A. *et al.* (2022) 'GC-MS Analysis of Bioactive Compounds in Methanolic Extracts of Papaver decaisnei and Determination of Its Antioxidants and Anticancer Activities', *Journal of Food Quality*, 2022(1), p. 1405157.

Jain, A. et al. (2024) 'Chemical diversity, traditional uses, and bioactivities of Rosa roxburghii Tratt: A comprehensive review', *Pharmacology & Therapeutics*, p. 108657.

Jerome, F.C., Hassan, A. and Chukwuka, A.V. (2020) 'Metalloestrogen uptake, antioxidant modulation and ovotestes development in Callinectes amnicola (blue crab): a first report of crustacea intersex in the Lagos Iagoon (Nigeria)', *Science of the Total Environment*, 704, p. 135235.

Karnila, R. and Ramadhani, N.R. (2021) 'Antioxidant Activity of Astaxanthin Flour Extract of Mud Crab (Scylla Serrata) with Different Acetone Concentrations', in *IOP Conference Series: Earth and Environmental Science*. IOP Publishing, p. 12047.

Lalitha, P. et al. (2021) 'Antibacterial and antioxidant potential of GC-MS analysis of crude ethyl acetate extract from the tropical mangrove plant Avicennia officinalis L.', South African Journal of Botany, 142, pp. 149–155.

Mabou, F.D. and Yossa, I.B.N. (2021) 'TERPENES: Structural classification and biological activities', *IOSR J Pharm Biol Sci*, 16, pp. 25–40.

Martemucci, G. et al. (2022) 'Free radical properties, source and targets, antioxidant consumption and health', Oxygen, 2(2), pp. 48–78.

Martinez-Morales, F. *et al.* (2020) 'Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants', *Chemical Papers*, 74, pp. 3325–3334.

Mediarman, G.N. et al. (2021) 'Potentials of CaO powder result of calcination from green shells (Perna viridis), scallops (Placuna placenta), and blood clams (Anadara granosa) as antibacterial

agent', in IOP Conference Series: Earth and Environmental Science. IOP Publishing, p. 12043.

Di Meo, S. and Venditti, P. (2020) 'Evolution of the knowledge of free radicals and other oxidants', Oxidative medicine and cellular longevity, 2020(1), p. 9829176.

Mounika, S. et al. (2021) 'A comprehensive review of medicinal plants for cardioprotective potential', *International Journal of Advances in Pharmacy and Biotechnology*, 7(1), pp. 24–29.

Muhtar, K.M.Y. and Lanuru, M. (2021) 'Water quality assessment for the development of silvofishery pattern mangrove crabs in Coastal Area, Polewali Mandar, West Sulawesi', *Intl J Sci Res Publ*, 11(11), pp. 391–395.

Musa, M. et al. (2022) 'Pharmacological activities and gas chromatography-mass spectrometry analysis for the identification of bioactive compounds from Justicia adhatoda L.', *Frontiers in pharmacology*, 13, p. 922388.

Nagarajan, P. et al. (2024) 'Therapeutic potential of biologically active peptides from marine organisms for biomedical applications', *Studies in Natural Products Chemistry*, 81, pp. 467–500.

Nanda, P.K. et al. (2021) 'Nutritional aspects, flavour profile and health benefits of crab meat based novel food products and valorisation of processing waste to wealth: A review', *Trends in Food Science & Technology*, 112, pp. 252–267.

Naveed, M. et al. (2022) 'Characterization and evaluation of the antioxidant, antidiabetic, anti-inflammatory, and cytotoxic activities of silver nanoparticles synthesized using Brachychiton populneus leaf extract', *Processes*, 10(8), p. 1521.

Neelima, S. et al. (2022) 'Characterisation of a novel crustin isoform from mud crab, Scylla serrata (Forsskål, 1775) and its functional analysis in silico', *In Silico Pharmacology*, 11(1), p. 2.

Nugroho, R.Y., Rozirwan, R. and Fauziyah, F. (2022) 'Biodiversitas Gastropoda dan Krustasea di Zona Intertidal Hutan Mangrove Estuari Sungai Musi, Sumatera Selatan', *SIMBIOSA*, 11(2), pp. 61–71

Ouyang, Z. et al. (2021) 'Effects of different concentrations of dissolved oxygen on the growth, photosynthesis, yield and quality of greenhouse tomatoes and changes in soil microorganisms', Agricultural Water Management, 245, p. 106579.

Palaniyappan, S. et al. (2023) 'Evaluation of phytochemical screening, pigment content, in vitro antioxidant, antibacterial potential and GC-MS metabolite profiling of green seaweed Caulerpa racemosa', *Marine Drugs*, 21(5), p. 278.

Palma, A. et al. (2023) 'Optimization of bioactive compounds by ultrasound extraction and gas chromatography-mass spectrometry in fast-growing leaves', *Microchemical Journal*, 193, p. 109231.

Pati, S.G. *et al.* (2022) 'Effects of soil trace metals, organic carbon load and physicochemical stressors on active oxygen species metabolism in Scylla serrata sampled along the Bay of Bengal in Odisha state, India', *Frontiers in Environmental Science*, 10, p. 994773.

Pati, S.G. *et al.* (2023) 'Impacts of habitat quality on the physiology, ecology, and economical value of mud crab Scylla sp.: a comprehensive review', *Water*, 15(11), p. 2029.

Pisoschi, A.M. et al. (2021) 'Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status', *European Journal of Medicinal Chemistry*, 209, p. 112891.

Putri, A. et al. (2022) 'Mangrove Habitat Structure of Mud Crabs (Scylla serrata and S. olivacea) in the Bee Jay Bakau Resort Probolinggo, Indonesia.', *Ilmu Kelautan: Indonesian Journal of Marine Sciences*. 27(2).

Rafferty, C. et al. (2020) 'Analysis of chemometric models applied to Raman spectroscopy for

monitoring key metabolites of cell culture', Biotechnology progress, 36(4), p. e2977.

Rahmawati, R. et al. (2023) 'Effect of decaffeination time on the chemical profile of green bean arabica coffee (Coffea arabica L.)', in AIP Conference Proceedings. AIP Publishing.

Ren, X. et al. (2021) 'Effects of low temperature on shrimp and crab physiology, behavior, and growth: a review', Frontiers in Marine Science, 8, p. 746177.

Rozirwan et al. (2023) 'An assessment of Pb and Cu in waters, sediments, and mud crabs (Scylla serrata) from mangrove ecosystem near Tanjung Api-Api port area, South Sumatra, Indonesia.'

Rozirwan, R. et al. (2021) 'Assessment the macrobenthic diversity and community structure in the Musi Estuary, South Sumatra, Indonesia', *Acta Ecologica Sinica*, 41(4), pp. 346–350.

Rozirwan, R. *et al.* (2022) 'Phytochemical profile and toxicity of extracts from the leaf of Avicennia marina (Forssk.) Vierh. collected in mangrove areas affected by port activities', *South African Journal of Botany*, 150, pp. 903–919.

Rozirwan, R., Hananda, H., *et al.* (2023) 'Antioxidant Activity, Total Phenolic, Phytochemical Content, and HPLC Profile of Selected Mangrove Species from Tanjung Api-Api Port Area, South Sumatra, Indonesia.', *Tropical Journal of Natural Product Research*, 7(7).

Rozirwan, R., Nanda, N., et al. (2023) 'Phytochemical composition, total phenolic content and antioxidant activity of Anadara granosa (Linnaeus, 1758) collected from the east coast of South Sumatra, Indonesia', *Baghdad Science Journal*, 20(4), p. 1258.

Rozirwan, R., Siswanto, A., *et al.* (2024) 'Anti-Inflammatory Activity and Phytochemical Profile from the Leaves of the Mangrove Sonneratia caseolaris (L.) Engl. for Future Drug Discovery', *Science and Technology Indonesia*, 9(2), pp. 502–516.

Rozirwan, R., Az-Zahrah, S.A.F., *et al.* (2024) 'Ecological Risk Assessment of Heavy Metal Contamination in Water, Sediment, and Polychaeta (Neoleanira Tetragona) from Coastal Areas Affected by Aquaculture, Urban Rivers, and Ports in South Sumatra.', *Journal of Ecological Engineering*, 25(1).

Sadiq, I.Z. (2023) 'Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation', *Current Molecular Medicine*, 23(1), pp. 13–35.

Shaffai, A. El, Mettwally, W.S.A. and Mohamed, S.I.A. (2023) 'A comparative study of the bioavailability of Red Sea seagrass, Enhalus acoroides (Lf) Royle (leaves, roots, and rhizomes) as anticancer and antioxidant with preliminary phytochemical characterization using HPLC, FT-IR, and UPLC-ESI-TOF-MS spectroscopic a', *Beni-Suef University Journal of Basic and Applied Sciences*, 12(1), p. 41.

Shen, N. et al. (2022) 'Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity', Food chemistry, 383, p. 132531.

Shofinita, D. *et al.* (2024) 'Effects of different decaffeination methods on caffeine contents, physicochemical, and sensory properties of coffee', *International Journal of Food Engineering*, 20(8), pp. 561–581.

Suwandi, R., Ula, M.Z. and Pertiwi, R.M. (2020) 'Characteristics of chemical compounds of horseshoe crabs Tachypleus gigas in different body proportions', in *IOP Conference Series: Earth and Environmental Science*. IOP Publishing, p. 12029.

Teleanu, D.M. et al. (2022) 'An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases', *International journal of molecular sciences*, 23(11), p. 5938.

Tjandrawinata, R.R. and Nurkolis, F. (2024) 'A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in

Seagrass Enhalus acoroides: In Silico and In Vitro Study', Marine Drugs, 22(8), p. 365.

Triajie, H. et al. (2020) 'Time of mangrove crabs Scylla paramamosain final premolt stadia (D4) to reach ecdysis of the male and female growth under different salinity', Eurasian Journal of Biosciences, 14(2), pp. 7889–7897.

Tumilaar, S.G. *et al.* (2024) 'A Comprehensive Review of Free Radicals, Oxidative Stress, and Antioxidants: Overview, Clinical Applications, Global Perspectives, Future Directions, and Mechanisms of Antioxidant Activity of Flavonoid Compounds', *Journal of Chemistry*, 2024(1), p. 5594386

Ullah, A. et al. (2024) 'Phytoconstituents with cardioprotective properties: A pharmacological overview on their efficacy against myocardial infarction', *Phytotherapy Research*, 38(9), pp. 4467–4501

Vásquez, P., Cian, R.E. and Drago, S.R. (2023) 'Marine Bioactive Peptides (Fishes, Algae, Cephalopods, Molluscs, and Crustaceans)', *Handbook of Food Bioactive Ingredients: Properties and Applications*, pp. 1–30.

Vellapandian, C. (2022) 'Phytochemical studies, antioxidant potential, and identification of bioactive compounds using GC–MS of the ethanolic extract of Luffa cylindrica (L.) fruit', *Applied Biochemistry and Biotechnology*, 194(9), pp. 4018–4032.

Vermeiren, P., Lennard, C. and Trave, C. (2021) 'Habitat, sexual and allometric influences on morphological traits of intertidal crabs', *Estuaries and Coasts*, 44(5), pp. 1344–1362.

Waluyo, J. and Wahyuni, D. (2021) 'Antibacterial effects of Pheretima javanica extract and bioactive chemical analysis using Gas Chromatography Mass Spectrum', in *Journal of Physics: Conference Series*. IOP Publishing, p. 12055.

Wang, J. et al. (2021) 'Satellite-observed decreases in water turbidity in the Pearl River Estuary: potential linkage with sea-level rise', *Journal of Geophysical Research: Oceans*, 126(4), p. e2020JC016842.

Wu, Q. et al. (2021) 'Chinese gallnut (Galla chinensis) against Vibrio parahaemolyticus: in vitro activity and the use of medicated bath method to treat infected mud crab Scylla paramamosain', Aquaculture, 539, p. 736632.

Yang, Y. et al. (2023) 'How does the internal distribution of microplastics in Scylla serrata link with the antioxidant response in functional tissues?', *Environmental Pollution*, 324, p. 121423.

Yao, J. et al. (2023) 'Untargeted Lipidomics Method for the Discrimination of Five Crab Species by Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry Combined with Chemometrics', *Molecules*, 28(9), p. 3653.

Yogeshwaran, A. et al. (2020) 'Bioaccumulation of heavy metals, antioxidants, and metabolic enzymes in the crab Scylla serrata from different regions of Tuticorin, Southeast Coast of India', *Marine pollution bulletin*, 158, p. 111443.

Yuniarti, R. *et al.* (2020) 'Characterization, phytochemical screenings and antioxidant activity test of kratom leaf ethanol extract (Mitragyna speciosa Korth) using DPPH method', in *Journal of Physics: Conference Series*. IOP Publishing, p. 12026.

Yusni, E. and Haq, F.A. (2020) 'Inventory and prevalence of ectoparasites Octolasmis sp. in the mangrove crab (Scylla tranquebarica) in Lubuk Kertang, Langkat', in *IOP Conference Series: Earth and Environmental Science*. IOP Publishing, p. 12121.

Yusof, W.R.W. et al. (2020) 'Nutritional composition, antioxidants and antimicrobial activities in muscle tissues of mud crab, Scylla paramamosain', Research Journal of Biotechnology Vol, 15, p. 4.

Zang, L. et al. (2022) 'A link between chemical structure and biological activity in triterpenoids', Recent Patents on Anti-Cancer Drug Discovery, 17(2), pp. 145–161.

Zeng, L. *et al.* (2024) 'Differential effects of oxytetracycline on detoxification and antioxidant defense in the hepatopancreas and intestine of Chinese mitten crab under cadmium stress', *Science of The Total Environment*, 930, p. 172633.

<u>Note</u>

## **Response to Reviewers**

## Reviewer A

| <b>Reviewer Comments</b>                                             | Response                                                                                                                                                                        |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| change the salinity unit from % to psu                               | Thank you for the suggestion. We have revised the salinity unit throughout the manuscript, changing from "%" to "psu" in accordance with the standard oceanographic unit usage. |
| For References Follow the IJMS Format See articles published in 2025 | We appreciate your feedback. The references have been reformatted to fully comply with the IJMS referencing style, following the format of articles published in 2025.          |

# Reviewer B

| <b>Reviewer Comments</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Introduction  The introduction provides a good background on Scylla serrata as a source of bioactive compounds, particularly antioxidants, and their potential therapeutic roles. It includes relevant citations to recent studies and explains the importance of antioxidants in mitigating oxidative stress-related diseases. However, while it cites several previous works on antioxidant compounds in S. serrata, the "state of the art" — meaning the current research frontier and what is still unknown — could be presented more explicitly. The gap is mentioned ("specific data on the type and quantity are still limited"), but it would be stronger if the authors clearly positioned their study in comparison to the latest findings and emphasized how their approach is novel compared to prior | We thank the reviewer for this valuable suggestion. In the revised version, we have clarified the state of the art by explicitly comparing our study with recent works. We now emphasize that most previous studies on Scylla serrata reported only general antioxidant activity using spectrophotometric assays (e.g., DPPH, ABTS, FRAP), without identifying specific compounds. To highlight the research gap, we added that there is no comprehensive GC-MS-based profiling available for S. serrata meat, which is crucial for understanding the diversity and quantity of bioactive antioxidants. Finally, we underscored the novelty of our approach, namely providing, for the first time, a detailed GC-MS profiling of antioxidant compounds in S. serrata. |
| research.  Methods and Relation to the Results The methods are described in detail, covering sampling, environmental parameter measurements, sample preparation, extraction, antioxidant activity determination (DPPH assay), phytochemical screening, and GC-MS analysis. The methodology appears                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | We sincerely thank the reviewer for the constructive comment. In the revised manuscript, we have included additional operational parameters of the GC-MS system (column type and dimensions, carrier gas flow rate, ionization mode, source temperature, and scan range) to enhance reproducibility. Furthermore, we clarified the statistical                                                                                                                                                                                                                                                                                                                                                                                                                        |

appropriate for the objectives and is standard for antioxidant profiling. The inclusion of environmental parameters is useful for context. The described procedures align well with the results obtained, and the choice of ethanol as the extraction solvent is justified. However, while the methods are adequate for generating the reported data, reproducibility could be further supported by specifying some operational parameters GC-MS analysis (e.g., column in dimensions, flow rate) and clarifying the statistical approach used for comparisons.

approach used for IC<sub>50</sub> determination and comparisons, including the use of linear regression for IC<sub>50</sub> calculation and one-way ANOVA with Duncan's multiple range test for group comparisons. These revisions strengthen the methodological transparency and reproducibility of our study.

Results **Discussion** Coherence and The results are presented clearly, with IC<sub>50</sub> values showing very strong antioxidant activity, followed by qualitative and GC-MS-based compound identification. The discussion effectively connects compounds identified (flavonoids, triterpenoids, alkaloids, purines, vitamins) with their known biological activities, citing relevant literature. However, there are some areas where the discussion could be more critical — for instance, interpreting why alkaloids were not detected in qualitative phytochemical screening but appeared in GC-MS, beyond the method Additionally, differences. more comparative analysis with similar studies (quantitative differences in compound abundance) would strengthen interpretation.

We thank the reviewer for this constructive comment. In the revised manuscript, we have expanded the discussion to provide a more critical interpretation of the observed differences between phytochemical screening and GC-MS results. Specifically, we now explain that the absence of alkaloids in qualitative screening is not only due to methodological differences but also sensitivity limitations, as qualitative tests may compounds overlook present concentrations. On the other hand, GC-MS offers higher sensitivity, enabling detection of minor constituents such as Calvcotomine and Imidazole.

Additionally, we have included comparative analyses with other studies. For example, our results show that alkaloids account for 8.31% of the total chromatogram area in S. serrata, compared to 53.88% in the seaweed Enhalus acoroides (Mediarman et al., 2021). This difference is discussed in relation to the ecological and physiological differences between crustaceans and flowering marine plants, which may explain the variation in secondary metabolite profiles. This addition strengthens the coherence and depth of the results and discussion sections. However, we have not found any specific studies addressing the alkaloid compound group from Scylla sp. extracts, so this data could represent a new breakthrough for future research.

Suitability of Results and Discussion Overall, the results and discussion are We appreciate this insightful suggestion. In the revised version, we have strengthened the consistent and support the conclusion that S. serrata extracts have strong antioxidant potential. The integration of phytochemical screening and GC-MS profiling provides a comprehensive view of the bioactive composition. Nonetheless, the discussion tends to be more descriptive than analytical in parts — stronger linkage between environmental conditions, extraction efficiency, and compound diversity could enhance the scientific depth.

analytical depth of the discussion by explicitly linking environmental conditions extraction solvent choice to the observed metabolite profile. We highlighted that salinity (18 psu) and temperature (28°C) at the sampling site could influence secondary metabolite synthesis, as estuarine organisms often adjust their bioactive compound production for stress adaptation. Moreover, we acknowledged that ethanol, while safer than methanol, may reduce extraction efficiency for more polar compounds, possibly leading to underestimation of certain metabolites

# SCREENING AND PROFILING OF ANTIOXIDANT ACTIVITY IN MUD CRAB (Scylla serrataScylla serrata) FROM BANYUASIN WATERS

Formatted: Font: Italic, Complex Script Font: Italic

Rozirwan<sup>1\*</sup>, Ning Intan Lestari<sup>1</sup>, Yoga Winarta<sup>1</sup>, Isnaini<sup>1</sup>, Wike Ayu Eka Putri<sup>1</sup>, Muhammad Hendri<sup>1</sup>, Tengku Zia Ulqodry<sup>1</sup>, Fauziyah<sup>1</sup>, Melki<sup>1</sup>, Redho Yoga Nugroho<sup>1</sup>, Che Abd Rahim Mohamed<sup>2</sup>

<sup>1</sup>Department of Marine Science, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Indralaya 30862, South Sumatra, Indonesia
<sup>2</sup>Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor, Malaysia

Email: rozirwan@unsri.ac.id

#### Abstract

Mangrove crab (Seylla serrataS. serrata) as one of the crustacean species, has a variety of bioactive compounds that can be utilized in the field of pharmacology. Antioxidant compounds act as therapeutic agents against degenerative diseases. Banyuasin waters have mangrove vegetation with associated marine organisms that have the potential to be studied for bioactive compounds. This study aims to identify the phytochemical profile quantitatively and qualitatively, samples were collected from mud flats near mangrove ecosystems in Banyuasin waters, South Sumatra. Samples were tested for antioxidant activity using the DPPH test, and IC50 values, qualitative phytochemical identification, and phytochemical profiles were calculated using Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Based on the results of antioxidant testing, the IC50 value of Scy# serrataS. serrata extract is 2.25 ppm, the sample is included in the category of very strong antioxidants. Phytochemical test results showed that the compound is thought to contain antioxidant activity from flavonoids and triterpenoids. GC-MS analysis detected major compound groups of alkaloids, purines, and vitamins. Minor compound groups detected amines, terpenoids, monosaccharides, amino acids, fatty acids, silanes, formamides, heterocycles, carboxylic acids, aminoglycosides, naphthalene derivatives, nitriles, amides, glycosides, and peptides. Scylla serrataS. serrata extract shows very strong antioxidant activity, with major compounds such as alkaloids, purines, and vitamins. Seylla serrataS. serrata extract detected compounds that have been reported as anti-inflammatory, anticancer, antimicrobial, and antiviral. These findings highlight the pharmaceutical potential of Scylla serrataS. serrata as a source of bioactive compounds. The results of this study provide valuable information for the development of alternative medicines derived from marine organisms.

Keywords: Antioxidant, Bioactive compounds, DPPH, GC-MS, Scylla serrataS. serrata

#### Introduction

Scylla serrataScylla serrata, or mud crab, as one of the crustacean species, has great potential in the field of beauty and health (De Castro et alet al., 2023), because of its diverse bioactive compounds (Beslin and& Geni, 2021; Neelima et al., 2022; Yusof et al., 2020). The diversity of bioactive compounds triggers great potential in the search for alternative medicinal ingredients from marine organisms, including antioxidant compounds (Fajriaty et al., 2024; Karnila and& Ramadhan, 2021; Yogeshwaran et al., 2020). Antioxidant compounds in mud crabs have a role as therapeutic agents (Wu et alet al., 2021) in fighting degenerative diseases such as cancer (Nagarajan et alet al.)

Formatted: Left

Formatted: Indent: Left 0 ch, First line: 0 ch

Formatted: Subtitle, Left, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between: (No border)

Formatted: Font: Italic, Complex Script Font: Italic

000 Rozirwan <del>et alet al.</del>, 2024

2024), cardiovascular diseases (Nanda et al<u>et al</u>., 2021), and neurodegenerative disorders (Galal-Khallaf et al<u>et al</u>., 2024), caused by oxidative stress due to free radicals.

Antioxidant Antioxidants is are the reaction of a compound in neutralizing free radicals (Delta et alet al., 2021; Rozirwan et alet al., 2023; Rozirwan et alet al., 2023). This process involves a highly efficient electron donation mechanism. Antioxidants work by donating electrons to free radicals (Fajriaty et al., 2024; Frías-Espericueta et al., 2022; Pati et al., 2022; Yang et al., 2023). Free radicals, which have one or more unpaired electrons, are highly reactive and can cause oxidative damage to DNA, proteins, and cellular lipids (Alkadi, 2020; Di Meo and Venditti, 2020). Free radicals are often generated as by-products of various metabolic processes in the body or due to environmental exposures such as pollution and ultraviolet radiation (Martemucci et alet al., 2022; Sadiq, 2023). The damage caused by free radicals can contribute to the development of various degenerative diseases, including cancer, heart disease, and neurodegenerative disorders (Chaudhary et al., 2023; Teleanu et al., 2022). In inhibiting free radicals, antioxidant compounds such as carotenoids and polyphenols will interact with free radicals to enhance the activity of detoxification enzymes, resulting in accelerated elimination of free radicals and strengthened antibodies (Pisoschi et alet al., 2021; Tumilaar et alet al., 2024).

The analysis of antioxidant compounds in S. serrata requires an accurate technique to ensure that identification and quantification are targeted (Baag and Mandal, 2023; Yao et al., 2023). Previous studies have mainly reported the antioxidant potential of S. serrata using spectrophotometric or colorimetric assays such as DPPH, ABTS, and FRAP, which provide only general antioxidant capacity without revealing the identity of specific compounds (Karnila and& Ramadhani, 2021; Neelima et al., 2022; Yogeshwaran et al., 2020). In contrast, Gas Chromatography-Mass Spectrometry (GC-MS) offers higher resolution in profiling bioactive compounds by separating and identifying molecules based on their mass and chemical characteristics (Jabbar et al., 2022; Musa et al., 2022; Palma et al., 2023; Rozirwan, Khetimah, et al., 2024). This advanced method not only allows the detection of a broader spectrum of antioxidant molecules but also quantifies their abundance, thereby providing a more comprehensive understanding of their therapeutic potential. The analysis of antioxidant compounds in Scylla serrata requires an accurate technique to ensure identification and quantification are targeted (Baag and Mandal, 2023; Yao et al., 2023). The gas Chromatography Mass Spectrometry (GC-MS) analysis method was chosen as an effective method in the analysis of bioactive compounds (Jabbar et al., 2022; Musa et al., 2022; Palma et al., 2023; Rezirwan et al., 2024). This method allows the separation and identification of compounds based on their density and chemical characteristics. This method is able to identify the diversity of antioxidant compounds in Scylla serrata meat with high accuracy while being able to measure the concentration of each compound analyzed. Antioxidant compounds such as carotenoids and polyphenols were identified through GC-MS analysis, showing significant therapeutic potential (Berwal et al., 2021; Vellapandian, 2022; Palaniyappan et al., 2023). The identified antioxidant content offers substantial health benefits to humans as an alternative medicine.

Although antioxidant compounds such as flavonoids, carotenoids, and polyphenols have been reported from different body parts of *S. serrata* (Fajriaty *et al.*, 2024; Karnila and& Ramadhani, 2021; Neelima *et al.*, 2022; Yang *et al.*, 2023; Yogeshwaran *et al.*, 2020), most of these studies remain descriptive and do not provide detailed profiles of the specific types and relative quantities of individual compounds. To date, there is still no comprehensive GC-MS based profiling that systematically characterizes the antioxidant repertoire of *S. serrata* meat. This represents a critical knowledge gap, since understanding the diversity and concentration of specific compounds is essential to support its therapeutic application. Therefore, the present study aims to provide, for the first time, a detailed GC-MS profiling of antioxidant compounds in *S. serrata*. By doing so, this work contributes novel insights into its biochemical composition and strengthens its potential utilization as a sustainable source of natural antioxidants for pharmaceutical and nutraceutical development. Previous studies have extracted various body parts of *Scylla serrata* and shown the

Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Indent: Left 0 ch, First line: 0 ch

Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic

000 Rozirwan e<del>t al</del>et al., 2024

content of antioxidant compounds such as flavonoids, carotenoids, and polyphenols (Fajriaty et al. 2024; Karnila & Ramadhani, 2021; Neelima et al., 2022; Yang et al., 2023; Yogeshwaran et al. 2020). The results showed that some of these compounds are classified with high antioxidar characteristics. However, specific data on the type and quantity of antioxidant substances from this organism are still limited. Therefore, in depth and comprehensive research is needed to reveal the potential of Scylla serrata as a source of antioxidants. This study aims to identify the profile antioxidant compounds in Scylla serrata. Thus, the potential of Scylla serrata as a source of alternative medicinal ingredients can be further explored and optimally utilized.

#### **Materials and Methods**

#### Sampling Area

Mangrove crab samples were collected in January 2023 from Banyuasin Waters, South Sumatra, Indonesia (Figure 1). At this location, numerous crustacean and gastropod populations were found inhabiting the intertidal zone (Rozirwan, Almaniar et al., 2021; Saputra et al., 2021) (Rozirwan, Almaniar et al., 2021; Rozirwan, Nugroho and Fauziyah, et al., 2022). The crab fishing area had a mud substrate with a depth of 1—2 m and was located within a mangrove vegetation zone directly connected to port and pond activities (Fitria et alet al., 2023). Anthropogenic pollutants that accumulate in these waters are known to trigger an increase in the defense mechanisms of organisms, such as the production of antioxidant compounds derived from secondary metabolites (Rozirwan et alet al., 2023).




Figure 1. Map of Sampling Location in Banyuasin Waters Area

Formatted: Subtitle, Left, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between: (No border)

Formatted: Indent: Left 0 ch. First line: 0 ch

#### Sample Identification and Collection Samples Catch, Collage, Storage and Identification

Crustacean samples were taken using folding trawl gear. The samples were collected and stored in a cool box. The crab identification process was conducted based on the examination of morphological characteristics, such as body shape, color pattern, claw shape, and leg shape (Hidir et alet al., 2021; Vermeiren et alet al., 2021). Morphometric measurements were performed on the crab samples, and the identification process was completed in the laboratory. Taxon determination was carried out using data from the World Register of Marine Species (WoRMS) accessed in January 2023 (WoRMS, 2023).

#### **Environmental Characteristics of Sampling Area**

Environmental quality calculations were conducted to assess the condition of the sampling environment. Environmental parameter data were measured, including salinity, temperature, pH, and dissolved oxygen (DO) (Fitria et alet al., 2023; Rozirwan et alet al., 2024). Each parameter was measured in three repetitions to ensure consistency, and the results were then averaged. Environmental parameter measurements are typically used to evaluate habitat conditions, as they provide insights into the physical and chemical characteristics of the ecosystem. Repetition in measurements is a standard approach to improve data reliability.

#### Sample Preparation

The preparation method described by Ambekar et alet al. (2023), involves cleaning the crab to remove contaminants. In this study, the carapace and crab meat were separated and rinsed with distilled water to eliminate any remaining impurities. The wet weight of the crab meat was measured, and the samples were then dried in an oven at 40°C for 3 × 24 h. After drying, the samples were ground into powder using a blender. The dry weight of the crab meat was recorded for data analysis.

#### Sample Maceration and Extraction

The wet maceration method was used in this study. A total of 250 g of Scylla serrataS. serrata meat powder was weighed and immersed in 1000 mL of 96% ethanol solvent at a ratio of 1:4 (b/v). The soaking process was conducted for 3 × 24 h, with stirring performed periodically to ensure optimal extraction. The maceration results were filtered using filter paper (No. 42, 125 mm). The extraction process was then carried out using a rotary evaporator at 40°C with a rotating speed of 3000 rpm (Hashim et alet al., 2021). The resulting extract was stored as a stock solution. A total of 0.05 g of Scylla serrataS. serrata extract was used as an additive for the stock solution (Habib et alet al., 2022). Wet maceration is a commonly employed extraction method due to its ability to preserve heat-sensitive compounds. Stirring during the maceration process enhances solute dissolution, while rotary evaporation ensures efficient solvent removal under controlled temperature conditions.

#### Determination of Antioxidant Activity and IC50 Value

Antioxidant testing was conducted using the DPPH method (Vásquez et al., 2023). The stock solution of S. serrata extract was used as the test solution, while vitamin C served as a reference. The sample was dissolved in 96% ethanol. A total of 1 mL of sample solution was prepared for each concentration: 100, 150, 200, 250, and 300 mg/L. Each concentration was mixed with 40 µg/mL DPPH solution and incubated in the dark for 30 min. Absorbance was measured at 517 nm using UV-Vis spectrophotometry. The strength of antioxidant activity is classified according to IC50 values, as shown in Table 1. Antioxidant testing was conducted using the DPPH method (Vásquez et al., 2023). The stock solution of Scylla serrata extract was used as the test solution for antioxidant

Formatted: Indent: Left 0 ch, First line: 0 ch

Formatted: Indent: Left 0 ch, First line: 0 ch

Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic

000 Rozirwan <del>et al<u>e</u>t al.</del>, 2024

activity, while vitamin C solution served as a reference. The sample was dissolved in 96% ethanol. A total of 1 mL of sample solution was prepared for each concentration: 100 mg.L=1, 150 mg.L=1, 200 mg.L=1, 250 mg.L=1, and 300 mg.L=1. Each concentration was mixed with 40 µg.mL=1 DPPH solution and incubated in the dark for 30 min. The absorbance values were measured at 517 nm using UV Vis spectrophotometry. The percentage of inhibition and IC50 value were calculated (Naveed et al., 2022). The characterization of antioxidant activity is determined based on the IC50 value, which represents the concentration of the sample required to inhibit 50% of DPPH radicals. The strength of antioxidant activity is classified according to IC50 values, as shown in Table 1. The IC50 value is calculated using the following formula.

$$\frac{inhibisi}{inhibition} = \frac{blank\ abs - sample\ abs.}{blank\ abs}\ x\ 100\ \%$$

The IC50 results were entered in the linear regression equation  $\underline{y=ax+bY=AX+B}$ . The sample concentration is the abscissa (X-axis), and the percentage of antioxidant inhibition is the ordinate (Y-axis) (Yuniarti et alet al., 2020). The concentration corresponding to 50% inhibition was interpolated from the regression equation. All determinations were conducted in triplicate, and the mean  $IC_{sa}$  values were statistically compared using one-way ANOVA, followed by Duncan's multiple range test (p < 0.05).

Table 1. Characteristic concentration value of IC50

| Concentration Value (µg.mL <sup>-1</sup> ) | Characteristic |
|--------------------------------------------|----------------|
| <50                                        | Very Strong    |
| 50-100                                     | Strong         |
| 100-150                                    | Moderate       |
| 150-200                                    | Low            |

#### Phytochemical analysis

### Phytochemical Screening

Phytochemical tests of Seylla serrataS. serrata meat extracts were conducted using qualitative methods to identify the presence of bioactive compounds. The analysis included steroid and triterpenoid tests, which were performed using the Liebermann-Burchard method, alkaloid tests using Mayer and Dragendorff reagents, flavonoid tests with the Shinoda staining method, tanning tests using the FeCl<sub>3</sub> reaction, and saponin tests using the foam test method. Each test was carried out following the procedures described in standard literature (Dinesh et al., 2022; Suwandi et al., 2020).

#### Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

The identification of bioactive compound components in *S. serrata* meat extract was performed using the GC-MS analysis method, following (Rozirwan, Nugroho, Hendri, \_\_et al<sub>x</sub>,\_\_\_(2022) with modifications. A total of 1 µL of extract was injected into an RTX-5MS capillary column (30 m × 0.25 mm i.d., 0.25 µm film thickness) using helium as the carrier gas at a constant flow rate of 1.0 mL/min and a split ratio of 1:50. The oven temperature was initially set at 50°C for 5 min, then increased at a rate of 5°C/min to 280°C, and held for 5 min. The injector and ion source temperatures were 280°C and 230°C, respectively, with an electron ionization (EI) energy of 70 eV. The mass spectrometer was operated in scan mode with a mass range of 40–550 m/z. The Wiley 7 Library database was used as a reference for spectral comparison (Rafferty et al., 2020). The identification of bioactive compound components in *Scylla serrata* meat extract was performed using the GC-MS analysis method. GC-MS analysis was conducted following the method described by Rozirwan et al. (2022).

Formatted: Indent: Left 0 ch, First line: 0 ch

**Formatted:** Font: Italic, Complex Script Font: Italic **Formatted:** Font: Italic, Complex Script Font: Italic

Formatted: Font: Not Bold, Italic, Complex Script Font: Italic
Formatted: Font: Not Bold

Formatted: Font: Not Bold

Formatted: Font: Italic, Complex Script Font: Italic

000 Rozirwan <del>et alet al.</del>, 2024

A total of 1 µL of extract was injected into the column (rt x 5 ms) with helium as the carrier gas and a split ratio of 1:50. The even temperature was set at 50°C for 5 min, then gradually increased at a rate of 5°C per minute to a maximum temperature of 280°C, which was maintained for 5 min. Samples were injected 280°C. The Wiley 7 Library database was used as a reference for comparing the spectra of the analyzed compounds (Rafferty et al., 2020).

#### **Data Analysis**

Further data processing was performed by conducting normality tests (Shapiro-Wilk) and homogeneity tests (Levene) (Ebadzadeh et al., 2024; Gebruk et al., 2021). All experiments were conducted in triplicate, and the results were expressed as mean ± standard deviation. Statistical analysis was carried out using SPSS software. One way analysis of variance (ANOVA), followed by Duncan's multiple range test for post hoc comparisons, was used to identify significant differences among groups. Statistical significance was determined at p < 0.05.

#### **Result and Discussion**

#### Sample Identification and Collection

#### Samples Catch, Collage, Storage and Identification

Taxon determination was conducted using data from the World Register of Marine Species (WoRMS) accessed in January 2023 (WoRMS, 2023). Based on their morphological characteristics, the crustacean samples were identified as Scylla serrataS. serrata.

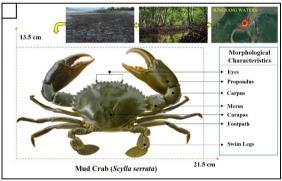



Figure 2. Crustacean species, Scylla serrataS. serrata

Mangrove crabs of this species were caught using folding traps. The fishing process was carried out during low tide to facilitate crab capture. In this study, 2—5 crabs were used as stock samples. The crabs obtained were weighed, with weights ranging from 200 to 320 g, widths of approximately 21.5 cm, and lengths of around 13.5 cm. The crabs were then stored in a cool box filled with ice cubes for preservation.

The species identification of mangrove crabs is based on morphological characteristics, which include features such as the eyes, propoundpropodus, carpus, merus, carapace, claws, walking legs, and swimming legs (Figure 2). Taxonomic data from databases such as WoRMS is widely used to confirm species classification accurately.

Formatted: Indent: Left 0 ch, First line: 0 ch

Formatted: Indent: Left 0 ch, First line: 0 ch

#### **Environmental Characteristics of Sampling Area**

Table 2. Observation of Environmental Parameters of the Research Site

|                               | Station         |
|-------------------------------|-----------------|
| Environment Parameter Quality | Sungsang Waters |
| Dissolved oxygen (mg.L-1mg/L) | 4.2             |
| pH                            | 7               |
| Temperature (°C)              | 28              |
| Salinity (psu‰)               | 18              |

The results of environmental quality measurements in the Seylla serrata sampling areas in Banyuasin waters revealed diverse conditions. Measurements of water physicochemical parameters, including dissolved oxygen, pH, temperature, and salinity, were taken to assess the habitat suitability for Seylla serrata (Rozirwan, Melki et alet al., 2021). The dissolved oxygen concentration was found to be 4.2 mg.L=1mg/L, which is sufficient to support the respiration process of aquatic organisms (Ouyang et alet al., 2021). The pH value of the water at the sampling location was 7, indicating neutral pH, which represents optimal ecological conditions (Chowdhury et alet al., 2021). This is consistent with previous studies (Muhtar and Lanuru, 2021; Putri et al., 2022; Yusni and Haq, 2020), which state that waters with a pH between 6.5 and 7.5 are ideal for the survival of mangrove crabs. The water temperature was measured at 28°C, indicating favorable conditions for mangrove crab growth (Indarjo et alet al., 2020; Ren et alet al., 2021) Water salinity was recorded at 18 psu, reflecting typical conditions in estuarine areas or areas directly influenced by tidal movements (Wang et alet al., 2021). Seylla serrata grows best in salinities between 15 psu, and 25 psu, but grows more slowly at salinities greater than 25 to 30 psu, (Adnan et al., 2024; Pati et al., 2023; Triajie et al., 2020).

Environmental conditions at the sampling site, particularly salinity (18 psu) and temperature (28°C), could also influence the diversity and concentration of secondary metabolites in *S. serrata*. Estuarine environments are dynamic, and organisms inhabiting them may prioritize the synthesis of specific bioactive compounds for stress adaptation. Previous studies reported that salinity stress can regulate secondary metabolite production, including alkaloids and flavonoids, in marine organisms (Pati *et al.*, 2023). Furthermore, the choice of ethanol as the extraction solvent, although safer and less toxic than methanol, may have influenced the recovery efficiency of certain compounds, possibly underestimating the abundance of more polar metabolites.

#### Determination of Antioxidant Activity by DPPH Assay

Antioxidant analysis using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method on Rozirwan et al. (2023) Seylla serrata S. serrata meat extract showed promising results. The DPPH solution changed from purple to yellow, indicating the presence of antioxidants in the extract. The test results revealed that the Seylla serrata extract had an IC50 value of 2.25 ppm, while Vitamin C, used as a comparison solution, had an IC50 value of 2.16 ppm (Table 3). Both solutions demonstrated low IC50 values, categorizing them as very strong antioxidant compounds. The IC50 value, which is the concentration required to inhibit 50% of DPPH radical activity, is a critical parameter for assessing the antioxidant potential of a compound (Martinez-Morales et alet al., 2020). The results indicate that Seylla serrata extract possesses an IC50 value comparable to that of Vitamin C. The percentage inhibition of DPPH free radicals by Seylla serrata meat extract increased as

Formatted: Font: (Default) Arial, Complex Script Font: Arial

Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic Formatted: Font: Italic, Complex Script Font: Italic Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic

000 Rozirwan <del>et al</del>et <u>al.,</u> 2024

the extract concentration increased. This suggests that the extract has the ability to donate electrons or hydrogen to the DPPH radical, neutralizing it and converting it into a more stable form (Gulcin and& Alwasel, 2023).

Table 3. Calculation results of antioxidant activity of Seylla serrataS. serrata in Sungsang waters

| Sample -             | Linear Regression |        |                | 1050 \/-1                      | 0-4         |
|----------------------|-------------------|--------|----------------|--------------------------------|-------------|
|                      | а                 | b      | R <sup>2</sup> | <ul> <li>IC50 Value</li> </ul> | Category    |
| <del>Scylla</del>    | 6.9429            | 52.808 | 0.9327         | 2.25                           | Very Strong |
| serrataS.<br>serrata |                   |        |                | <del>mg.L=1</del> mg/L         |             |
| Asorbic              | 6.7135            | 55.866 | 0.9435         | 2.16                           | Very Strong |
| Ascorbic Acid        |                   |        |                | <del>mg.L</del> =1 <u>mg/L</u> |             |

The discovery of compounds such as flavonoids and triterpenoids, which were identified in the phytochemical analysis of Seylla serrataS. serrata extracts, suggests that they may possess high antioxidant activity (Akinwumi et alet al., 2022; Hajar-Azira et alet al., 2023). Flavonoids are well known for their ability to capture free radicals and interrupt the chain of oxidative reactions. Triterpenoids are also recognized for their significant antioxidant activity through a similar mechanism. The combination of these compounds in Seylla serrataS. serrata extract creates a synergistic effect, enhancing the overall capacity of the extract to neutralize free radicals.

Seylla serrataS. serrata is known for its rich antioxidant system and strong enzymatic defense system, which help it survive in the dynamic and often challenging mangrove environment (Pati et alet al., 2023). Mud crabs also possess defense enzymes such as superoxide dismutase (SOD), catalase, and glutathione peroxidase, which work synergistically to detoxify reactive oxygen species (ROS) and maintain redox balance in the body (Bal et al., 2021; Costantini et al., 2022; Jerome et al., 2020; Zeng et al., 2024). These enzymes play a crucial role in protecting the crab from oxidative stress generated by fluctuating environmental conditions, pollution, and pathogens.

This combination of antioxidant compounds and defense enzymes not only ensures the survival of mud crabs in their habitat but also positions them as a potential source for the development of natural health products that can harness their protective mechanisms.

Antioxidants and defense enzymes play a vital role in organisms' survival, especially in harsh environments. The synergy between these compounds and enzymes contributes significantly to mitigating oxidative stress and preserving cellular function, which can be explored for potential therapeutic applications.

# Phytochemical Analysis Phytochemical Screening

Phytochemical tests were carried out to identify the compounds present in gastropod and crustacean extracts using ethanol as the solvent (Fitria et alet al., 2023; Rozirwan et alet al., 2024) The phytochemical test aimed to determine the compounds in the test extract (Chen et alet al., 2022), allowing for the identification of compounds that influence the strong or weak antioxidant activity of the extract (Baliyan et alet al., 2022). The results of the phytochemical test, after UV-Vis spectrophotometric analysis of the extract, are presented in Table 4. The test results showed that only certain compounds were extracted by the ethanol solvent (Yuniarti et alet al., 2020).

Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic

000 Rozirwan e<del>t al</del>et al., 2024

Table 4. Phytochemical screening results of Scylla serrataS. serrata

| No. | Parameters    | Analysis Result | Analysis Type |  |
|-----|---------------|-----------------|---------------|--|
| 1   | Alkaloids     | -               | Qualitative   |  |
| 2   | Flavonoids    | +               | Qualitative   |  |
| 3   | Triterpenoids | +               | Qualitative   |  |
| 4   | Saponin       | -               | Qualitative   |  |
| 5   | Tannins       | -               | Qualitative   |  |
| 6   | Steroid       | -               | Qualitative   |  |

Qualitative phytochemical analysis of Seylla serrataS. serrata extract showed significant results in identifying the content of bioactive compounds. Based on the test results, Seylla serrataS. serrata extract tested positive for flavonoid and triterpenoid compounds. A similar finding was reported by Elshaarawy et alet al. (2023) for Scylla olivacea samples. These two compounds offer various health benefits and therapeutic potential, particularly due to their strong antioxidant properties. Flavonoids are a group of polyphenolic compounds that are widely recognized for their potent antioxidant activity (Shen et alet al., 2022). These compounds can neutralize free radicals and prevent oxidative damage to cells and tissues. Additionally, flavonoids possess anti-inflammatory, anticancer, and cardioprotective properties (Jain et al., 2024; Mounika et al., 2021; Ullah et al., 2024). The identification of flavonoid compounds in Seylla serrataS. serrata indicates that mud crabs are not only valuable as food but also hold potential as an alternative source of medicine from marine organisms.

Triterpenoids are a group of terpenoid compounds that have potential biological activities (Mabou and& Yossa, 2021; Zang et al., 2022). These compounds are known to possess anti-inflammatory, antitumor, antimicrobial, and immunomodulatory properties (Ahmad et al., 2021; Harun et al., 2020). As antioxidant agents, triterpenoids have been used in pharmacology to treat inflammatory diseases and cancer. Similar to flavonoids, these compounds can neutralize free radicals caused by oxidative stress on body tissues. The discovery of triterpenoid compounds in Scylla serrataS. serrata shows promising results, given their antioxidant potential that can be applied to address various diseases. Thus, the opportunity to explore alternative medicinal raw materials from Scylla serrataS. serrata extract is increasingly attractive for further research. Overall, the phytochemical results focusing on flavonoid and triterpenoid compounds confirm the importance of Scylla serrataS. serrata as a potential source of bioactive compounds. Further research is encouraged at the stage of isolation and purification of these compounds, so that alternative medicinal materials derived from this marine organism can contribute to the development of therapeutic agents from marine organisms.

#### Phytochemical Profile Screening

The antioxidant compound profile in Scylla serrataS. serrata was determined using GC-MS (Gas Chromatography-Mass Spectrometry) analysis on the ethanol extract of mud crab. Figure 3 shows the chromatogram with 37 peaks identified in the extract. Each peak on the chromatogram represents a distinct chemical compound found in the extract, which was analyzed using GC-MS.

GC-MS analysis is a powerful technique for identifying and quantifying individual compounds in complex mixtures, providing insights into the chemical composition of the extract. This method is widely used for its ability to separate and identify volatile compounds, making it an essential tool for profiling bioactive compounds, such as antioxidants, in natural products.

Formatted: Font: Italic, Complex Script Font: Italic Formatted: Font: Italic, Complex Script Font: Italic Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic

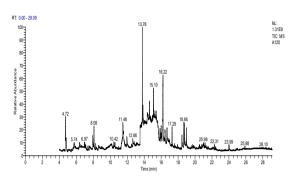



Figure 3. GC-MS chromatogram of ethanol extract Scylla serrataS. serrata

Terpenoid, alkaloid, steroid, and tannin groups were among the pure compounds successfully detected using GC-MS. Based on the GC-MS analysis of the ethanol extract compound components presented in Table 5, the main components identified in the extract were Calycotomine, N-methyl-, with a value of 8.31% of the total area, and uric acid, with a value of 8.71% of the total area.

At a retention time of 4.72 minutesmin, the compound 2-Cyclohexylpiperidine was detected with an area of 3.45%, a probability of 6.07, and a chemical formula of C11H21N, which belongs to the alkaloid compound group. At a retention time of 5.74 minutesmin, the compound 2-Pyridinamine, 3,6-dimethyl was detected with an area of 1.69%, a probability of 7.02, and a chemical formula of C7H10N2, which belongs to the aminopyridine compound group. Furthermore, at a retention time of 6.97 minutesmin, the compound Pentanoic acid, dodec-9-ynyl ester was detected with an area of 1.00%, a probability of 8.47, and a chemical formula of C17H30O2, which belongs to the protein compound group.

At a retention time of 8.08 minutesmin, the compound L-Homoserine lactone, N, N-dimethyl was detected with an area of 1.97%, a probability of 82.23, and a chemical formula of C6H11NO2, which belongs to the amino acid compound group. At a retention time of 10.42 minutesmin, the compound Thieno[2,3-c]furan-3-carbonitrile, 2-amino-4,6-dihydro-4,4,6,6-tetramethyl was detected with an area of 0.74%, a probability of 43.35, and a chemical formula of C11H14N2OS, which belongs to the EPA compound group. At a retention time of 11.48 minutesmin, the compound 1H-2-Indenol, 2,3,4,5,6,7-hexahydro-1-(2-hydroxy-2-methylpropyl) was detected with an area of 4.83%, a probability of 12.26, and a chemical formula of C13H22O2, which belongs to the lactone compound group.

At a retention time of 12.66 minutesmin, the compound dl-Lysine was detected with an area of 0.86%, a probability of 23.13, and a chemical formula of C6H14N2O2, which belongs to the amino acid compound group. At a retention time of 13.78 minutesmin, the compound Calycotomine, N-methyl- was detected with an area of 8.31%, a probability of 43.35, and a chemical formula of C13H19NO3, which belongs to the alkaloid compound group. At a retention time of 15.10 minutesmin, the compound Dasycarpidan-8(16H)-ethanol, 3,18-dihydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)- was detected with an area of 4.14%, a probability of 12.00, and a chemical formula of C20H28N2O2, which belongs to the group of molport compounds.

At a retention time of 16.22 <u>minutesmin</u>, the uric acid compound was detected with an area of 8.71%, a probability of 55.93, and a chemical formula of C5H4N4O3, which belongs to the allantoin compound group. At a retention time of 17.29 <u>minutesmin</u>, the compound Actinomycin C2 was detected with an area of 1.49%, a probability of 30.73, and a chemical formula of C63H88N12O16, which belongs to a group of peptide compounds that are derivatives of peptide compounds.

Animals produce a diverse mixture of secondary metabolites such as phenols, alkaloids, flavonoids, tannins, and saponins. Several animal studies have shown the potential use of these metabolites as antibacterial agents due to the presence of abundant biomolecules. Synthetic drugs often have high secondary failure rates and severe side effects, while animal products contain a variety of free radical scavenging molecules with substantial antioxidant properties.

As a more taxonomically relevant comparison, Yao <u>et al.</u> (2020) conducted a GC-MS-based metabolomic study on Scylla paramamosain experiencing acute salinity reduction (from 23 psu to 3 psu). This study identified 519 metabolites (mainly lipids), with 13 significantly enriched metabolic pathways (P < 0.05), related to signaling, lipid metabolism, and transport. Additionally, in that study, combining LC-MS and GC-MS data revealed 28 significant metabolic pathways, dominated by amino acid and energy metabolism, with lipid metabolism playing a supporting role. In comparison, in our study, Scylla serrata ethanol extract showed only 8.31% alkaloid content among the dominant compounds. This difference suggests that environmental stress factors such as sudden salinity reduction can significantly modulate the metabolite profile among related Scylla species, especially under similar polar extraction conditions.

Interestingly, alkaloid compounds were not detected in the qualitative phytochemical screening, bu several alkaloids such as Calycotomine and Imidazole were identified through GC-MS analysis. This discrepancy is not only due to methodological differences but may also be related to the detection sensitivity. Qualitative tests often fail to detect compounds present at low concentrations, whereas GC-MS has a higher sensitivity and can identify minor constituents. In addition, the polarity of ethance as a solvent might have selectively extracted certain alkaloids in low yield, which escaped detection in qualitative assays but were quantifiable in GC-MS analysis. Similar observations were reported in marine-derived extracts where alkaloids were inconsistently detected depending on the analytical method (Rahmawati et al., 2023; Shofinita et al., 2024).

Research by Waluyo and Wahyuni (2021) on Conus miles bacteria identified three dominar compounds through GC-MS analysis, namely Acetic acid (CAS), Ethylic acid, Proanoic acid, 2 methyl (CAS), and Isobutyric acid and Iso Valeric acid. Research on the ethanol extract of Enhalu accroides conducted Mediarman et al., (2021) using GC-MS showed nine compounds dominated by alkaloids, flavonoids, terpenoids, and polyphenols. Some of the compounds found in Enhalu accroides have similarities with the GC-MS results on S. serrata, but the percentage area of the alkaloid compound group in S. serrata was only 8.31%, compared to the ethanol extract of Enhalu accroides, which reached 53.88%.

In the GC-MS results, the highest peak was identified as coming from the antioxidant compounds of the alkaloid group. However, in the phytochemical test, alkaloid compounds were not detected in the S. serrata sample. This could be due to differences in the analytical methods used. Phytochemical tests are qualitative, while GC-MS analysis is quantitative. Quantitative analysis methods are known to be more accurate than qualitative methods.

The difference in the results of phytochemical tests and GC-MS analysis can be influenced by the type of solvent used during the maceration process of mangrove crab (S. serrata) extracts. In this study, the solvent used was ethanol, which is polar and able to bind bioactive compounds quickly and is relatively safe for humans compared to methanol. Methanol solvent is more polar than ethanol but is more toxic. This is in accordance with research conducted by Rahmawati et al., (2023) Shofinita et al., (2024), which show that methanol is more polar but also more toxic than ethanol.

Table 5. Proposed peak order, retention time, probability, area, compound name, and molecular formula

Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic

000 Rozirwan <del>et alet al.</del>, 2024

| Peak# | R. Time | Probability | Area% | Name                                                                                                                                       | Molecular formula |
|-------|---------|-------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1     | 4.72    | 6.07        | 3.45  | 2-Cyclohexylpiperidine                                                                                                                     | C11H21N           |
| 2     | 4.81    | 18.58       | 1.37  | Edulan II                                                                                                                                  | C13H20O           |
| 3     | 5.74    | 7.02        | 1.69  | 2-Pyridinamine, 3,6-dimethyl                                                                                                               | C7H10N2           |
| 4     | 6.39    | 8.12        | 0.83  | Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate                                                                                                 | C16H28O3          |
| 5     | 6.61    | 11.07       | 0.66  | d-Mannose                                                                                                                                  | C6H12O6           |
| 6     | 6.81    | 50.91       | 0.89  | Deoxyspergualin                                                                                                                            | C17H37N7O3        |
| 7     | 6.97    | 8.47        | 1.00  | Pentanoic acid, dodec-9-ynyl ester                                                                                                         | C17H30O2          |
| 3     | 7.93    | 51.03       | 1.42  | trans-(2 Chlorovinyl)dimethylethoxysil ane                                                                                                 | C6H13CIOSi        |
| 9     | 8.08    | 82.23       | 1.97  | L-Homoserine lactone, N,N-dimethyl-                                                                                                        | C6H11NO2          |
| 10    | 8.28    | 32.09       | 0.64  | 2-Propyl-tetrahydropyran-3-ol                                                                                                              | C8H16O2           |
| 11    | 8.62    | 32.45       | 0.93  | Imidazole                                                                                                                                  | C3H4N2            |
| 12    | 10.00   | 11.83       | 0.76  | Tertbutyloxyformamide, N-methyl-N-[4-(1-pyrrolidinyl)-2-buty nyl]-                                                                         | C14H24N2O2        |
| 13    | 10.42   | 15.27       | 0.74  | Thieno[2,3-c]furan-3-carbonitrile, 2-amino-4,6-dihydro-4,4,6,6-tetrameth yl                                                                | C11H14N2OS        |
| 14    | 11.48   | 12.26       | 4.83  | 1H-2-Indenol, 2,3,4,5,6,7-hexahydro-1-(2-hydroxy-2-<br>methylpropyl)                                                                       | C13H22O2          |
| 15    | 11.55   | 48.75       | 2.53  | dl-Citrulline                                                                                                                              | C6H13N3O3         |
| 16    | 11.96   | 7.38        | 1.45  | 2-Pyridineacetic acid, hexahydro-                                                                                                          | C7H13NO2          |
| 17    | 12.66   | 23.13       | 0.86  | dl-Lysine                                                                                                                                  | C6H14N2O2         |
| 18    | 13.51   | 60.28       | 1.62  | D-Streptamine, O-6-amino-6-deoxy-à-D-glucopyranosy I-(1-4)-O-(3-deoxy-4-C-methyl-3-<br>(meth ylamino)-á-L-arabinopyranosyl-(1-6))- 2-deoxy | C6H13NO2          |
| 19    | 13.78   | 43.35       | 8.31  | Calycotomine, N-methyl-                                                                                                                    | C13H19NO3         |
| 20    | 13.99   | 17.84       | 2.38  | 4-[4-Diethylamino-1-methylbutylamino ]-1,2-dimethoxy-6-bromonaphthalene                                                                    | C21H31BrN2O2      |
| 21    | 14.35   | 32.83       | 1.22  | Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)-                                                             | C20H28N2O2        |
| 22    | 14.62   | 12.2        | 2.67  | 4-[4-Diethylamino-1-methylbutylamino ]-1,2-dimethoxy-6-bromonaphthalene                                                                    | C21H31BrN2O2      |
| 23    | 15.10   | 12.00       | 4.14  | Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)-                                                             | C20H28N2O2        |
| 24    | 15.21   | 32.49       | 0.87  | Cystine                                                                                                                                    | C6H12N2O4S2       |
| 25    | 15.65   | 33.28       | 1.26  | 3-[N-[2-Diethylaminoethyl]-1-cyclopes tenylamino]propionitrile                                                                             | C14H25N3          |
| 26    | 15.86   | 16.52       | 0.92  | á-Hydroxyquebrachamine                                                                                                                     | CH3CH(OH)COO      |
| 27    | 15.99   | 14.23       | 1.02  | 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropyl ester, (Z,Z,Z)-                                                                         | C21H36O4          |
| 28    | 16.22   | 55.93       | 8.71  | Uric acid                                                                                                                                  | C5H4N403          |
| 29    | 16.45   | 8.30        | 1.33  | Aminoacetamide, N-methyl-N-[4-(1-pyrrolidinyl)-2-buty nyl]-                                                                                | C5H4N4O3          |
| 30    | 16.69   | 32.32       | 2.06  | Glucopyranuronamide, 1-(4-amino-2-oxo-1(2H)-pyrimidinyl)- 1,4-dideoxy-4-(D-2-(2-(methylamino) acetamido)hydracrylamido)-, á-D              | C10H14N2O         |
| 31    | 16.90   | 29.78       | 0.80  | 1,2,4-Trioxolane-2-octanoic acid, 5-octyl-, methyl ester                                                                                   | C6H11NO6          |
| 32    | 17.29   | 30.73       | 1.49  | Actinomycin C2                                                                                                                             | C19H36O5          |
| 33    | 18.45   | 37.85       | 2.00  | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-                                                                            | C63H88N12O16      |
| 34    | 18.66   | 90.13       | 2.23  | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-                                                                            | C63H88N12O16      |
| 35    | 18.76   | 60.11       | 2.62  | 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6 H-dipyrrolo[1,2-a:1',2'-d]pyrazine                                                                   | C11H18N2O2        |
| 36    | 18.97   | 36          | 2.13  | I-(+)-Ascorbic acid                                                                                                                        | C14H22            |
| 37    | 20.98   | 13.19       | 1.29  | cis-13-Octadecenoic acid                                                                                                                   | C6H8O6            |
| 38    | 21.17   | 13.49       | 0.94  | Ricinoleic acid                                                                                                                            | C18H34O2          |
| 39    | 23.99   | 31.48       | 0.89  | Ergotaman-3',6',18-trione, 12'-hydroxy-2'-methyl-5'-(phenylmeth yl)-, (5'à)-                                                               | C18H34O3          |

The main group of compounds in the ethanol extract of mud crab (*S. serrata*) was represented by three peaks on the GC chromatogram, which had a higher percentage area than the others. These peaks were identified as Calycotomine, N-methyl- (8.31%), uric acid (8.71%), and Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-(2.xi.,4.xi.)- (4.14%). Antioxidant compounds detected in the GC-MS analysis included 2-Cyclohexylpiperidine with an area of 3.45%, which belongs to the alkaloid group. In addition, the Edullan II compound with an area of 1.37% belongs to the volatile compound group. The compound Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate, with an area of 0.83%, belongs to the terpenoid compound group, and Imidazole with an area of 0.93% also belongs to the alkaloid group.

In a study conducted by Karnila *et al.* (2021) on mud crab (*S. serrata*), antioxidant compounds such as astaxanthin with a peak area of 18.6% and β-carotene with a peak area of 7.9% were identified through GC-MS analysis, both of which belong to the carotenoid group and contribute to antioxidant activity. Similarly, a study by Thiruvengadarajan *et al.* (2024) on the nutritional composition of *S. serrata* reported the presence of unsaturated fatty acids such as eicosapentaenoic acid (EPA, 5.42%) and docosahexaenoic acid (DHA, 4.87%), which are categorized as bioactive lipids and known for their health-promoting effects.

In a study conducted by Rasyid (2016) on sea cucumber biota (*Bohadschia* sp.), steroid compounds consisting of cholest 2-ene (3.91%), stigmastan 3,5-diene (3.29%), cholest 5-en 3-yl-nonanoate (4.89%), and cholest 5-ene, 3.beta. chloro—(3.12%) were found. The compound Calycotomine, N-methyl- with an area of 8.31% belongs to the alkaloid group. The compound I (+) Ascorbic acid with

Formatted Table

Formatted: Indent: Left 0 ch, First line: 0 ch

**Formatted:** Font: Italic, Complex Script Font: Italic **Formatted:** Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Indent: Before: -0.01 ch, First line: 0 ch

an area of 2.13%, as well as 5,10 Diethoxy-2,3,7,8 tetrahydro-1H,6H dipyrrolo[1,2-a:1',2' d]pyrazine with an area of 2.62%, belong to the alkaloid group, and Ergotaman-3',6',18 trione, 12' hydroxy-2' methyl-5' (phenylmethyl), (5'à) with an area of 0.89%, also belongs to the alkaloid group. Lalitha et al., (2021), in their research on antioxidants in mangrove Avicennia officinalis L. through GC MS testing, identified a group of antioxidant compounds such as Trans-cinnamic acid, with a peak area percentage of 27.7%.

The group of compounds identified in Scylla serrata are alkaloids. Based on research by Karim and (2024) analyzing muscle and hepatopancreas extracts of S. olivacea, they reported a lipid profile including EPA and DHA content, as well as significant antioxidant capacity measured through the DPPH and ferric-reducing tests. Similarly, Taufik et al. (2020) applied GC-MS to S. olivacea tissues revealing a predominance of monounsaturated and polyunsaturated fatty acids, including long-chair polyunsaturated fatty acids (PUFAs) in the gonads and hepatopancreas. Although specific alkaloic compounds have not been reported for Scylla, these lipid-based metabolites provide relevant biological context within the genus Scylla. Therefore, comparisons of the alkaloid profiles of Serrata should emphasize the same metabolic pathways within this genus and highlight the need for targeted alkaloid profile studies on Scylla species.

The group of compounds found in mud crabs (*S. serrata*) were alkaloids. Alkaloid compounds car also be found in marine plants such as seagrasses. This is consistent with the findings of Shaffai e al., (2023); Tjandrawinata and Nurkolis, (2024), who identified a group of alkaloid compounds in the ethanol extract of *Enhalus acoroides*, such as Phenyl-N-methylindole with a peak area of 53.88% N-Methyldeacetylcolchicine with a peak area of 1.55%, and Phenyl-5-methylindole with a peak area of 28.98%

#### Conclusion

This study successfully demonstrated that S. serrata extract possesses very strong antioxidal activity, supported by the presence of flavonoids, triterpenoids, and various bioactive compound identified through phytochemical and GC-MS analyses. These findings confirm that the research objective to explore and characterize the antioxidant potential and compound profile of S. serrai has been achieved. The extract's bioactive profile, comprising both major and minor compound reinforces its potential as a promising source of natural antioxidants with additional pharmacological properties, including anti-inflammatory, anticancer, antimicrobial, and antiviral activities. Overall, th study contributes to the growing evidence that marine organisms represent valuable resources for the development of alternative medicinal agents. The results of antioxidant testing with the DPP method on Scylla serrata extracts showed IC50 values at very strong antioxidant characteristic Phytochemical identification shows the extract contains strong bioactive compounds in the flavone and triterpenoid compound groups. GC-MS compound profile identification showed GC-MS analys detected major compound groups consisting of alkaloids, purines, and vitamins. Minor compoun groups were detected from volatile compounds, amines, terpenoids, monosaccharides, amino acidfatty acids, silanes, formamides, heterocycles, carboxylic acids, aminoglycosides, naphthalen derivatives, nitriles, amides, glycosides, and peptides. Scylla serrata extract has been reported to have potential as antioxidant, anti-inflammatory, anticancer, antimicrobial, and antiviral. The result of this study are expected to provide important information in the disclosure of alternative medicinmaterials from marine organisms.

#### Acknowledgement

Formatted: Indent: Left 0 ch, First line: 0 ch

Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Indent: Left 0 ch, First line: 0 ch

Formatted: Indent: Left 0 ch, First line: 0 ch
Formatted: Font: Italic, Complex Script Font: Italic
Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic

The research/publication of this article was funded by DIPA of Public Service Agency of Universitas Sriwijaya 2024. Nomor SP DIPA 023.17.2.677515/2024, On November 24, 2023. In accordance with the Rector's Degree Number: 0013/UN9/LP2M.PT/2024, On May 20, 2024.

#### References

Adnan, A.S., Gamburud, L.C., Affendi, I.S.M., Pauzi, M.M., Mahsol, H.H., Muhammad, T., Manan, H., Naimullah, M., Ismail, C.Z.C., & Harman, M.F. 2024. Moulting performances evaluation of female orange mud crab, Scylla olivacea (Herbst, 1796) in-captivity: effects of water salinity and limb autotomy. Trop. Life Sci. Res., 35(1): 197. DOI: 10.21315/tlsr2024.35.1.11

Ahmad, M.F., Ahmad, F.A., Khan, M.I., Alsayegh, A.A., Wahab, S., Alam, M.I., & Ahmed, F. 2021. *Ganoderma lucidum*: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. *Int. J. Biol. Macromol.*, 187: 769–779. DOI: 10.1016/j.ijbiomac.2021.06.122

Akinwumi, K.A., Abam, E.O., Oloyede, S.T., Adeduro, M.N., Adeogun, Y.A., & Uwagboe, J.E. 2022. Acrostichium aureum Linn: traditional use, phytochemistry and biological activity. Clin. Phytoscience, 8(1): 18. DOI: 10.1186/s40816-022-00349-w

Alkadi, H. 2020. A review on free radicals and antioxidants. Infect. Disord. Targets (Formerly Curr. Drug Targets-Infectious Disord., 20(1): 16–26. DOI: 10.2174/1871526518666180628124323

Ambekar, A.A., Sivaperumal, P., Kamala, K., Kubal, P., & Prakash, C. 2023. Effect of temperature changes on antioxidant enzymes and oxidative stress in gastropod *Nerita oryzarum* collected along India's first Tarapur Atomic Power Plant site. *Environ. Res.*, 216: 114334. DOI: https://doi.org/10.1016/j.envres.2022.114334

Baag, S., & Mandal, S. 2023. Do global environmental drivers' ocean acidification and warming exacerbate the effects of oil pollution on the physiological energetics of *S. serrata? Environ. Sci. Pollut. Res.*, 30(9): 23213–23224. DOI: 10.1007/s11356-022-23849-1

Bal, A., Panda, F., Pati, S.G., Das, K., Agrawal, P.K., & Paital, B. 2021. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 241: 108971. DOI: 10.1016/j.cbpc.2020.108971

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R.P., & Chang, C.M. 2022. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. 27(4): 1326. DOI: 10.3390/molecules27041326

Beslin, L.G., & Geni, G. 2021. Biochemical Profile and Antibacterial Examination of Freshwater Crab S. serrata (FORSKAL, 1775). Int. J. Clin. Invent. Med. Sci., 3(2): 53–65. DOI: 10.36079/lamintang.ijcims-0302.233

Chaudhary, P., Janmeda, P., Docea, A.O., Yeskaliyeva, B., Abdull Razis, A.F., Modu, B., Calina, D., & Sharifi-Rad, J. 2023. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. *Front. Chem.*, 11: 1158198. DOI: 10.3389/fchem.2023.1158198

Chen, X., He, X., Sun, J., & Wang, Z. 2022. Phytochemical composition, antioxidant activity, α-glucosidase and acetylcholinesterase inhibitory activity of quinoa extract and its fractions. 27(8): 2420. DOI: 10.3390/molecules27082420

Chowdhury, M., Kiraga, S., Islam, M.N., Ali, M., Reza, M.N., Lee, W.H., & Chung, S.O. 2021. Effects of temperature, relative humidity, and carbon dioxide concentration on growth and glucosinolate content of kale grown in a plant factory. 10(7): 1524. https://doi.org/10.3390/foods10071524

Costantini, M., Esposito, R., & Ruocco, N. 2022. Crustaceans as Good Marine Model Organisms to Study Stress Responses by—Omics Approaches. In *Crustaceans* (pp. 82–106). CRC Press.

#### DOI: 10.1201/9780367853426-6

- De Castro, J.D.Y., Fabia, S.B.C., Merlin, A.B., & Tadina, K.A.Y. B. 2023. Pangasinan's Best Microplastics Properties Found in Pangasinan Mangrove crab (S. serrata) Production.
- Delta, M., Rozirwan, & Hendri, M. 2021. Aktivitas antioksidan ekstrak daun dan kulit batan mangrove Sonneratia alba di Tanjung Carat, Kabupaten Banyuasin, Provinsi Sumatera Selatar Maspari J. Mar. Sci. Res., 13(2): 129–144. DOI: https://doi.org/10.56064/maspari.v13i2.14577
- <u>Di Meo, S., & Venditti, P. 2020. Evolution of the knowledge of free radicals and other oxidants. *Oxid Med. Cell. Longev.*, 2020(1): 9829176. DOI: 10.1155/2020/9829176</u>
- Dinesh, D., Murugan, K., Subramaniam, J., Paulpandi, M., Chandramohan, B., Pavithra, K., Anitha J., Vasanthakumaran, M., Fraceto, L.F., & Wang, L. 2022. *Salvia leucantha* essential of encapsulated in chitosan nanoparticles with toxicity and feeding physiology of cotton bollworm *Helicoverpa armigera*. In *Biopesticides* (pp. 159–181). Elsevier. DOI: https://doi.org/10.1016/B978 0-12-823355-9.00022-5
- Elshaarawy, R., Aboali, E., Alian, A., Ibrahim, H., El-Nabi, S.H., Mohammed-Geba, K., & Gala Khallaf, A. 2023. Preliminary assessment of bioactive ingredients and antioxidant activity of some Red Sea invertebrates' extracts. *Egypt. J. Aquat. Biol. Fish.*, 27(4):. DO 10.21608/ejabf.2023.311303
- Fajriaty, I., Fidrianny, I., Kurniati, N.F., Fauzi, N.M., Mustafa, S.H., & Adnyana, I.K. 2024. In vitro and in silico studies of the potential cytotoxic, antioxidant, and HMG CoA reductase inhibitory effects of chitin from Indonesia mangrove crab (*S. serrata*) shells. *Saudi J. Biol. Sci.*, 31(5): 103964. DOI: 10.1016/j.sjbs.2024.103964
- Fitria, Y., Rozirwan, R., Fitrani, M., Nugroho, R.Y., Fauziyah, F., & Putri, W.A.E. 2023. Gastropod as bioindicators of heavy metal pollution in the Banyuasin estuary shrimp pond area, South Sumatra Indonesia. *Acta Ecol. Sin.*, 43(6): 1129–1137. DOI: https://doi.org/10.1016/j.chnaes.2023.05.009
- Frías-Espericueta, M.G., Bautista-Covarrubias, J.C., Osuna-Martínez, C.C., Delgado-Alvarez, C. Bojórquez, C., Aguilar-Juárez, M., Roos-Muñoz, S., Osuna-López, I., & Páez-Osuna, F. 2022. Metal and oxidative stress in aquatic decapod crustaceans: A review with special reference to shrimp and crabs. *Aquat. Toxicol.*, 242: 106024. DOI: 10.1016/j.aquatox.2021.106024
- Galal-Khallaf, A., Samir Aboali, E., El-Sayed Hassab El-Nabi, S., El-Tantawy, A.I., Schott, E.J., & Mohammed-Geba, K. 2024. As healthy as invasive: Charybdis natator shell extract reveals beneficia metabolites with promising antioxidant and anti-inflammatory potentials. *Front. Mar. Sci.*, 11 1376768. DOI: 10.3389/fmars.2024.1376768
- <u>Gulcin, İ., & Alwasel, S.H. 2023. DPPH radical scavenging assay. 11(8): 2248 DOI: 10.3390/pr11082248</u>
- Habib, M.R., Hamed, A.A., Ali, R.E.M., Zayed, K.M., Gad El-Karim, R.M., Sabour, R., Abu El-Einir, H.M., & Ghareeb, M.A. 2022. Thais savignyi tissue extract: bioactivity, chemical composition, and molecular docking. *Pharm. Biol.*, 60(1): 1899–1914. DOI: 10.1080/13880209.2022.2123940
- Hajar-Azira, Z., Aaqillah-Amr, M.A., Rasdi, N.W., Ma, H., & Ikhwanuddin, M. 2023. Preliminar investigation on the effect of fiddlehead fern, *Diplazium esculentum*, extract to the growt performance of giant freshwater prawn, Macrobrachium rosenbergii, postlarvae. *Aquac. Int.*, 31(1):81–101. DOI: https://doi.org/10.1007/s10499-022-00965-w
- Harun, N.H., Septama, A.W., Ahmad, W.A.N.W., & Suppian, R. 2020. Immunomodulatory effects and structure-activity relationship of botanical pentacyclic triterpenes: A review. *Chinese Herb. Med*, 12(2): 118–124. DOI: 10.1016/j.chmed.2019.11.007
- Hashim, N., Abdullah, S., Hassan, L.S., Ghazali, S.R., & Jalil, R. 2021. A study of neem leaves

000 Rozirwan <del>et alet al.</del>, 2024

Identification of method and solvent in extraction. *Mater. Today Proc.*, 42: 217–221. DOI: https://doi.org/10.1016/j.matpr.2020.11.726

Hidir, A., Aaqillah-Amr, M.A., Azra, M.N., Shahreza, M.S., Abualreesh, M.H., Peng, T.H., Ma, H., Waiho, K., Fazhan, H., & Ikhwanuddin, M. 2021. Sexual dimorphism of mud crab, genus *Scylla* between sexes based on morphological and physiological characteristics. *Aquac. Res.*, 52(12): 5943–5961. DOI: https://doi.org/10.1111/are.15497

Indarjo, A., Salim, G., Zein, M., Septian, D., & Bija, S. 2020. The population and mortality characteristics of mangrove crab (*S. serrata*) in the mangrove ecosystem of Tarakan City, Indonesia. *Biodiversitas J. Biol. Divers.*, 21(8):. DOI: 10.13057/biodiv/d210855

<u>Jabbar, A.A., Abdullah, F.O., Abdulrahman, K.K., Galali, Y., & Sardar, A.S. 2022. GC-MS Analysis of bioactive compounds in methanolic Extracts of Papaver decaisnei and determination of Its antioxidants and anticancer activities. J. Food Qual., 2022(1): 1405157. DOI: https://doi.org/10.1155/2022/1405157</u>

Jain, A., Sarsaiya, S., Gong, Q., Wu, Q., & Shi, J. 2024. Chemical diversity, traditional uses, and bioactivities of Rosa roxburghii Tratt: A comprehensive review. *Pharmacol. Ther.*, 108657. DOI: 10.1016/j.pharmthera.2024.108657

<u>Jerome, F.C., Hassan, A., & Chukwuka, A.V. 2020. Metalloestrogen uptake, antioxidant modulation and ovotestes development in *Callinectes amnicola* (blue crab): a first report of crustacea intersex in the Lagos lagoon (Nigeria). *Sci. Total Environ.*, 704: 135235. DOI: https://doi.org/10.1016/j.scitotenv.2019.135235</u>

Karim, N.U., Mohd Noor, N. S., Sofian, M. F., Hassan, M., Ikhwanuddin, M., & Nirmal, N. P. (2024). Lipid profile and antioxidant activities of mud crab (Scylla olivacea) extract obtained from muscle and hepatopancreas. CyTA-Journal of Food, 22(1), 2363923. DOI: 10.1080/19476337.2024.2363923.

Karnila, R., & Ramadhani, N.R. 2021. Antioxidant activity of astaxanthin flour extract of mud crab (S. serrata) with different acetone concentrations. *IOP Conf. Ser. Earth Environ. Sci.*, 695(1): 12047. DOI: 10.1088/1755-1315/695/1/012047

Mabou, F.D., & Yossa, I.B.N. 2021. TERPENES: Structural classification and biological activities. IOSR J Pharm Biol Sci, 16: 25–40. DOI: 10.9790/3008-1603012540

Martemucci, G., Costagliola, C., Mariano, M., D'andrea, L., Napolitano, P., & D'Alessandro, A.G. 2022. Free radical properties, source and targets, antioxidant consumption and health. 2(2): 48–78. DOI: https://doi.org/10.3390/oxygen2020006

Martinez-Morales, F., Alonso-Castro, A.J., Zapata-Morales, J.R., Carranza-Álvarez, C., & Aragon-Martinez, O.H. 2020. Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants. *Chem. Pap.*, 74: 3325–3334.

Mediarman, G.N., Riyadi, P.H., Rianingsih, L., & Purnamayati, L. 2021. Potentials of CaO powder result of calcination from green shells (*Perna viridis*), scallops (*Placuna placenta*), and blood clams (*Anadara granosa*) as antibacterial agent. *IOP Conf. Ser. Earth Environ. Sci.*, 890(1): 12043. DOI: 10.1088/1755-1315/890/1/012043

Mounika, S., Jayaraman, R., Jayashree, D., Hanna Pravalika, K., Balaji, A., Banu, M.S., & Prathyusha, M. 2021. A comprehensive review of medicinal plants for cardioprotective potential. *Int. J. Adv. Pharm. Biotechnol.*, 7(1): 24–29. DOI: https://doi.org/10.1007/s11696-020-01161-x

Muhtar, K.M.Y., & Lanuru, M. 2021. Water quality assessment for the development of silvofishery pattern mangrove crabs in Coastal Area, Polewali Mandar, West Sulawesi. *Intl J Sci Res Publ*, 11(11): 391–395. DOI: 10.29322/IJSRP.11.11.2021.p11952

Musa, M., Jan, G., Jan, F.G., Hamayun, M., Irfan, M., Rauf, A., Alsahammari, A., Alharbi, M., Suleria,

Formatted: Font: (Default) Arial, 11 pt, Complex Script Font: Arial

Formatted: Indent: Left 0 ch, First line: 0 ch

Formatted: Font: (Default) Arial, 11 pt, Italic, Complex

Script Font: Arial, Italic

**Formatted:** Font: (Default) Arial, 11 pt, Complex Script Font: Arial

Formatted: Font: (Default) Arial, 11 pt, Complex Script Font:

Formatted: English (Indonesia)

- H.A.R., & Ali, N. 2022. Pharmacological activities and gas chromatography—mass spectrometry analysis for the identification of bioactive compounds from *Justicia adhatoda* L. *Front. Pharmacol.*, 13: 922388. DOI: 10.3389/fphar.2022.922388
- Nagarajan, P., Louis, L.R.P., Patil, S.J., Adam, J.K., & Krishna, S.B.N. 2024. Therapeutic potential of biologically active peptides from marine organisms for biomedical applications. *Stud. Nat. Proc Chem.*, 81: 467–500. DOI: https://doi.org/10.1016/B978-0-443-15628-1.00019-2
- Nanda, P.K., Das, A.K., Dandapat, P., Dhar, P., Bandyopadhyay, S., Dib, A.L., Lorenzo, J.M., & Gagaoua, M. 2021. Nutritional aspects, flavour profile and health benefits of crab meat based nove food products and valorisation of processing waste to wealth: A review. *Trends Food Sci. Technol.* 112: 252–267. DOI: https://doi.org/10.1016/j.tifs.2021.03.059
- Neelima, S., Anju, M.V, Anooja, V.V, Athira, P.P., Archana, K., Musthafa, S.M., & Philip, R. 2022 Characterisation of a novel crustin isoform from mud crab, *S. serrata* (Forsskål, 1775) and it functional analysis in silico. *Silico Pharmacol.*, 11(1): 2. DOI: 10.1007/s40203-022-00138-w
- Ouyang, Z., Tian, J., Yan, X., & Shen, H. 2021. Effects of different concentrations of dissolved oxygen on the growth, photosynthesis, yield and quality of greenhouse tomatoes and changes in so microorganisms. Agric. Water Manag., 245: 106579. DOI https://doi.org/10.1016/j.agwat.2020.106579
- Palma, A., Ruiz-Montoya, M., Díaz, M. J., Giráldez, I., & Morales, E. 2023. Optimization of bioactive compounds by ultrasound extraction and gas chromatography-mass spectrometry in fast-growing leaves. *Microchem. J.*, 193: 109231. DOI: https://doi.org/10.1016/j.microc.2023.109231
- Pati, S.G., Paital, B., Panda, F., Jena, S., & Sahoo, D.K. 2023. Impacts of habitat quality on the physiology, ecology, and economical value of mud crab *Scylla* sp.: a comprehensive review. 15(11, 2029. DOI: https://doi.org/10.3390/w15112029
- Pati, S.G., Panda, F., Jena, S., Sahoo, D.K., & Paital, B. 2022. Effects of soil trace metals, organicarbon load and physicochemical stressors on active oxygen species metabolism in S. serrates ampled along the Bay of Bengal in Odisha state, India. Front. Environ. Sci., 10: 994773.
- Pisoschi, A.M., Pop, A., Iordache, F., Stanca, L., Predoi, G., & Serban, A.I. 2021. Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. *Eur. J. Med. Chem.*, 209: 112891. DOI: 10.1016/j.ejmech.2020.112891
- Putri, A., Bengen, D.G., Zamani, N.P., Salma, U., Kusuma, N.P., Diningsih, N.T., & Kleinertz, S 2022. Mangrove habitat structure of mud crabs (*S. serrata* and *S. olivacea*) in the Bee Jay Bakar Resort Probolinggo, Indonesia. *Ilmu Kelaut. Indones. J. Mar. Sci.*, 27(2): DOI: https://doi.org/10.14710/ik.ijms.27.2.124-132
- Rafferty, C., Johnson, K., O'Mahony, J., Burgoyne, B., Rea, R., & Balss, K.M. 2020. Analysis of chemometric models applied to Raman spectroscopy for monitoring key metabolites of cell culture. Biotechnol. Prog., 36(4): e2977. DOI: 10.3389/fenvs.2022.994773
- Rahmawati, R., Bastian, F., Asfar, M., Laga, A., Tawali, A.B., & Fitrianti, A.N. 2023. Effect of decaffeination time on the chemical profile of green bean arabica coffee (*Coffea arabica* L.). *AIP Conf. Proc.*, 2596(1):. DOI: https://doi.org/10.1063/5.0118748
- Ren, X., Wang, Q., Shao, H., Xu, Y., Liu, P., & Li, J. 2021. Effects of low temperature on shrimp and crab physiology, behavior, and growth: a review. Front. Mar. Sci., 8: 746177. DOI: https://doi.org/10.3389/fmars.2021.746177
- Rozirwan, R., Almaniar, S., & Herpandi. 2021. Abundance and diversity of macrobenthos at Tanjung Api-Api waters, South Sumatra, Indonesia.
- Rozirwan, R., Az-Zahrah, S.A.F., Khotimah, N.N., Nugroho, R.Y., Putri, W.A.E., Fauziyah, F., Melk

000 Rozirwan <del>et alet al.</del>, 2024

- M., Agustriani, F., & Siregar, Y.I. 2024. Ecological risk assessment of heavy metal contamination in water, sediment, and polychaeta (*Neoleanira Tetragona*) from Coastal Areas affected by aquaculture, urban rivers, and ports in South Sumatra. *J. Ecol. Eng.*, 25(1):. DOI: 10.12911/22998993/175365
- Rozirwan, R., Hananda, H., Nugroho, R.Y., Apri, R., Khotimah, N.N., Fauziyah, F., Putri, W.A.E., & Aryawati, R. 2023. Antioxidant activity, total phenolic, phytochemical content, and HPLC profile of selected mangrove species from Tanjung Api-Api Port Area, South Sumatra, Indonesia. *Trop. J. Nat. Prod. Res.*, 7(7): DOI: 10.26538/tjnpr/v7i7.29
- Rozirwan, R., Melki, M., Apri, R., Fauziyah, F., Agussalim, A., Hartoni, H., & Iskandar, I. 2021. Assessment the macrobenthic diversity and community structure in the Musi Estuary, South Sumatra, Indonesia. *Acta Ecol. Sin.*, 41(4): 346–350. DOI: https://doi.org/10.1016/j.chnaes.2021.02.015
- Rozirwan, R., Nanda, N., Nugroho, R.Y., Diansyah, G., Muhtadi, M., Fauziyah, F., Putri, W. A. E., & Agussalim, A. 2023. Phytochemical composition, total phenolic content and antioxidant activity of *Anadara granosa* (Linnaeus, 1758) collected from the east coast of South Sumatra, Indonesia. *Baghdad Sci. J.*, 20(4): 1258. DOI: 10.21123/bsj.2023.6941
- Rozirwan, R., Nugroho, R.Y., & Fauziyah, F. 2022. Biodiversitas gastropoda dan krustasea di zona intertidal hutan mangrove Estuari Sungai Musi, Sumatera Selatan. 11(2): 61–71. DOI: 10.33373/simbio.v11i2.4653
- Rozirwan, R., Nugroho, R.Y., Hendri, M., Fauziyah, F., Putri, W.A.E., & Agussalim, A. 2022. Phytochemical profile and toxicity of extracts from the leaf of *Avicennia marina* (Forssk.) Vierh. collected in mangrove areas affected by port activities. *South African J. Bot.*, 150: 903–919. DOI: https://doi.org/10.1016/j.sajb.2022.08.037
- Rozirwan, R., Siswanto, A., Khotimah, N.N., Nugroho, R.Y., Putri, W.A.E., & Apri, R. 2024. Anti-inflammatory activity and phytochemical profile from the leaves of the mangrove *Sonneratia caseolaris* (L.) Engl. For future drug discovery. *Sci. Technol. Indones.*, 9(2): 502–516. DOI: https://doi.org/10.26554/sti.2024.9.2.502-516
- Rozirwan, Saputri, A.P., Nugroho, R.Y., Khotimah, N.N., Putri, W.A.E., Fauziyah, & Purwiyanto, A.I.S. 2023. An assessment of Pb and Cu in waters, sediments, and mud crabs (*S. serrata*) from mangrove ecosystem near Tanjung Api-Api port area, South Sumatra, Indonesia. DOI: https://doi.org/10.26554/sti.2023.8.4.675-683
- Sadiq, I.Z. 2023. Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. Curr. Mol. Med., 23(1): 13–35. DOI: 10.2174/1566524022666211222161637
- Saputra, A., Nugroho, R.Y., Isnaini, R., & Rozirwan. 2021. A review: The potential of microalgae as a marine food alternative in Banyuasin Estuary, South Sumatra, Indonesia. *Egypt. J. Aquat. Biol. Fish.*, 59: 1053–1065. DOI: https://doi.org/10.21608/EJABF.2021.170654
- Shaffai, A. El, Mettwally, W.S.A., & Mohamed, S.I.A. 2023. A comparative study of the bioavailability of Red Sea seagrass, *Enhalus acoroides* (Lf) Royle (leaves, roots, and rhizomes) as anticancer and antioxidant with preliminary phytochemical characterization using HPLC, FT-IR, and UPLC-ESI-TOF-MS spectroscopic a. *Beni-Suef Univ. J. Basic Appl. Sci.*, 12(1): 41. DOI: https://doi.org/10.1186/s43088-023-00376-7
- Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. 2022. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem., 383: 132531. DOI: https://doi.org/10.1016/j.foodchem.2022.132531
- Shofinita, D., Lestari, D., Purwadi, R., Sumampouw, G.A., Gunawan, K.C., Ambarwati, S.A., Achmadi, A.B., & Tjahjadi, J.T. 2024. Effects of different decaffeination methods on caffeine

000 Rozirwan <del>et al<u>e</u>t al.</del>, 2024

contents, physicochemical, and sensory properties of coffee. *Int. J. Food Eng.*, 20(8): 561–581. DOI: https://doi.org/10.1515/ijfe-2024-0013

Suwandi, R., Ula, M.Z., & Pertiwi, R.M. 2020. Characteristics of chemical compounds of horseshocrabs *Tachypleus gigas* in different body proportions. *IOP Conf. Ser. Earth Environ. Sci.*, 404(1) 12029. DOI: 10.1088/1755-1315/404/1/012029

Taufik, M., Shahrul, I., Nordin, A. R. M., Ikhwanuddin, M., & Abol-Munafi, A. B. (2020). Fatty acid composition of hepatopancreas and gonads in both sexes of orange mud crab, *Scylla olivace* cultured at various water flow velocities. *Tropical Life Sciences Research*, 31(2), 79. DOI: 10.21315/tlsr2020.31.2.5

Teleanu, D.M., Niculescu, A.G., Lungu, I.I., Radu, C.I., Vladâcenco, O., Roza, E., Costăchescu, B. Grumezescu, A.M., & Teleanu, R.I. 2022. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. *Int. J. Mol. Sci.*, 23(11): 5938. DOI: 10.3390/ijms23115938

Thiruvengadarajan, V. S., Rajasekaran, A., Harshini, N., Kalpana, P., Monisha, K., Sri, R. S., Subakurinji, U. (2024). *Bioactive potential and nutriomic studies of crustaceans: a review.* 

Tjandrawinata, R.R., & Nurkolis, F. 2024. A comparative analysis on impact of extraction method on carotenoids composition, antioxidants, antidiabetes, and antiobesity properties in seagras *Enhalus acoroides*: In Silico and In Vitro Study. *Mar. Drugs*, 22(8): 365. DOI: 10.3390/md22080365

Triajie, H., Andayani, S., Yanuhar, U., & Ekawati, W. 2020. Time of mangrove crabs Scylla paramamosain final premolt stadia (D4) to reach ecdysis of the male and female growth under different salinity. Eurasian J. Biosci., 14(2): 7889–7897.

Tumilaar, S.G., Hardianto, A., Dohi, H., & Kurnia, D. 2024. A comprehensive review of free radicals oxidative stress, and antioxidants: overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. *J. Chem.*, 2024(1) 5594386. DOI: 10.1615/CritRevEukaryotGeneExpr.2018022258

Ullah, A., Mostafa, N.M., Halim, S.A., Elhawary, E.A., Ali, A., Bhatti, R., Shareef, U., Al Naeem, W., Khalid, A., & Kashtoh, H. 2024. Phytoconstituents with cardioprotective properties: A pharmacological overview on their efficacy against myocardial infarction. *Phyther. Res.*, 38(9): 4467-4501. DOI: https://doi.org/10.1002/ptr.8292

<u>Vásquez, P., Cian, R.E., & Drago, S.R. 2023. Marine Bioactive Peptides (Fishes, Algae, Cephalopods, Molluscs, and Crustaceans). Handb. Food Bioact. Ingredients Prop. Appl., 1–30. DO: https://doi.org/10.1007/978-3-030-81404-5\_16-1\_</u>

Vermeiren, P., Lennard, C., & Trave, C. 2021. Habitat, sexual and allometric influences of morphological traits of intertidal crabs. 44(5): 1344–1362. DOI: https://doi.org/10.1007/s12237-02000856-4

Wang, J., Tong, Y., Feng, L., Zhao, D., Zheng, C., & Tang, J. 2021. Satellite-observed decreases in water turbidity in the Pearl River Estuary: potential linkage with sea-level rise. *J. Geophys. Res. Ocean.*, 126(4): e2020JC016842. DOI: https://doi.org/10.1029/2020JC016842

Wu, Q., Jiang, Y., Chen, E., Mu, C., & Waiho, K. 2021. Chinese gallnut (*Galla chinensis*) against Vibrio parahaemolyticus: in vitro activity and the use of medicated bath method to treat infected mud crab *Scylla paramamosain*. 539: 736632. DOI: https://doi.org/10.1016/j.aquaculture.2021.736632

Yang, Y., Li, R., Liu, A., Xu, J., Li, L., Zhao, R., Qu, M., & Di, Y. 2023. How does the internal distribution of microplastics in *S. serrata* link with the antioxidant response in functional tissues? *Environ. Pollut.*, 324: 121423. DOI: https://doi.org/10.1016/j.envpol.2023.121423.

Yao, H., Li, X., Tang, L., Wang, H., Wang, C., Mu, C., & Shi, C. (2020). Metabolic mechanism of the

Formatted: Font: (Default) Arial, 11 pt, Complex Script Font:

Formatted: Font: (Default) Arial, 11 pt, Italic, Complex Script Font: Arial, Italic

Formatted: Font: (Default) Arial, 11 pt, Complex Script Font:

**Formatted:** Font: (Default) Arial, 11 pt, Complex Script Font: Arial

Formatted: Space After: 0 pt

Formatted: Font: (Default) Arial, Complex Script Font: Arial

Formatted: Font: (Default) Arial, Complex Script Font: Arial
Formatted: Font: (Default) Arial, 11 pt, Complex Script Font: Arial

Formatted: Space After: 0 pt

Formatted: Font: (Default) Arial, Complex Script Font: Arial

Formatted: Font: (Default) Arial, Complex Script Font: Arial

Formatted: Font: (Default) Arial, Complex Script Font: Arial

Formatted: Indent: Left  $\,$  0 ch, First line:  $\,$  0 ch, Line spacing: Multiple  $\,$  1.08 li

Formatted: English (Indonesia)

Formatted: Font: (Default) Arial, Complex Script Font: Arial

Formatted: Font: (Default) Arial, Complex Script Font: Arial

Formatted: Font: (Default) Arial, Complex Script Font: Arial
Formatted: Font: (Default) Arial, Complex Script Font: Arial
Formatted: Font: (Default) Arial, 11 pt, Complex Script Font: Arial

mud crab (Scylla paramamosain) adapting to salinity sudden drop based on GC-MS technology. Aquaculture Reports, 18, 100533. https://doi.org/10.1016/j.aqrep.2020.100533

Yao, J., Zhu, J., Zhao, M., Zhou, L., & Marchioni, E. 2023. Untargeted lipidomics method for the discrimination of five crab species by Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry combined with chemometrics. 28(9): 3653. https://doi.org/10.3390/molecules28093653

Yogeshwaran, A., Gayathiri, K., Muralisankar, T., Gayathri, V., Monica, J. I., Rajaram, R., Marimuthu, K., & Bhavan, P.S. 2020. Bioaccumulation of heavy metals, antioxidants, and metabolic enzymes in the crab *S. serrata* from different regions of Tuticorin, Southeast Coast of India. *Mar. Pollut. Bull.*, 158: 111443. DOI: 10.1016/j.marpolbul.2020.111443

Yuniarti, R., Nadia, S., Alamanda, A., Zubir, M., Syahputra, R.A., & Nizam, M. 2020. Characterization, phytochemical screenings and antioxidant activity test of kratom leaf ethanol extract (*Mitragyna speciosa Korth*) using DPPH method. *J. Phys. Conf. Ser.*, 1462(1): 12026. DOI: 10.1088/1742-6596/1462/1/012026

Yusni, E., & Haq, F.A. 2020. Inventory and prevalence of ectoparasites *Octolasmis* sp. in the mangrove crab (*Scylla tranquebarica*) in Lubuk Kertang, Langkat. *IOP Conf. Ser. Earth Environ. Sci.*, 454(1): 12121. DOI: 10.1088/1755-1315/454/1/012121

Yusof, W.R.W., Ahmad, N.M., Zailani, M.A., Shahabuddin, M.M., Sing, N.N., & Husaini, A.A.S.A. 2020. Nutritional composition, antioxidants and antimicrobial activities in muscle tissues of mud crab, *Scylla paramamosain. Res. J. Biotechnol. Vol.*, 15: 4.

Zang, L., Xu, H., Huang, C., Wang, C., Wang, R., Chen, Y., Wang, L., & Wang, H. 2022. A link between chemical structure and biological activity in triterpenoids. *Recent Pat. Anticancer. Drug Discov.*, 17(2): 145–161. DOI: https://doi.org/10.2174/1574892816666210512031635

Zeng, L., Wang, Y.H., Ai, C.X., Zhang, B., Zhang, H., Liu, Z.M., Yu, M.H., & Hu, B. 2024. Differential effects of oxytetracycline on detoxification and antioxidant defense in the hepatopancreas and intestine of Chinese mitten crab under cadmium stress. *Sci. Total Environ.*, 930: 172633. DOI: https://doi.org/10.1016/j.scitotenv.2024.172633

Adnan, A. S., Gamburud, L. C., Affendi, I. S. M., Pauzi, M. M., Mahsel, H. H., Muhammad, T., Manan, H., Naimullah, M., Ismail, C. Z. C., & Harman, M. F. (2024). Moulting performances evaluation of female orange mud crab, Scylla olivacea (Herbst, 1796) in captivity: effects of water salinity and limb autotomy. *Tropical Life Sciences Research*, 35(1), 197.

Ahmad, M. F., Ahmad, F. A., Khan, M. I., Alsayegh, A. A., Wahab, S., Alam, M. I., & Ahmed, F. (2021). Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. *International Journal of Biological Macromolecules*, 187, 769–779.

Akinwumi, K. A., Abam, E. O., Oloyede, S. T., Adeduro, M. N., Adeogun, Y. A., & Uwagboe, J. E. (2022). Acrostichium aureum Linn: traditional use, phytochemistry and biological activity. *Clinical Phytoscience*, 8(1), 18.

Alkadi, H. (2020). A review on free radicals and antioxidants. *Infectious Disorders-Drug Targets* (Formerly Current Drug Targets-Infectious Disorders), 20(1), 16–26.

Ambekar, A. A., Sivaperumal, P., Kamala, K., Kubal, P., & Prakash, C. (2023). Effect of temperature changes on antioxidant enzymes and oxidative stress in gastropod Nerita oryzarum collected along India's first Tarapur Atomic Power Plant site. *Environmental Research*, 216, 114334.

Baag, S., & Mandal, S. (2023). Do global environmental drivers' ocean acidification and warming

Formatted: Font: (Default) Arial, 11 pt, Italic, Complex Script Font: Arial, Italic

Formatted: Font: (Default) Arial, 11 pt, Complex Script Font:

Formatted: Font: (Default) Arial, 11 pt, Complex Script Font:

Formatted: Font: (Default) Arial, Complex Script Font: Arial

Formatted: Font: (Default) Arial, Complex Script Font: Arial

Formatted: Font: Not Bold, Complex Script Font: Not Bold

Formatted: Font: (Default) Arial, Complex Script Font: Arial

Formatted: Font: (Default) Arial, Complex Script Font: Arial

Formatted: Font: (Default) Arial, Complex Script Font: Arial

Formatted: Font: (Default) Calibri, Not Bold, Complex Script

ont: Calibri

Formatted: Normal, Indent: First line: 0 cm

Formatted: Justified

exacerbate the effects of oil pollution on the physiological energetics of Scylla serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. serrataS. servataS. serrataS. servataS. serrataS. serr

Bal, A., Panda, F., Pati, S. G., Das, K., Agrawal, P. K., & Paital, B. (2021). Modulation of physiological exidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 241, 108971.

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. M. (2022). Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. *Molecules*, 27(4), 1326.

Beslin, L. G., & Geni, G. (2021). Biochemical Profile and Antibacterial Examination of Freshwater Crab Scylla SerrataS. serrata (FORSKAL, 1775). International Journal of Clinical Inventions and Medical Sciences (IJCIMS), 3(2), 53–65.

Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., Calina D., & Sharifi Rad, J. (2023). Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. *Frontiers in Chemistry*, 11, 1158198.

Chen, X., He, X., Sun, J., & Wang, Z. (2022). Phytochemical composition, antioxidant activity, a glucosidase and acetylcholinesterase inhibitory activity of quinoa extract and its fractions. *Molecules* 27(8), 2420.

Chowdhury, M., Kiraga, S., Islam, M. N., Ali, M., Reza, M. N., Lee, W. H., & Chung, S. O. (2021) Effects of temperature, relative humidity, and carbon dioxide concentration on growth and glucosinolate content of kale grown in a plant factory. Foods, 10(7), 1524.

Costantini, M., Esposito, R., & Ruocco, N. (2022). Crustaceans as Good Marine Model Organism to Study Stress Responses by Omics Approaches. In Crustaceans (pp. 82–106). CRC Press.

De Castro, J. D. Y., Fabia, S. B. C., Merlin, A. B., & Tadina, K. A. Y. B. (2023). Pangasinan's Best Microplastics Properties Found in Pangasinan Mangrove crab (Scylla serrata). Serrata Production

Delta, M., Rozirwan, & Hendri, M. (2021). Aktivitas antioksidan ekstrak daun dan kulit batan mangrove Sonneratia alba di Tanjung Carat, Kabupaten Banyuasin, Provinsi Sumatera Selatar Maspari Journal: Marine Science Research, 13(2), 129–144. https://doi.org/10.56064/maspari.v13i2.14577

Di Meo, S., & Venditti, P. (2020). Evolution of the knowledge of free radicals and other oxidants Oxidative Medicine and Cellular Longevity, 2020(1), 9829176.

Dinesh, D., Murugan, K., Subramaniam, J., Paulpandi, M., Chandramohan, B., Pavithra, K., Anitha J., Vasanthakumaran, M., Fraceto, L. F., & Wang, L. (2022). Salvia loucantha essential of encapsulated in chitesan nanoparticles with texicity and feeding physiology of cotton bollwork Helicoverpa armigera. In *Biopesticides* (pp. 159–181). Elsevier.

Elshaarawy, R., Aboali, E., Alian, A., Ibrahim, H., El-Nabi, S. H., Mohammed-Geba, K., & Galak Khallaf, A. (2023). Preliminary assessment of bioactive ingredients and antioxidant activity of some Red Sea invertebrates' extracts. Egyptian Journal of Aquatic Biology & Fisheries, 27(4).

Fajriaty, I., Fidrianny, I., Kurniati, N. F., Fauzi, N. M., Mustafa, S. H., & Adnyana, I. K. (2024). In vitro and in silico studios of the potential cytotoxic, antioxidant, and HMG CoA reductase inhibitory effects of chitin from Indonesia mangrove crab (Scylla serrataS. serrata) shells. Saudi Journal of Biological Sciences, 31(5), 103964.

Fitria, Y., Rozirwan, R., Fitrani, M., Nugroho, R. Y., Fauziyah, F., & Putri, W. A. E. (2023). Gastropoda as bioindicators of heavy metal pollution in the Banyuasin estuary shrimp pond area, South Sumatra Indonesia. Acta Ecologica Sinica, 43(6), 1129–1137.

Frías-Espericueta, M. G., Bautista-Covarrubias, J. C., Osuna-Martínez, C. C., Delgado-Alvarez, C.

000 Rozirwan <del>et al</del>et <u>al.,</u> 2024

Bojórquez, C., Aguilar Juárez, M., Roos-Muñoz, S., Osuna López, I., & Páez-Osuna, F. (2022). Metals and exidative stress in aquatic decaped crustaceans: A review with special reference to shrimp and crabs. Aquatic Toxicology, 242, 106024.

Galal-Khallaf, A., Samir Aboali, E., El-Sayed Hassab El-Nabi, S., El-Tantawy, A. I., Schott, E. J., & Mohammed-Geba, K. (2024). As healthy as invasive: Charybdis natator shell extract reveals beneficial metabolites with promising antioxidant and anti-inflammatory potentials. *Frontiers in Marine Science*, 11, 1376768.

Gulcin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248.

Habib, M. R., Hamed, A. A., Ali, R. E. M., Zayed, K. M., Gad El-Karim, R. M., Sabour, R., Abu El-Einin, H. M., & Ghareeb, M. A. (2022). Thais savignyi tissue extract: bioactivity, chemical composition, and molecular docking. *Pharmaceutical Biology*, 60(1), 1899–1914.

Hajar Azira, Z., Aaqillah Amr, M. A., Rasdi, N. W., Ma, H., & Ikhwanuddin, M. (2023). Preliminary investigation on the effect of fiddlehead fern, Diplazium esculentum, extract to the growth performance of giant freshwater prawn, Macrobrachium rosenbergii, postlarvae. Aquaculture International, 31(1), 81–101.

Harun, N. H., Septama, A. W., Ahmad, W. A. N. W., & Suppian, R. (2020). Immunomodulatory effects and structure activity relationship of botanical pentacyclic triterpenes: A review. Chinese Herbal Medicines. 12(2), 118–124.

Hashim, N., Abdullah, S., Hassan, L. S., Ghazali, S. R., & Jalil, R. (2021). A study of neem leaves: Identification of method and solvent in extraction. *Materials Today: Proceedings*, 42, 217–221.

Hidir, A., Aaqillah, Amr, M. A., Azra, M. N., Shahreza, M. S., Abualreesh, M. H., Peng, T. H., Ma, H., Waihe, K., Fazhan, H., & Ikhwanuddin, M. (2021). Sexual dimorphism of mud crab, genus Seylla between sexes based on morphological and physiological characteristics. *Aquaculture Research*, 52(12), 5943–5961.

Indarjo, A., Salim, G., Zein, M., Septian, D., & Bija, S. (2020). The population and mortality characteristics of mangrove crab (Scylla serrata) in the mangrove ecosystem of Tarakan City, Indonesia. *Biodiversitas Journal of Biological Diversity*, 21(8).

Jabbar, A. A., Abdullah, F. O., Abdulrahman, K. K., Galali, Y., & Sardar, A. S. (2022). GC-MS Analysis of Bioactive Compounds in Methanolic Extracts of Papaver decaisnel and Determination of Its Antioxidants and Anticancer Activities. *Journal of Food Quality*, 2022(1), 1405157.

Jain, A., Sarsaiya, S., Gong, Q., Wu, Q., & Shi, J. (2024). Chemical diversity, traditional uses, and bioactivities of Rosa roxburghii Tratt: A comprehensive review. *Pharmacology & Therapeutics*, 108657.

Jerome, F. C., Hassan, A., & Chukwuka, A. V. (2020). Metalloestrogen uptake, antioxidant modulation and ovotestes development in Callinectes amnicola (blue crab): a first report of crustacea intersex in the Lagos lagoon (Nigeria). Science of the Total Environment, 704, 135235.

Karnila, R., & Ramadhani, N. R. (2021). Antioxidant Activity of Astaxanthin Flour Extract of Mud Crab (Scylla Serrata). serrata) with Different Acetone Concentrations. IOP Conference Series: Earth and Environmental Science, 695(1), 12047.

Lalitha, P., Parthiban, A., Sachithanandam, V., Purvaja, R., & Ramesh, R. (2021). Antibacterial and antioxidant potential of GC-MS analysis of crude ethyl acetate extract from the tropical mangrove plant Avicennia officinalis L. South African Journal of Botany, 142, 149–155.

Mabou, F. D., & Yossa, I. B. N. (2021). TERPENES: Structural classification and biological activities. IOSR J Pharm Biol Sci, 16, 25–40.

Martemucci, G., Costagliola, C., Mariano, M., D'andrea, L., Napolitano, P., & D'Alessandro, A. G.

000 Rozirwan e<del>t al</del>et al., 2024

(2022). Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2(2), 48-78.

Martinez-Morales, F., Alonso Castro, A. J., Zapata-Morales, J. R., Carranza-Álvarez, C., & Aragon Martinez, O. H. (2020). Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants. *Chemical Papers*, 74, 3325–3334.

Mediarman, G. N., Riyadi, P. H., Rianingsih, L., & Purnamayati, L. (2021). Potentials of CaO powder result of calcination from green shells (Perna viridis), scallops (Placuna placenta), and blood clame (Anadara granosa) as antibacterial agent. IOP Conference Series: Earth and Environmenta Science, 890(1), 12043.

Mounika, S., Jayaraman, R., Jayashree, D., Hanna Pravalika, K., Balaji, A., Banu, M. S., & Prathyusha, M. (2021). A comprehensive review of medicinal plants for cardioprotective potentia International Journal of Advances in Pharmacy and Biotechnology, 7(1), 24–29.

Muhtar, K. M. Y., & Lanuru, M. (2021). Water quality assessment for the development of silvofisher pattern mangrove crabs in Coastal Area, Polewali Mandar, West Sulawesi. *Intl J Sci Res Pub* 11(11), 391–395.

Musa, M., Jan, G., Jan, F. G., Hamayun, M., Irfan, M., Rauf, A., Alsahammari, A., Alharbi, M., Suleria H. A. R., & Ali, N. (2022). Pharmacological activities and gas chromatography mass spectrometry analysis for the identification of bioactive compounds from Justicia adhateda L. Frontiers in Pharmacology, 13, 922388.

Nagarajan, P., Louis, L. R. P., Patil, S. J., Adam, J. K., & Krishna, S. B. N. (2024). Therapeutic potential of biologically active peptides from marine organisms for biomedical applications. *Studies in Natural Products Chemistry*, 81, 467–500.

Nanda, P. K., Das, A. K., Dandapat, P., Dhar, P., Bandyopadhyay, S., Dib, A. L., Lorenzo, J. M., & Gagaoua, M. (2021). Nutritional aspects, flavour profile and health benefits of crab meat based nove feed products and valorisation of processing waste to wealth: A review. *Trends in Food Science & Technology*, 112, 252–267.

Neelima, S., Anju, M. V, Anoeja, V. V, Athira, P. P., Archana, K., Musthafa, S. M., & Philip, R. (2022) Characterisation of a novel crustin isoform from mud crab, Scylla serrataS. serrata (Forsskål, 1775 and its functional analysis in silice. *In Silico Pharmacology*, 11(1), 2.

Ouyang, Z., Tian, J., Yan, X., & Shen, H. (2021). Effects of different concentrations of dissolved oxygen on the growth, photosynthesis, yield and quality of greenhouse tomatoes and changes in so microorganisms. *Agricultural Water Management*, 245, 106579.

Palma, A., Ruiz-Montoya, M., Díaz, M. J., Giráldez, I., & Morales, E. (2023). Optimization of bioactive compounds by ultrasound extraction and gas chromatography-mass spectrometry in fast-growing leaves. *Microchemical Journal*, 193, 109231.

Pati, S. G., Paital, B., Panda, F., Jena, S., & Sahoo, D. K. (2023). Impacts of habitat quality on the physiology, ecology, and economical value of mud crab Scylla sp.: a comprehensive review. *Water* 15(11), 2029.

Pati, S. G., Panda, F., Jena, S., Sahoo, D. K., & Paital, B. (2022). Effects of soil trace metals, organicarbon load and physicochemical stressors on active oxygen species metabolism in Scylla serrata sempled along the Bay of Bengal in Odisha state, India. Frontiers in Environmental Science 10, 994773.

Pisoschi, A. M., Pop, A., Iordache, F., Stanca, L., Predoi, G., & Serban, A. I. (2021). Oxidative stress mitigation by antioxidants an overview on their chemistry and influences on health status. *Europear Journal of Medicinal Chemistry*, 209, 112891.

Putri, A., Bengen, D. G., Zamani, N. P., Salma, U., Kusuma, N. P., Diningsih, N. T., & Kleinertz, S. (2022). Mangrove Habitat Structure of Mud Crabs (Scylla serrataS. serrata and S. olivacea) in the Bee Jay Bakau Resert Probolinggo, Indonesia. *Ilmu Kelautan: Indonesian Journal of Marine Sciences*. 27(2).

Rafferty, C., Johnson, K., O'Mahony, J., Burgoyne, B., Rea, R., & Balss, K. M. (2020). Analysis of chemometric models applied to Raman spectroscopy for monitoring key metabolites of cell culture. Biotechnology Progress, 36(4), e2977.

Rahmawati, R., Bastian, F., Asfar, M., Laga, A., Tawali, A. B., & Fitrianti, A. N. (2023). Effect of decaffeination time on the chemical profile of green bean arabica coffee (Coffea arabica L.). AIP Conference Proceedings, 2596(1).

Ren, X., Wang, Q., Shao, H., Xu, Y., Liu, P., & Li, J. (2021). Effects of low temperature on shrimp and crab physiology, behavior, and growth: a review. Frontiers in Marine Science, 8, 746177.

Rozirwan, R., Almaniar, S., & Herpandi. (2021). Abundance and diversity of macrobenthos at Tanjung Api Api waters. South Sumatra, Indonesia.

Rozirwan, R., Az-Zahrah, S. A. F., Khotimah, N. N., Nugroho, R. Y., Putri, W. A. E., Fauziyah, F., Melki, M., Agustriani, F., & Siregar, Y. I. (2024). Ecological Risk Assessment of Heavy Metal Contamination in Water, Sediment, and Polychaeta (Neoleanira Tetragona) from Coastal Areas Affected by Aquaculture, Urban Rivers, and Ports in South Sumatra. *Journal of Ecological Engineering*, 25(1).

Rozirwan, R., Hananda, H., Nugroho, R. Y., Apri, R., Khotimah, N. N., Fauziyah, F., Putri, W. A. E., & Aryawati, R. (2023). Antioxidant Activity, Total Phenolic, Phytochemical Content, and HPLC Profile of Selected Mangrove Species from Tanjung Api-Api Port Area, South Sumatra, Indonesia. *Tropical Journal of Natural Product Research*, 7(7).

Rezirwan, R., Khotimah, N. N., Putri, W. A. E., Apri, R., & Nugroho, R. Y. (2024). INVESTIGATING THE ANTIOXIDANT ACTIVITY, TOTAL PHENOLICS AND PHYTOCHEMICAL PROFILE IN AVICENNIA ALBA AND EXCOECARIA AGALLOCHA ROOT EXTRACTS AS A DEFENCE MECHANISM AGAINST POLLUTANTS. Farmacia, 72(5).

Rozirwan, R., Melki, M., Apri, R., Fauziyah, F., Agussalim, A., Hartoni, H., & Iskandar, I. (2021). Assessment the macrobenthic diversity and community structure in the Musi Estuary, South Sumatra, Indonesia. *Acta Ecologica Sinica*, 41(4), 346–350.

Rozirwan, R., Nanda, N., Nugroho, R. Y., Diansyah, G., Muhtadi, M., Fauziyah, F., Putri, W. A. E., & Agussalim, A. (2023). Phytochemical composition, total phenolic content and antioxidant activity of Anadara granosa (Linnaeus, 1758) collected from the east coast of South Sumatra, Indonesia. Baghdad Science Journal, 20(4), 1258.

Rozirwan, R., Nugroho, R. Y., & Fauziyah, F. (2022). Biodiversitas Gastropoda dan Krustasea di Zona Intertidal Hutan Mangrove Estuari Sungai Musi, Sumatera Selatan. SIMBIOSA, 11(2), 61–71.

Rozirwan, R., Nugroho, R. Y., Hendri, M., Fauziyah, F., Putri, W. A. E., & Agussalim, A. (2022). Phytochemical profile and toxicity of extracts from the leaf of Avicennia marina (Forssk.) Vierh. collected in mangrove areas affected by port activities. South African Journal of Botany, 150, 903–919.

Rezirwan, R., Siswante, A., Khetimah, N. N., Nugrehe, R. Y., Putri, W. A. E., & Apri, R. (2024). Anti-Inflammatory Activity and Phytochemical Profile from the Leaves of the Mangrove Sonneratia caseolaris (L.) Engl. for Future Drug Discovery. Science and Technology Indonesia, 9(2), 502–516.

Rozirwan, Saputri, A. P., Nugroho, R. Y., Khotimah, N. N., Putri, W. A. E., Fauziyah, & Purwiyante, A. I. S. (2023). An assessment of Pb and Cu in waters, sediments, and mud-crabs (Scylla serrata<u>S. serrata</u>) from mangrove ecosystem near Tanjung Api-Api port area, South Sumatra, Indonesia.

Sadiq, I. Z. (2023). Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. *Current Molecular Medicine*, 23(1), 13–35.

Saputra, A., Nugroho, R. Y., Isnaini, R., & Rozirwan. (2021). A review: The potential of microalgae as a marine food alternative in Banyuasin Estuary, South Sumatra, Indonesia. *Egyptian Journal of Aquatic Biology and Fisheries*, 59, 1053–1065. https://doi.org/10.21608/EJABF.2021.170654

Shaffai, A. El, Mettwally, W. S. A., & Mohamed, S. I. A. (2023). A comparative study of the bioavailability of Red Sea seagrass, Enhalus acoroides (Lf) Royle (leaves, roots, and rhizomes) a anticancer and antioxidant with preliminary phytochemical characterization using HPLC, FT-IR, and UPLC-ESI-TOF-MS-spectroscopic a. Beni-Suef University Journal of Basic and Applied Sciences 12(1), 41.

Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383, 132531.

Shofinita, D., Lestari, D., Purwadi, R., Sumampouw, G. A., Gunawan, K. C., Ambarwati, S. A. Achmadi, A. B., & Tjahjadi, J. T. (2024). Effects of different decaffeination methods on caffeing contents, physicochemical, and sensory properties of coffee. *International Journal of Foot Engineering*, 20(8), 561–581.

Suwandi, R., Ula, M. Z., & Pertiwi, R. M. (2020). Characteristics of chemical compounds of horseshoe crabs Tachypleus gigas in different body proportions. *IOP Conference Series: Earth and Environmental Science*, 404(1), 12029.

Teleanu, D. M., Niculescu, A. G., Lungu, I. I., Radu, C. I., Vladâcenco, O., Roza, E., Costăchescu B., Grumezescu, A. M., & Teleanu, R. I. (2022). An overview of oxidative stress, neuroinflammation and neurodegenerative diseases. *International Journal of Molecular Sciences*, 23(11), 5938.

Tjandrawinata, R. R., & Nurkolis, F. (2024). A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in Seagrass Enhalus acoroides: In Silico and In Vitro Study. *Marine Drugs*, 22(8), 365.

Triajie, H., Andayani, S., Yanuhar, U., & Ekawati, W. (2020). Time of mangrove crabs Scylla paramamosain final premolt stadia (D4) to reach ecdysis of the male and female growth under different salinity. Eurasian Journal of Biosciences, 14(2), 7889–7897.

Tumilaar, S. G., Hardianto, A., Dohi, H., & Kurnia, D. (2024). A Comprehensive Review of Free Radicals, Oxidative Stress, and Antioxidants: Overview, Clinical Applications, Global Perspectives Future Directions, and Mechanisms of Antioxidant Activity of Flavonoid Compounds. *Journal Chemistry*, 2024(1), 5594386.

Ullah, A., Mostafa, N. M., Halim, S. A., Elhawary, E. A., Ali, A., Bhatti, R., Shareef, U., Al Naeem W., Khalid, A., & Kashtoh, H. (2024). Phytoconstituents with cardioprotective properties: A pharmacological overview on their efficacy against myocardial infarction. Phytotherapy Research 38(9), 4467–4501.

Vásquez, P., Cian, R. E., & Drago, S. R. (2023). Marine Bioactive Peptides (Fishes, Algae, Cephalopods, Molluscs, and Crustaceans). Handbook of Food Bioactive Ingredients: Properties and Applications. 1–30.

Vermeiren, P., Lennard, C., & Trave, C. (2021). Habitat, sexual and allometric influences of morphological traits of intertidal crabs. Estuaries and Coasts, 44(5), 1344–1362.

Waluyo, J., & Wahyuni, D. (2021). Antibacterial effects of Pheretima javanica extract and bioactive chemical analysis using Gas Chromatography Mass Spectrum. *Journal of Physics: Conference Series*. 1751(1), 12055.

Wang, J., Tong, Y., Feng, L., Zhao, D., Zheng, C., & Tang, J. (2021). Satellite-observed decreases

000 Rozirwan <del>et alet al.</del>, 2024

in water turbidity in the Pearl River Estuary: potential linkage with sea level rise. Journal of Geophysical Research: Oceans, 126(4), e2020JC016842.

Wu, Q., Jiang, Y., Chen, E., Mu, C., & Waiho, K. (2021). Chinese gallnut (Galla chinensis) against Vibrio parahaemolyticus: in vitro activity and the use of medicated bath method to treat infected mud crab Scylla paramamosain. *Aguaculture*, 539, 736632.

Yang, Y., Li, R., Liu, A., Xu, J., Li, L., Zhao, R., Qu, M., & Di, Y. (2023). How does the internal distribution of microplastics in Scylla serrataS. serrata link with the antioxidant response in functional tissues? Environmental Pollution, 324, 121423.

Yao, J., Zhu, J., Zhao, M., Zhou, L., & Marchioni, E. (2023). Untargeted Lipidomics Method for the Discrimination of Five Crab Species by Ultra High-Performance Liquid Chromatography High-Resolution Mass Spectrometry Combined with Chemometrics. *Molecules*, 28(9), 3653.

Yogeshwaran, A., Gayathiri, K., Muralisankar, T., Gayathri, V., Monica, J. I., Rajaram, R., Marimuthu, K., & Bhavan, P. S. (2020). Bioaccumulation of heavy metals, antioxidants, and metabolic enzymes in the crab Scylla serrata. serrata-from different regions of Tuticorin, Southeast Coast of India. Marine Pollution Bulletin, 158, 111443.

Yuniarti, R., Nadia, S., Alamanda, A., Zubir, M., Syahputra, R. A., & Nizam, M. (2020). Characterization, phytochemical screenings and antioxidant activity test of kratom leaf ethanol extract (Mitragyna speciosa Korth) using DPPH method. *Journal of Physics: Conference Series*, 1462(1), 12026.

Yusni, E., & Haq, F. A. (2020). Inventory and prevalence of ectoparasites Octolasmis sp. in the mangrove crab (Scylla tranquebarica) in Lubuk Kertang, Langkat. IOP Conference Series: Earth and Environmental Science, 454(1), 12121.

Yusof, W. R. W., Ahmad, N. M., Zailani, M. A., Shahabuddin, M. M., Sing, N. N., & Husaini, A. A. S. A. (2020). Nutritional composition, antioxidants and antimicrobial activities in muscle tissues of mud crab, Scylla paramamosain. Research Journal of Biotechnology Vol., 15, 4.

Zang, L., Xu, H., Huang, C., Wang, C., Wang, R., Chen, Y., Wang, L., & Wang, H. (2022). A link between chemical structure and biological activity in triterpenoids. *Recent Patents on Anti-Cancer Drug Discovery*, 17(2), 145–161.

Zeng, L., Wang, Y.-H., Ai, C.-X., Zhang, B., Zhang, H., Liu, Z.-M., Yu, M.-H., & Hu, B. (2024). Differential effects of oxytetracycline on detoxification and antioxidant defense in the hepatopancreas and intestine of Chinese mitten crab under cadmium stress. Science of The Total Environment, 930, 172633.

Formatted: Justified

000 Rozirwan <del>et al<u>e</u>t al.</del>, 2024



Rozirwan ROZIRWAN <rozirwan@unsri.ac.id>

## [IK.IJMS] [ID-70658] Revised Version Acknowledgement

1 pesan

Ambariyanto <ijms@live.undip.ac.id> Balas Ke: "Dr Rozirwan M.Sc. Rozirwan" <rozirwan@unsri.ac.id> Kepada: "Dr Rozirwan M.Sc. Rozirwan" <rozirwan@unsri.ac.id> 29 Agustus 2025 pukul 19.16

#### Dr Rozirwan M.Sc. Rozirwan:

Thank you for submitting the revision of manuscript, "SCREENING AND PROFILING OF ANTIOXIDANT ACTIVITY IN MUD CRAB (Scylla serrata) FROM BANYUASIN WATERS" to ILMU KELAUTAN: Indonesian Journal of Marine Sciences. With the online journal management system that we are using, you will be able to track its progress through the editorial process by logging in to the journal web site:

Manuscript URL: https://ejournal.undip.ac.id/index.php/ijms/author/submission/70658

Username: rozirwan

Editor: Indonesian Journal of Marine Science

If you have any questions, please contact me. Thank you for considering this journal as a venue for your work.

Ambariyanto

ILMU KELAUTAN: Indonesian Journal of Marine Sciences

INDONESIAN JOURNAL OF MARINE SCIENCE http://ejournal.undip.ac.id/index.php/ijms



Rozirwan ROZIRWAN <rozirwan@unsri.ac.id>

## [IK.IJMS] Revision

1 pesan

Indonesian Journal of Marine Science <ejournal@rumahjurnalundip.id> Balas Ke: Indonesian Journal of Marine Science <ijms.undip@gmail.com> Kepada: "Dr Rozirwan M.Sc. Rozirwan" <rozirwan@unsri.ac.id>

13 September 2025 pukul 21.35

Kepada: "Dr Rozirwan M.Sc. Rozirwan" <rozirwan@unsri.ac.id>
Cc: Ning Intan Lestari <ningintanlestari00@gmail.com>, Yoga Winarta <rolazyoga96@gmail.com>, Isnaini Isnaini <isnaini@mipa.unsri.ac.id>, Wike Ayu Eka Putri <wike\_ayu\_ep@unsri.ac.id>, Muhammad Hendri <muhammad.hendri@unsri.ac.id>, Tengku Zia Ulqodry <zia\_uul@unsri.ac.id>, Fauziyah Fauziyah <siti\_fauziyah@yahoo.com>, Melki Melki <melki@unsri.ac.id>, Redho Yoga Nugroho <redhoyoganugroho@mipa.unsri.ac.id>, Che Abd Rahim Mohamed <carmohd@ukm.edu.my>

Dr Rozirwan M.Sc.:

We have reached a decision regarding your submission to ILMU KELAUTAN: Indonesian Journal of Marine Sciences, "SCREENING AND PROFILING OF ANTIOXIDANT ACTIVITY IN MUD CRAB (Scylla serrata) FROM BANYUASIN WATERS".

https://mail.google.com/mail/u/2/?ik=a5375c729a&view=pt&search=all&permthid=thread-f:1843159831819731576&simpl=msg-f:1843159831819...

Our decision is to: Revision

Deadline before September 16, 2025

Indonesian Journal of Marine Science ijms.undip@gmail.com

INDONESIAN JOURNAL OF MARINE SCIENCE http://ejournal.undip.ac.id/index.php/ijms

70658-234500-2-ED Review Editor .docx

70658-8302K

## Screening and Profiling of Antioxidant Activity in Mud Crab (Scylla Serrata) from Banyuasin Waters

Rozirwan<sup>1\*</sup>, Ning Intan Lestari<sup>1</sup>, Yoga Winarta<sup>1</sup>, Isnaini<sup>1</sup>, Wike Ayu Eka Putri<sup>1</sup>, Muhammad Hendri<sup>1</sup>, Tengku Zia Ulqodry<sup>1</sup>, Fauziyah<sup>1</sup>, Melki<sup>1</sup>, Redho Yoga Nugroho<sup>1</sup>, Che Abd Rahim Mohamed<sup>2</sup>

<sup>1</sup>Department of Marine Science, Faculty of Mathematics and Natural Sciences, Sriwijaya University Indralaya 30862, South Sumatra, Indonesia

<sup>2</sup>Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, Malaysia

Email: rozirwan@unsri.ac.id

#### Abstract

Mangrove crab (Scylla serrata) as one of the crustacean species, has a variety of bioactive compounds that can be utilized in the field of pharmacology. Antioxidant compounds act as therapeutic agents against degenerative diseases. Banyuasin waters have mangrove vegetation with associated marine organisms that have the potential to be studied for bioactive compounds. This study aims to identify the phytochemical profile quantitatively and qualitatively, samples were collected from mud flats near mangrove ecosystems in Banyuasin waters, South Sumatra. Samples were tested for antioxidant activity using the DPPH test, and IC50 values, qualitative phytochemical identification, and phytochemical profiles were calculated using Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Based on the results of antioxidant testing, the IC50 value of S. serrata extract is 2.25 ppm, the sample is included in the category of very strong antioxidants. Phytochemical test results showed that the compound is thought to contain antioxidant activity from flavonoids and triterpenoids. GC-MS analysis detected major compound groups of alkaloids, purines, and vitamins. Minor compound groups detected amines, terpenoids, monosaccharides, amino acids, fatty acids, silanes, formamides, heterocycles, carboxylic acids, aminoglycosides, naphthalene derivatives, nitriles, amides, glycosides, and peptides. S. serrata extract shows very strong antioxidant activity, with major compounds such as alkaloids, purines, and vitamins. S. serrata extract detected compounds that have been reported as anti-inflammatory, anticancer, antimicrobial, and antiviral. These findings highlight the pharmaceutical potential of S. serrata as a source of bioactive compounds. The results of this study provide valuable information for the development of alternative medicines derived from marine organisms.

Keywords: Antioxidant, Bioactive compounds, DPPH, GC-MS, S. serrata

#### Introduction

Scylla serrata, or mud crab, as one of the crustacean species, has great potential in the field of beauty and health (De Castro et al., 2023), because of its diverse bioactive compounds (Yusof et al., 2020; Beslin and Geni, 2021; Neelima et al., 2022). The diversity of bioactive compounds triggers great potential in the search for alternative medicinal ingredients from marine organisms, including antioxidant compounds (Yogeshwaran et al., 2020; Karnila and Ramadhani, 2021; Fajriaty et al., 2024). Antioxidant compounds in mud crabs have a role as therapeutic agents (Wu et al., 2021) in fighting degenerative diseases such as cancer (Nagarajan et al., 2024), cardiovascular diseases (Nanda et al., 2021), and neurodegenerative disorders (Galal-Khallaf et al., 2024), caused by oxidative stress due to free radicals.

Antioxidants are the reaction of a compound in neutralizing free radicals (Delta et al., 2021; Rozirwan et al., 2023a; 2023b). This process involves a highly efficient electron donation mechanism. Antioxidants work by donating electrons to free radicals (Fajriaty et al., 2024; Frías-Espericueta et al., 2022; Pati et al., 2022; Yang et al., 2023). Free radicals, which have one or more unpaired electrons, are highly reactive and can cause oxidative damage to DNA, proteins, and cellular lipids (Alkadi, 2020; Di Meo and Venditti, 2020). Free radicals are often generated as byproducts of various metabolic processes in the body or due to environmental exposures such as pollution and ultraviolet radiation (Martemucci et al., 2022; Sadiq, 2023). The damage caused by free radicals can contribute to the development of various degenerative diseases, including cancer, heart disease, and neurodegenerative disorders (Teleanu et al., 2022; Chaudhary et al., 2023). In inhibiting free radicals, antioxidant compounds such as carotenoids and polyphenols will interact with free radicals to enhance the activity of detoxification enzymes, resulting in accelerated elimination of free radicals and strengthened antibodies (Pisoschi et al., 2021; Tumilaar et al., 2024).

The analysis of antioxidant compounds in S. serrata requires an accurate technique to ensure that identification and quantification are targeted (Baag and Mandal, 2023; Yao et al., 2023). Previous studies have mainly reported the antioxidant potential of S. serrata using spectrophotometric or colorimetric assays such as DPPH, ABTS, and FRAP, which provide only general antioxidant capacity without revealing the identity of specific compounds (Yogeshwaran et al., 2020; Karnila and Ramadhani, 2021; Neelima et al., 2022). In contrast, Gas Chromatography-Mass Spectrometry (GC-MS) offers higher resolution in profiling bioactive compounds by separating and identifying molecules based on their mass and chemical characteristics (Jabbar et al., 2022; Musa et al., 2022; Palma et al., 2023; Rozirwan et al., 2024). This advanced method not only allows the detection of a broader spectrum of antioxidant molecules but also quantifies their abundance, thereby providing a more comprehensive understanding of their therapeutic potential.

Although antioxidant compounds such as flavonoids, carotenoids, and polyphenols have been reported from different body parts of S. serrata (Yogeshwaran et al., 2020; Karnila and Ramadhani, 2021; Neelima et al., 2022; Yang et al., 2023; Fajriaty

et al., 2024), most of these studies remain descriptive and do not provide detailed profiles of the specific types and relative quantities of individual compounds. To date, there is still no comprehensive based profiling that systematically characterizes the antioxidant repertoire of S. serrata meat. This represents a critical knowledge gap, since understanding the diversity and concentration of specific compounds is essential to support its therapeutic application. The present study aims to provide a detailed GC-MS profiling of antioxidant compounds in S. serrata. This work contributes novel insights into its biochemical composition and strengthens its potential utilization as a sustainable source of natural antioxidants for pharmaceutical and nutraceutical development.

#### **Materials and Methods**

Mangrove crab samples were collected in January 2023 from Banyuasin Waters, South Sumatra, Indonesia (Figure 1). At this location, numerous crustacean and gastropod populations were found inhabiting the intertidal zone ((Rozirwan et al., 2021; Rozirwan et al., 2021; Rozirwan et al., 2022). The crab fishing area had a mud substrate with a depth of 1-2 m and was located within a mangrove vegetation zone directly connected to port and pond activities (Fitria et al., 2023). Anthropogenic pollutants that accumulate in these waters are known to trigger an increase in the defense mechanisms of organisms, such as the production of antioxidant compounds derived from secondary metabolites (Rozirwan et al., 2023).



 $\textbf{Figure 1.} \ \mathsf{Map} \ \mathsf{of} \ \mathsf{Sampling} \ \mathsf{Location} \ \mathsf{in} \ \mathsf{Banyuasin} \ \mathsf{Waters} \ \mathsf{Area}$ 

#### Sample identification and collection

Crustacean samples were taken using folding trawl gear. The samples were collected and stored in a cool box. The crab identification process was conducted based on the examination of morphological characteristics, such as body shape, color pattern, claw shape, and leg shape (Hidir et al., 2021; Vermeiren et al., 2021). Morphometric measurements were performed on the crab samples, and the identification process was completed in the laboratory. Taxon determination was carried out using data from the World Register of Marine Species (WoRMS) accessed in January 2023 (WoRMS, 2023).

#### Environmental characteristics of sampling area

Environmental quality calculations were conducted to assess the condition of the sampling environment. Environmental parameter data were measured, including salinity, temperature, pH, and dissolved oxygen (D0) (Fitria et al., 2023; Rozirwan et al., 2024). Each parameter was measured in three repetitions to ensure consistency, and the results were then averaged. Environmental parameter measurements are typically used to evaluate habitat conditions, as they provide insights into the physical and chemical characteristics of the ecosystem. Repetition in measurements is a standard approach to improve data reliability.

#### Sample preparation

The preparation method described by Ambekar et al. (2023), involves cleaning the crab to remove contaminants. In this study, the carapace and crab meat were separated and rinsed with distilled water to eliminate any remaining impurities. The wet weight of the crab meat was measured, and the samples were then dried in an oven at  $40\,^{\circ}\text{C}$  for 3  $\times$  24 h. After drying, the samples were ground into powder using a blender. The dry weight of the crab meat was recorded for data analysis.

#### Sample maceration and extraction

The wet maceration method was used in this study. A total of 250 g of S. serrata meat powder was

weighed and immersed in 1000 mL of 96% ethanol solvent at a ratio of 1:4 (b/v). The soaking process was conducted for 3 × 24 h, with stirring performed periodically to ensure optimal extraction. The maceration results were filtered using filter paper (No. 42, 125 mm). The extraction process was then carried out using a rotary evaporator at 40°C with a rotating speed of 3000 rpm (Hashim et al., 2021). The resulting extract was stored as a stock solution. A total of 0.05 g of S. serrata extract was used as an additive for the stock solution (Habib et al., 2022). Wet maceration is a commonly employed extraction method due to its ability to preserve heat-sensitive compounds. Stirring during the maceration process enhances solute dissolution, while rotary evaporation ensures efficient solvent removal under controlled temperature conditions.

#### Determination of antioxidant activity and IC50 value

Antioxidant testing was conducted using the DPPH method (Vásquez et al., 2023). The stock solution of S. serrata extract was used as the test solution, while vitamin C served as a reference. The sample was dissolved in 96% ethanol. A total of 1 mL of sample solution was prepared for each concentration: 100, 150, 200, 250, and 300 mg.L- $^1$ . Each concentration was mixed with 40 µg.mL- $^1$  DPPH solution and incubated in the dark for 30 min. Absorbance was measured at 517 nm using UV-Vis spectrophotometry. The strength of antioxidant activity is classified according to IC50 values, as shown in Table 1. The IC50 value is calculated using the following formula.

$$inhibition = \frac{blank\ abs - sample\ abs.}{blank\ abs} \times 100\ \%$$

The IC $_{50}$  results were entered in the linear regression equation y= ax + b. The sample concentration is the abscissa (X-axis), and the percentage of antioxidant inhibition is the ordinate (Y-axis) (Yuniarti et al., 2020). The concentration corresponding to 50% inhibition was interpolated from the regression equation. All determinations were conducted in triplicate, and the mean IC $_{50}$  values were statistically compared using one-way ANOVA, followed by Duncan's multiple range test (P< 0.05).

Table 1. Characteristic concentration value of IC50

| Concentration Value (µg.mL <sup>-1</sup> ) | Characteristic |
|--------------------------------------------|----------------|
| <50                                        | Very Strong    |
| 50-100                                     | Strong         |
| 100-150                                    | Moderate       |
| 150-200                                    | Low            |

Commented [A1]: Source? Reference?

#### Phytochemical screening

Phytochemical tests of S. serrata meat extracts were conducted using qualitative methods to identify the presence of bioactive compounds. The analysis included steroid and triterpenoid tests, which were performed using the Liebermann-Burchard method, alkaloid tests using Mayer and Dragendorff reagents, flavonoid tests with the Shinoda staining method, tannin tests using the FeCl<sub>3</sub> reaction, and saponin tests using the foam test method. Each test was carried out following the procedures described in standard literature (Suwandi et al., 2020; Dinesh et al., 2022).

## Gas Chromatography-Mass Spectrometry (GC-MS) analysis

The identification of bioactive compound components in S. serrata meat extract was performed using the GC-MS analysis method, following Rozirwan et al. (2022) with modifications. A total of 1 µL of extract was injected into an RTX-5MS capillary column (30 m × 0.25 mm i.d., 0.25 µm film thickness) using helium as the carrier gas at a constant flow rate of 1.0 mL.min-1 and a split ratio of 1:50. The oven temperature was initially set at 50°C for 5 min, then increased at a rate of 5°C/min to 280°C, and held for 5 min. The injector and ion source temperatures were 280°C and 230°C, respectively, with an electron ionization (EI) energy of 70 eV. The mass spectrometer was operated in scan mode with a mass range of 40-550 m/z. The Wiley 7 Library database was used as a reference for spectral comparison (Rafferty et al., 2020).

#### **Result and Discussion**

#### Sample identification and collection

Taxon determination was conducted using data from the World Register of Marine Species (WoRMS) accessed in January 2023 (WoRMS, 2023). Based on their morphological characteristics, the crustacean samples were identified as S. serrata.

Mangrove crabs of this species were caught using folding traps. The fishing process was carried out during low tide to facilitate crab capture. In this

study, 2-5 crabs were used as stock samples. The crabs obtained were weighed, with weights ranging from 200 to 320 g, widths of approximately 21.5 cm, and lengths of around 13.5 cm. The crabs were then stored in a cool box filled with ice cubes for preservation. The species identification of mangrove crabs is based on morphological characteristics, which include features such as the eyes, propodus, carpus, merus, carapace, claws, walking legs, and swimming legs (Figure 2). Taxonomic data from databases such as WoRMS is widely used to confirm species classification accurately.

#### Environmental Characteristics of Sampling Area

results of environmental measurements in the S. serrata sampling areas in Banyuasin waters revealed diverse conditions. Measurements water physicochemical parameters, including dissolved oxygen, pH, temperature, and salinity, were taken to assess the habitat suitability for S. serrata (Rozirwan et al., 2021). The dissolved oxygen concentration was found to be 4.2 mg/L, which is sufficient to support the respiration process of aquatic organisms (Ouyang et al., 2021). The pH value of the water at the sampling location was 7, indicating neutral pH, which represents optimal ecological conditions (Chowdhury et al., 2021). This is consistent with previous studies (Yusni and Haq, 2020; Muhtar and Lanuru, 2021; Putri et al., 2022), which state that waters with a pH between 6.5 and 7.5 are ideal for the survival of mangrove crabs. The water temperature was measured at 28°C, indicating favorable conditions for mangrove crab growth (Indarjo et al., 2020; Ren et al., 2021) Water salinity was recorded at 18 psu, reflecting typical conditions in estuarine areas or areas directly influenced by tidal movements (Wang et al., 2021). S. serrata grows best in salinities between 15 psu and 25 psu but grows more slowly at salinities greater than 25 to 30 psu (Triajie et al., 2020; Pati et al., 2023; Adnan et al., 2024).

Environmental conditions at the sampling site, particularly salinity (18 psu) and temperature (28°C), could also influence the diversity and concentration of secondary metabolites in S. serrata. Estuarine environments are dynamic, and organisms inhabiting them may prioritize the synthesis of specific bioactive compounds for stress adaptation.

Table 2. Observation of Environmental Parameters of the Research Site

|                               | Station         |
|-------------------------------|-----------------|
| Environment Parameter Quality | Sungsang Waters |
| Dissolved oxygen (mg.L-1)     | 4.2             |
| pH                            | 7               |
| Temperature (°C)              | 28              |
| Salinity (psu)                | 18              |

Previous studies reported that salinity stress can regulate secondary metabolite production, including alkaloids and flavonoids, in marine organisms (Pati et al., 2023). Furthermore, the choice of ethanol as the extraction solvent, although safer and less toxic than methanol, may have influenced the recovery efficiency of certain compounds, possibly underestimating the abundance of more polar metabolites.

#### Determination of antioxidant activity by DPPH assay

Antioxidant analysis using the DPPH (2,2diphenyl-1-picrylhydrazyl) method on Rozirwan et al. (2023) S. serrata meat extract showed promising results. The DPPH solution changed from purple to yellow, indicating the presence of antioxidants in the extract. The test results revealed that the S. serrata extract had an IC50 value of 2.25 ppm, while Vitamin C, used as a comparison solution, had an IC50 value of 2.16 ppm (Table 3). Both solutions demonstrated low IC50 values, categorizing them as very strong antioxidant compounds. The IC50 value, which is the concentration required to inhibit 50% of DPPH radical activity, is a critical parameter for assessing the antioxidant potential of a compound (Martinez-Morales et al., 2020). The results indicate that S. serrata extract possesses an IC50 value comparable to that of Vitamin C. The percentage inhibition of DPPH free radicals by S. serrata meat extract increased as the extract concentration increased.

This suggests that the extract has the ability to donate electrons or hydrogen to the DPPH radical, neutralizing it and converting it into a more stable form (Gulcin and Alwasel, 2023).

The discovery of compounds such as flavonoids and triterpenoids, which were identified in the phytochemical analysis of S. serrata extracts, suggests that they may possess high antioxidant activity (Akinwumi et al., 2022; Hajar-Azira et al., 2023). Flavonoids are well known for their ability to capture free radicals and interrupt the chain of oxidative reactions. Triterpenoids are also recognized for their significant antioxidant activity through a similar mechanism. The combination of these compounds in S. serrata extract creates a synergistic effect, enhancing the overall capacity of the extract to neutralize free radicals.

S. serrata is known for its rich antioxidant system and strong enzymatic defense system, which help it survive in the dynamic and often challenging mangrove environment (Pati et al., 2023). Mud craba also possess defense enzymes such as superoxide dismutase (SOD), catalase, and glutathione peroxidase, which work synergistically to detoxify reactive oxygen species (ROS) and maintain redox balance in the body (Jerome et al., 2020; Bal et al., 2021; Costantini et al., 2022; Zeng et al., 2024). These enzymes play a crucial role in protecting the crab from oxidative stress generated by fluctuating environmental conditions, pollution, and pathogens.

Table 3. Calculation results of antioxidant activity of S. serrata in Sungsang waters

| Sample        |        | Linear Regression |                |                                 | •           |
|---------------|--------|-------------------|----------------|---------------------------------|-------------|
|               | а      | b                 | R <sup>2</sup> | — IC <sub>50</sub> Value Catego | Category    |
| S. serrata    | 6.9429 | 52.808            | 0.9327         | 2.25 mg.L <sup>-1</sup>         | Very Strong |
| Ascorbic Acid | 6.7135 | 55.866            | 0.9435         | 2.16 mg.L <sup>-1</sup>         | Very Strong |

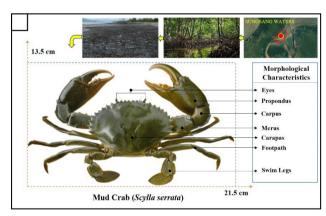



Figure 2. Crustacean species, S. Serrata

This combination of antioxidant compounds and defence enzymes not only ensures the survival of mud crabs in their habitat but also positions them as a potential source for the development of natural health products that can harness their protective mechanisms. Antioxidants and defence enzymes play a vital role in organisms' survival, especially in harsh environments. The synergy between these compounds and enzymes contributes significantly to mitigating oxidative stress and preserving cellular function, which can be explored for potential therapeutic applications.

#### Phytochemical screening

Phytochemical tests were carried out to identify the compounds present in gastropod and crustacean extracts using ethanol as the solvent (Fitria et al., 2023; Rozirwan et al., 2024) The phytochemical test aimed to determine the compounds in the test extract (Chen et al., 2022), allowing for the identification of compounds that influence the strong or weak antioxidant activity of the extract (Baliyan et al., 2022). The results of the phytochemical test, after UV-Vis spectrophotometric analysis of the extract, are presented in Table 4. The test results showed that only certain compounds were extracted by the ethanol solvent (Yuniarti et al., 2020).

Qualitative phytochemical analysis of S. serrata extract showed significant results in identifying the content of bioactive compounds. Based on the test results, S. serrata extract tested positive for flavonoid and triterpenoid compounds. A similar finding was reported by Elshaarawy et al. (2023) for Scylla olivacea samples. These two compounds offer various health benefits and therapeutic potential, particularly due to their strong antioxidant properties. Flavonoids are a group of polyphenolic compounds that are widely recognized for their potent antioxidant activity (Shen et al., 2022). These compounds can neutralize free radicals and prevent oxidative damage to cells and tissues. Additionally, flavonoids possess anti-inflammatory, anticancer, and cardioprotective properties (Mounika et al., 2021; Jain et al., 2024; Ullah et al., 2024). The identification of flavonoid compounds in S. serrata indicates that mud crabs are not only valuable as food but also hold potential as an alternative source of medicine from marine organisms.

Triterpenoids are a group of terpenoid compounds that have potential biological activities (Mabou and Yossa, 2021; Zang et al., 2022). These compounds are known to possess anti-inflammatory, antitumor, antimicrobial, and immunomodulatory properties (Harun et al., 2020; Ahmad et al., 2021). As antioxidant agents, triterpenoids have been used in pharmacology to treat inflammatory diseases and cancer. Similar to flavonoids, these compounds can neutralize free radicals caused by oxidative stress on body tissues. The discovery of triterpenoid compounds in S. serrata shows promising results, given their antioxidant potential that can be applied to address various diseases. Thus, the opportunity to explore alternative medicinal raw materials from S. serrata extract is increasingly attractive for further research. Overall, the phytochemical results focusing on flavonoid and triterpenoid compounds confirm the importance of S. serrata as a potential source of compounds. Further research encouraged at the stage of isolation and purification of these compounds, so that alternative medicinal materials derived from this marine organism can contribute to the development of therapeutic agents from marine organisms.

#### Phytochemical profile screening

The antioxidant compound profile in S. serrata was determined using GC-MS (Gas Chromatography-Mass Spectrometry) analysis on the ethanol extract of mud crab. Figure 3 shows the chromatogram with 37 peaks identified in the extract. Each peak on the chromatogram represents a distinct chemical compound found in the extract, which was analyzed using GC-MS.

GC-MS analysis is a powerful technique for identifying and quantifying individual compounds in complex mixtures, providing insights into the chemical composition of the extract. This method is widely used for its ability to separate and identify volatile compounds, making it an essential tool for profiling bioactive compounds, such as antioxidants, in natural products.

 Table 4. Phytochemical screening results of S. Serrata

| Parameters    | Analysis Result | Analysis Type |
|---------------|-----------------|---------------|
| Alkaloids     | -               | Qualitative   |
| Flavonoids    | +               | Qualitative   |
| Triterpenoids | +               | Qualitative   |
| Saponin       | -               | Qualitative   |
| Tannins       | -               | Qualitative   |
| Steroid       | -               | Qualitative   |

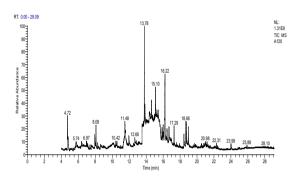



Figure 3. GC-MS chromatogram of ethanol extract S. Serrata

Terpenoid, alkaloid, steroid, and tannin groups were among the pure compounds successfully detected using GC-MS. Based on the GC-MS analysis of the ethanol extract compound components presented in Table 5, the main components identified in the extract were Calycotomine, N-methyl-, with a value of 8.31% of the total area, and uric acid, with a value of 8.71% of the total area.

At a retention time of 4.72 min, the compound 2-Cyclohexylpiperidine was detected with an area of 3.45%, a probability of 6.07, and a chemical formula of C11H21N, which belongs to the alkaloid compound group. At a retention time of 5.74 min, the compound 2-Pyridinamine, 3,6-dimethyl was detected with an area of 1.69%, a probability of 7.02, and a chemical formula of C7H10N2, which belongs to the aminopyridine compound group. Furthermore, at a retention time of 6.97 min, the compound Pentanoic acid, dodec-9-ynyl ester was detected with an area of 1.00%, a probability of 8.47, and a chemical formula of C17H30O2, which belongs to the protein compound group.

At a retention time of 8.08 min, the compound L-Homoserine lactone, N, N-dimethyl was detected with an area of 1.97%, a probability of 82.23, and a chemical formula of C6H11NO2, which belongs to the amino acid compound group. At a retention time of 10.42 min, the compound Thieno[2,3-c]furan-3carbonitrile, 2-amino-4,6-dihydro-4,4,6,6-tetramethyl was detected with an area of 0.74%, a probability of 43.35, and a chemical formula of C11H14N2OS, which belongs to the EPA compound group. At a retention time of 11.48 min, the compound 1H-2-Indenol, 2,3,4,5,6,7- hexahydro -1-(2-hydroxy-2methylpropyl) was detected with an area of 4.83%, a probability of 12.26, and a chemical formula of C13H22O2, which belongs to the lactone compound group.

At a retention time of 12.66 min, the compound dl-Lysine was detected with an area of 0.86%, a probability of 23.13, and a chemical formula

of C6H14N2O2, which belongs to the amino acid compound group. At a retention time of 13.78 min, the compound Calycotomine, N-methyl- was detected with an area of 8.31%, a probability of 43.35, and a chemical formula of C13H19NO3, which belongs to the alkaloid compound group. At a retention time of 15.10 min, the compound Dasycarpidan-8(16H)-ethanol, 3,18-dihydro-1-(hydroxymethyl)-, (2.xi,4.xi,)-was detected with an area of 4.14%, a probability of 12.00, and a chemical formula of C20H28N2O2, which belongs to the group of molport compounds.

At a retention time of 16.22 min, the uric acid compound was detected with an area of 8.71%, a probability of 55.93, and a chemical formula of C5H4N4O3, which belongs to the allantoin compound group. At a retention time of 17.29 min, the compound Actinomycin C2 was detected with an area of 1.49%, a probability of 30.73, and a chemical formula of C63H88N12O16, which belongs to a group of peptide compounds that are derivatives of peptide compounds.

Animals produce a diverse mixture of secondary metabolites such as phenols, alkaloids, flavonoids, tannins, and saponins. Several animal studies have shown the potential use of these metabolites as antibacterial agents due to the presence of abundant biomolecules. Synthetic drugs often have high secondary failure rates and severe side effects, while animal products contain a variety of free radical scavenging molecules with substantial antioxidant properties.

As a more taxonomically relevant comparison, Yao et al. (2020) conducted a GC-MS-based metabolomic study on Scylla paramamosain experiencing acute salinity reduction (from 23 psu to 3 psu). This study identified 519 metabolites (mainly lipids), with 13 significantly enriched metabolic pathways (P< 0.05), related to signaling, lipid metabolism, and transport. Additionally, in that study, combining LC-MS and GC-MS data revealed 28 significant metabolic pathways, dominated by amino

Table 5. Proposed peak order, retention time, probability, area, compound name, and molecular formula

| Peak#      | R.<br>Time | Probability | Area% | Name                                                                                                                                | Molecular<br>formula |
|------------|------------|-------------|-------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1          | 4.72       | 6.07        | 3.45  | 2-Cyclohexylpiperidine                                                                                                              | C11H21N              |
| 2          | 4.81       | 18.58       | 1.37  | Edulan II                                                                                                                           | C13H200              |
| 3          | 5.74       | 7.02        | 1.69  | 2-Pyridinamine, 3,6-dimethyl                                                                                                        | C7H10N2              |
| 4          | 6.39       | 8.12        | 0.83  | Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate                                                                                          | C16H28O3             |
| 5          | 6.61       | 11.07       | 0.66  | d-Mannose                                                                                                                           | C6H12O6              |
| 6          | 6.81       | 50.91       | 0.89  | Deoxyspergualin                                                                                                                     | C17H37N7O3           |
| 7          | 6.97       | 8.47        | 1.00  | Pentanoic acid, dodec-9-ynyl ester                                                                                                  | C17H3002             |
| 8          | 7.93       | 51.03       | 1.42  | trans-(2 Chlorovinyl)dimethylethoxysil ane                                                                                          | C6H13ClOSi           |
| 9          | 8.08       | 82.23       | 1.97  | L-Homoserine lactone, N.N-dimethyl-                                                                                                 | C6H11NO2             |
| 9<br>10    | 8.28       | 32.09       | 0.64  | 2-Propyl-tetrahydropyran-3-ol                                                                                                       | C8H16O2              |
|            | 8.62       | 32.45       | 0.04  |                                                                                                                                     |                      |
| 11         |            |             |       | Imidazole                                                                                                                           | C3H4N2               |
| 12         | 10.00      | 11.83       | 0.76  | Tertbutyloxyformamide, N-methyl-N-[4-(1-pyrrolidinyl)-2-buty nyl]-                                                                  | C14H24N2O2           |
| 13         | 10.42      | 15.27       | 0.74  | Thieno[2,3-c]furan-3-carbonitrile, 2-amino-4,6-dihydro-4,4,6,6-tetrameth yl                                                         | C11H14N2OS           |
| 14         | 11.48      | 12.26       | 4.83  | 1H-2-Indenol, 2,3,4,5,6,7-hexahydro-1-(2-hydroxy-2-methylpropyl)                                                                    | C13H22O2             |
| 15         | 11.55      | 48.75       | 2.53  | dl-Citrulline                                                                                                                       | C6H13N3O3            |
| 16         | 11.96      | 7.38        | 1.45  | 2-Pyridineacetic acid, hexahydro-                                                                                                   | C7H13NO2             |
| 17         | 12.66      | 23.13       | 0.86  | dl-Lysine                                                                                                                           | C6H14N2O2            |
| 18         | 13.51      | 60.28       | 1.62  | D-Streptamine, 0-6-amino-6-deoxy-à-D-glucopyranosy I-(1-4)-0-                                                                       | C6H13N02             |
|            |            |             |       | (3-deoxy-4-C-methyl-3-(meth ylamino)-á-L-arabinopyranosyl-(1-6))- 2-deoxy                                                           |                      |
| 19         | 13.78      | 43.35       | 8.31  | Calycotomine, N-methyl-                                                                                                             | C13H19N03            |
| 20         | 13.99      | 17.84       | 2.38  | 4-[4-Diethylamino-1-methylbutylamino]-1,2-dimethoxy-6-<br>bromonaphthalene                                                          | C21H31BrN2O2         |
| 21         | 14.35      | 32.83       | 1.22  | Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)-                                                      | C20H28N2O2           |
| 22         | 14.62      | 12.2        | 2.67  | 4-[4-Diethylamino-1-methylbutylamino]-1,2-dimethoxy-6-bromonaphthalene                                                              | C21H31BrN2O2         |
| 23         | 15.10      | 12.00       | 4.14  | Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)-                                                      | C20H28N2O2           |
| 24         | 15.21      | 32.49       | 0.87  | Cystine                                                                                                                             | C6H12N2O4S2          |
| 25         | 15.65      | 33.28       | 1.26  | 3-[N-[2-Diethylaminoethyl]-1-cyclopes tenylamino]propionitrile                                                                      | C14H25N3             |
| 26<br>26   | 15.86      | 16.52       | 0.92  | á-Hydroxyquebrachamine                                                                                                              | CH3CH(OH)COOH        |
| 27         | 15.99      | 14.23       | 1.02  | 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropyl ester, (Z,Z,Z)-                                                                  | C21H36O4             |
| 28         | 16.22      | 55.93       | 8.71  | Uric acid                                                                                                                           | C5H4N403             |
| 20<br>29   | 16.45      | 8.30        | 1.33  | Aminoacetamide, N-methyl-N-[4-(1-pyrrolidinyl)-2-buty nyl]-                                                                         | C5H4N4O3             |
| 29<br>30   |            |             |       |                                                                                                                                     |                      |
| <b>5</b> U | 16.69      | 32.32       | 2.06  | Glucopyranuronamide, 1-(4-amino-2-oxo-1(2H)-pyrimidinyl)-<br>1,4-dideoxy-4-(D-2-(2-(methylamino)<br>acetamido)hydracrylamido)-, á-D | C10H14N2O            |
| 31         | 16.90      | 29.78       | 0.80  | 1,2,4-Trioxolane-2-octanoic acid, 5-octyl-, methyl ester                                                                            | C6H11NO6             |
| 32         | 17.29      | 30.73       | 1.49  | Actinomycin C2                                                                                                                      | C19H36O5             |
| 33         | 18.45      | 37.85       | 2.00  | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-                                                                     | C63H88N12016         |
| 34         | 18.66      | 90.13       | 2.23  | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-                                                                     | C63H88N12016         |
| 35         | 18.76      | 60.11       | 2.62  | 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6 H-dipyrrolo[1,2-a:1',2'-dloyrazine                                                            | C11H18N2O2           |
| 36         | 18.97      | 36          | 2.13  | I-(+)-Ascorbic acid                                                                                                                 | C14H22               |
| 37         | 20.98      | 13.19       | 1.29  | cis-13-Octadecenoic acid                                                                                                            | C6H8O6               |
| 38         | 21.17      | 13.49       | 0.94  | Ricinoleic acid                                                                                                                     | C18H34O2             |
| 30<br>39   | 23.99      | 31.48       | 0.94  |                                                                                                                                     | C18H34O3             |
| <b>3</b> 9 | 23.99      | 31.40       | 0.09  | Ergotaman-3',6',18-trione, 12'-hydroxy-2'-methyl-5'-<br>(phenylmeth yl)-, (5'à)-                                                    | 01003403             |

acid and energy metabolism, with lipid metabolism playing a supporting role. In comparison, in our study, Scylla serrata ethanol extract showed only 8.31% alkaloid content among the dominant compounds. This difference suggests that environmental stress factors such as sudden salinity reduction can significantly modulate the metabolite profile among

related *Scylla* species, especially under similar polar extraction conditions.

Interestingly, alkaloid compounds were not detected in the qualitative phytochemical screening, but several alkaloids such as Calycotomine and Imidazole were identified through GC-MS analysis.

This discrepancy is not only due to methodological differences but may also be related to the detection sensitivity. Qualitative tests often fail to detect compounds present at low concentrations, whereas GC-MS has a higher sensitivity and can identify minor constituents. In addition, the polarity of ethanol as a solvent might have selectively extracted certain alkaloids in low yield, which escaped detection in qualitative assays but were quantifiable in GC-MS analysis. Similar observations were reported in marine-derived extracts where alkaloids were inconsistently detected depending on the analytical method (Rahmawati et al., 2023; Shofinita et al., 2024).

The main group of compounds in the ethanol extract of mud crab (S. serrata) was represented by three peaks on the GC chromatogram, which had a higher percentage area than the others. These peaks were identified as Calycotomine, N-methyl- (8.31%), uric acid (8.71%), and Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-(2.xi.,4.xi.)-4.14%). Antioxidant compounds detected in the GC-MS analysis included 2-Cyclohexylpiperidine with an area of 3.45%, which belongs to the alkaloid group. In addition, the Edullan II compound with an area of 1.37% belongs to the volatile compound group. The compound Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate, with an area of 0.83%, belongs to the terpenoid compound group, and Imidazole with an area of 0.93% also belongs to the alkaloid group.

In a study conducted by Karnila et al. (2021) on mud crab (S. serrata), antioxidant compounds such as astaxanthin with a peak area of 18.6% and β-carotene with a peak area of 7.9% were identified through GC-MS analysis, both of which belong to the carotenoid group and contribute to antioxidant activity. Similarly, a study by Thiruvengadarajan et al. (2024) on the nutritional composition of S. serrata reported the presence of unsaturated fatty acids such as eicosapentaenoic acid (EPA, 5.42%) and occosahexaenoic acid (DHA, 4.87%), which are categorized as bioactive lipids and known for their health-promoting effects.

The group of compounds identified in Scylla serrata are alkaloids. Based on research by Karim et al. (2024) analyzing muscle and hepatopancreas extracts of S. olivacea, they reported a lipid profile including EPA and DHA content, as well as significant antioxidant capacity measured through the DPPH and ferric-reducing tests. Similarly, Taufik et al. (2020) applied GC-MS to S. olivacea tissues, revealing a predominance of monounsaturated polyunsaturated fatty acids, including long-chain polyunsaturated fatty acids (PUFAs) in the gonads and hepatopancreas. Although specific alkaloid compounds have not been reported for Scylla, these lipid-based metabolites provide relevant biological context within the genus Scylla. Therefore, comparisons of the alkaloid profiles of S. serrata should emphasize the same metabolic pathways within this genus and highlight the need for targeted alkaloid profile studies on Scylla species.

#### Conclusion

This study successfully demonstrated that S. serrata extract possesses very strong antioxidant activity, supported by the presence of flavonoids, triterpenoids, and various bioactive compounds identified through phytochemical and GC-MS analyses. These findings confirm that the research objective to explore and characterize the antioxidant potential and compound profile of S. serrata has been achieved. The extract's bioactive profile, comprising both major and minor compounds, reinforces its potential as a promising source of natural antioxidants with additional pharmacological properties, including anti-inflammatory, anticancer, antimicrobial, and antiviral activities. Overall, this study contributes to the growing evidence that marine organisms represent valuable resources for the development of alternative medicinal agents.

#### Acknowledgement

The research/publication of this article was funded by DIPA of Public Service Agency of Universitas Sriwijaya 2024. Nomor SP DIPA 023.17.2.677515/2024, On November 24, 2023. In accordance with the Rector's Degree Number: 0013/UN9/LP2M.PT/2024, On May 20, 2024.

#### References

Adnan, A.S., Gamburud, L.C., Affendi, I.S.M., Pauzi, M.M., Mahsol, H.H., Muhammad, T., Manan, H., Naimullah, M., Ismail, C.Z.C. & Harman, M.F. 2024. Moulting performances evaluation of female orange mud crab, Scylla olivacea (Herbst, 1796) in-captivity: effects of water salinity and limb autotomy. Trop. Life Sci. Res., 35(1): 197. https://doi.org/10.21315/tlsr 2024.35.1.11

Ahmad, M.F., Ahmad, F.A., Khan, M.I., Alsayegh, A.A., Wahab, S., Alam, M.I. & Ahmed, F. 2021. Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. Int. J. Biol. Macromol., 187: 769–779. 10.1016/j.ijbiomac.2021.06.122

Akinwumi, K.A., Abam, E.O., Oloyede, S.T., Adeduro, M.N., Adeogun, Y.A. & Uwagboe, J.E. 2022. Acrostichium aureum Linn: traditional use, phytochemistry and biological activity. Clin. Phytoscience, 8(1): 18. https://doi.org/10.1186/s40816-022-00349-w

- Alkadi, H. 2020. A review on free radicals and antioxidants. Infect. Disord. Targets (Formerly Curr. Drug Targets-Infectious Disord., 20(1): 16– 26. https://doi.org/10.2174/187152651866 6180628124323
- Ambekar, A.A., Sivaperumal, P., Kamala, K., Kubal, P. & Prakash, C. 2023. Effect of temperature changes on antioxidant enzymes and oxidative stress in gastropod Nerita oryzarum collected along India's first Tarapur Atomic Power Plant site. Environ. Res., 216: 114334. https://doi.org/10.1016/j.envres.2022.114334
- Baag, S. & Mandal, S. 2023. Do global environmental drivers' ocean acidification and warming exacerbate the effects of oil pollution on the physiological energetics of S. serrata? Environ. Sci. Pollut. Res., 30: 23213–23224. https://doi.org/10.1007/s11356-022-23849-1
- Bal, A., Panda, F., Pati, S.G., Das, K., Agrawal, P.K. & Paital, B. 2021. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 241: 108971. https://doi.org/ 10.1016/j.cbpc.2020.108971
- Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R.P. & Chang, C.M. 2022. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. 27(4): 1326. https://doi.org/10.3390/molecules270
- Beslin, L.G. & Geni, G. 2021. Biochemical Profile and Antibacterial Examination of Freshwater Crab S. serrata (FORSKAL, 1775). Int. J. Clin. Invent. Med. Sci., 3(2): 53–65. https://doi.org/ 10.36079/lamintang.ijcims-0302.233
- Chaudhary, P., Janmeda, P., Docea, A.O., Yeskaliyeva, B., Abdull Razis, A.F., Modu, B., Calina, D. & Sharifi-Rad, J. 2023. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem., 11: 1158198 https://doi.org/10.3389/ fchem.2023.1158198
- Chen, X., He, X., Sun, J. & Wang, Z. 2022. Phytochemical composition, antioxidant activity, α-glucosidase and acetylcholinesterase inhibitory activity of quinoa extract and its fractions. 27(8): 2420, https://doi.org/ 10.3390/ molecules27082420
- Chowdhury, M., Kiraga, S., Islam, M.N., Ali, M., Reza, M.N., Lee, W.H. & Chung, S.O. 2021. Effects of temperature, relative humidity, and carbon dioxide concentration on growth and

- glucosinolate content of kale grown in a plant factory. 10(7): 1524. https://doi.org/10.3390/foods10071524
- Costantini, M., Esposito, R. & Ruocco, N. 2022. Crustaceans as Good Marine Model Organisms to Study Stress Responses by—Omics Approaches. In *Crustaceans* (pp. 82–106). CRC Press. https://doi.org/10.1201/9780367853 426-6
- De Castro, J.D.Y., Fabia, S.B.C., Merlin, A.B. & Tadina, K.A.Y. B. 2023. Pangasinan's Best: Microplastics Properties Found in Pangasinan Mangrove crab (S. serrata) Production.
- Delta, M., Rozirwan & Hendri, M. 2021. Aktivitas antioksidan ekstrak daun dan kulit batang mangrove Sonneratia alba di Tanjung Carat, Kabupaten Banyuasin, Provinsi Sumatera Selatan. Maspari J. Mar. Sci. Res., 13(2): 129– 144. https://doi.org/10.56064/maspari.v13 i2.14577
- Di Meo, S. & Venditti, P. 2020. Evolution of the knowledge of free radicals and other oxidants. Oxid. Med. Cell. Longev., 2020(1): 9829176. https://doi.org/10.1155/2020/98 29176
- Dinesh, D., Murugan, K., Subramaniam, J., Paulpandi, M., Chandramohan, B., Pavithra, K., Anitha, J., Vasanthakumaran, M., Fraceto, L.F. & Wang, L. 2022. Salvia leucantha essential oil encapsulated in chitosan nanoparticles with toxicity and feeding physiology of cotton bollworm Helicoverpa armigera. In Biopesticides (pp. 159–181). Elsevier. https://doi.org/ 10.1016/B978-0-12-823355-9.00022-5
- Elshaarawy, R., Aboali, E., Alian, A., Ibrahim, H., El-Nabi, S.H., Mohammed-Geba, K. & Galal-Khallaf, A. 2023. Preliminary assessment of bioactive ingredients and antioxidant activity of some Red Sea invertebrates' extracts. *Egypt. J. Aquat. Biol. Fish.*, 27(4):. https://doi.org/10.21608/ejabf.2023.311303
- Fajriaty, I., Fidrianny, I., Kurniati, N.F., Fauzi, N.M., Mustafa, S.H. & Adnyana, I.K. 2024. In vitro and in silico studies of the potential cytotoxic, antioxidant, and HMG CoA reductase inhibitory effects of chitin from Indonesia mangrove crab (S. serrata) shells. Saudi J. Biol. Sci., 31(5): 103964. https://doi.org/10.1016/j.sjbs.2024. 103964
- Fitria, Y., Rozirwan, R., Fitrani, M., Nugroho, R.Y., Fauziyah, F. & Putri, W.A.E. 2023. Gastropods as bioindicators of heavy metal pollution in the Banyuasin estuary shrimp pond area, South Sumatra, Indonesia. Acta Ecol. Sin., 43(6): 1129

- -1137. https://doi.org/10.1016/j.chnaes.20 23.05.009
- Frías-Espericueta, M.G., Bautista-Covarrubias, J.C., Osuna-Martínez, C.C., Delgado-Alvarez, C., Bojórquez, C., Aguilar-Juárez, M., Roos-Muñoz, S., Osuna-López, I. & Páez-Osuna, F. 2022. Metals and oxidative stress in aquatic decapod crustaceans: A review with special reference to shrimp and crabs. Aquat. Toxicol., 242: 106024. https://doi.org/10.1016/j.aquatox.2021.106024
- Galal-Khallaf, A., Samir Aboali, E., El-Sayed Hassab El-Nabi, S., El-Tantawy, A.I., Schott, E.J. & Mohammed-Geba, K. 2024. As healthy as invasive: Charybdis natator shell extract reveals beneficial metabolites with promising antioxidant and anti-inflammatory potentials. Front. Mar. Sci., 11: 1376768.10.3389/fmars.2024.1376768
- Gulcin, İ. & Alwasel, S.H. 2023. DPPH radical scavenging assay. 11(8): 2248. https:// doi.org/10.3390/pr11082248
- Habib, M.R., Hamed, A.A., Ali, R.E.M., Zayed, K.M., Gad El-Karim, R.M., Sabour, R., Abu El-Einin, H.M. & Ghareeb, M.A. 2022. Thais savignyi tissue extract: bioactivity, chemical composition, and molecular docking. *Pharm. Biol.*, 60(1): 1899–1914. https://doi.org/10.1080/1388 0209.2022.2123940
- Hajar-Azira, Z., Aaqillah-Amr, M.A., Rasdi, N.W., Ma, H. & Ikhwanuddin, M. 2023. Preliminary investigation on the effect of fiddlehead fern, Diplazium esculentum, extract to the growth performance of giant freshwater prawn, Macrobrachium rosenbergii, postlarvae. Aquac. Int., 31(1): 81–101. https://doi.org/10.1007/s10499-022-00965-w
- Harun, N.H., Septama, A.W., Ahmad, W.A.N.W. & Suppian, R. 2020. Immunomodulatory effects and structure-activity relationship of botanical pentacyclic triterpenes: A review. Chinese Herb. Med., 12(2): 118–124. https://doi.org/10.1016/j.chmed.2019.11.007
- Hashim, N., Abdullah, S., Hassan, L.S., Ghazali, S.R. & Jalil, R. 2021. A study of neem leaves: Identification of method and solvent in extraction. *Mater. Today Proc.*, 42: 217-221. https://doi.org/10.1016/j.matpr.2020.11.726
- Hidir, A., Aaqillah-Amr, M.A., Azra, M.N., Shahreza, M.S., Abualreesh, M.H., Peng, T.H., Ma, H., Waiho, K., Fazhan, H. & Ikhwanuddin, M. 2021. Sexual dimorphism of mud crab, genus Scylla between sexes based on morphological and physiological characteristics. Aquac. Res.,

- 52(12): 5943-5961. https://doi.org/10.1111 /are.15497
- Indarjo, A., Salim, G., Zein, M., Septian, D. & Bija, S. 2020. The population and mortality characteristics of mangrove crab (S. serrata) in the mangrove ecosystem of Tarakan City, Indonesia. *Biodiversitas J. Biol. Divers.*, 21(8):. https://doi.org/10.13057/biodiv/d210855
- Jabbar, A.A., Abdullah, F.O., Abdulrahman, K.K., Galali, Y. & Sardar, A.S. 2022. GC-MS Analysis of bioactive compounds in methanolic Extracts of Papaver decaisnei and determination of Its antioxidants and anticancer activities. J. Food Qual., 2022(1): 1405157. https://doi.org/10. 1155/2022/1405157
- Jain, A., Sarsaiya, S., Gong, Q., Wu, Q. & Shi, J. 2024. Chemical diversity, traditional uses, and bioactivities of Rosa roxburghii Tratt: A comprehensive review. *Pharmacol. Ther.*, 108657. https://doi.org/10.1016/j.pharmther a.2024.108657
- Jerome, F.C., Hassan, A. & Chukwuka, A.V. 2020. Metalloestrogen uptake, antioxidant modulation and ovotestes development in *Callinectes* amnicola (blue crab): a first report of crustacea intersex in the Lagos lagoon (Nigeria). Sci. Total Environ., 704: 135235. https://doi.org/10. 1016/j.scitotenv.2019.135235
- Karim, N.U., Mohd Noor, N. S., Sofian, M. F., Hassan, M., Ikhwanuddin, M. & Nirmal, N. P. 2024. Lipid profile and antioxidant activities of mud crab (Scylla olivacea) extract obtained from muscle and hepatopancreas. CyTA-Journal of Food, 22(1): 2363923. https://doi.org/ 10.1080/ 19476337.2024.2363923
- Karnila, R. & Ramadhani, N.R. 2021. Antioxidant activity of astaxanthin flour extract of mud crab (S. serrata) with different acetone concentrations. IOP Conf. Ser. Earth Environ. Sci., 695(1): 12047. https://doi.org/10.1088/ 1755-1315/695/1/012047
- Mabou, F.D. & Yossa, I.B.N. 2021. TERPENES: Structural classification and biological activities. IOSR J Pharm Biol Sci, 16: 25–40. https://doi.org/10.9790/3008-1603012540
- Martemucci, G., Costagliola, C., Mariano, M., D'andrea, L., Napolitano, P. & D'Alessandro, A.G. 2022. Free radical properties, source and targets, antioxidant consumption and health. 2(2): 48–78. https://doi.org/10.3390/oxygen 2020006
- Martinez-Morales, F., Alonso-Castro, A.J., Zapata-Morales, J.R., Carranza-Álvarez, C. & Aragon-

- Martinez, O.H. 2020. Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants. *Chem. Pap.*, 74: 3325–3334
- Mediarman, G.N., Riyadi, P.H., Rianingsih, L. & Purnamayati, L. 2021. Potentials of CaO powder result of calcination from green shells (Perna viridis), scallops (Placuna placenta), and blood clams (Anadara granosa) as antibacterial agent. IOP Conf. Ser. Earth Environ. Sci., 890(1): 12043. https://doi.org/10.1088/1755-1315/ 890/1/012043
- Mounika, S., Jayaraman, R., Jayashree, D., Hanna Pravalika, K., Balaji, A., Banu, M.S. & Prathyusha, M. 2021. A comprehensive review of medicinal plants for cardioprotective potential. *Int. J. Adv. Pharm. Biotechnol.*, 7(1): 24–29. https://doi.org/10.1007/s11696-020-01161-x
- Muhtar, K.M.Y. & Lanuru, M. 2021. Water quality assessment for the development of silvofishery pattern mangrove crabs in Coastal Area, Polewali Mandar, West Sulawesi. Intl J Sci Res Publ, 11(11): 391–395. https://doi.org/10. 29322/IJSRP.11.11.2021.p11952
- Musa, M., Jan, G., Jan, F.G., Hamayun, M., Irfan, M., Rauf, A., Alsahammari, A., Alharbi, M., Suleria, H.A.R. & Ali, N. 2022. Pharmacological activities and gas chromatography-mass spectrometry analysis for the identification of bioactive compounds from Justicia adhatoda L. Front. Pharmacol., 13: 922388. https://doi.org/ 10.3389/fphar.2022.922388
- Nagarajan, P., Louis, L.R.P., Patil, S.J., Adam, J.K. & Krishna, S.B.N. 2024. Therapeutic potential of biologically active peptides from marine organisms for biomedical applications. Stud. Nat. Prod. Chem., 81: 467–500. https://doi. org/10.1016/B978-0-443-15628-1.00019-2
- Nanda, P.K., Das, A.K., Dandapat, P., Dhar, P., Bandyopadhyay, S., Dib, A.L., Lorenzo, J.M. & Gagaoua, M. 2021. Nutritional aspects, flavour profile and health benefits of crab meat based novel food products and valorisation of processing waste to wealth: A review. Trends Food Sci. Technol., 112: 252–267. https://doi.org/10.1016/j.tifs.2021.03.059
- Neelima, S., Anju, M.V, Anooja, V.V, Athira, P.P., Archana, K., Musthafa, S.M. & Philip, R. 2022. Characterisation of a novel crustin isoform from mud crab, S. serrata (Forsskål, 1775) and its functional analysis in silico. Silico Pharmacol., 11(1): 2. https://doi.org/10.1007/s40203-022-00138-w

- Ouyang, Z., Tian, J., Yan, X. & Shen, H. 2021. Effects of different concentrations of dissolved oxygen on the growth, photosynthesis, yield and quality of greenhouse tomatoes and changes in soil microorganisms. Agric. Water Manag., 245: 106579. https://doi.org/10.1016/j.agwat.20 20.106579
- Palma, A., Ruiz-Montoya, M., Díaz, M. J., Giráldez, I. & Morales, E. 2023. Optimization of bioactive compounds by ultrasound extraction and gas chromatography-mass spectrometry in fast-growing leaves. *Microchem. J.*, 193: 109231. https://doi.org/10.1016/j.microc.2023.109231
- Pati, S.G., Paital, B., Panda, F., Jena, S. & Sahoo, D.K. 2023. Impacts of habitat quality on the physiology, ecology, and economical value of mud crab Scylla sp.: a comprehensive review. 15(11): 2029. https://doi.org/10.3390/w15 112029
- Pati, S.G., Panda, F., Jena, S., Sahoo, D.K. & Paital, B. 2022. Effects of soil trace metals, organic carbon load and physicochemical stressors on active oxygen species metabolism in S. serrata sampled along the Bay of Bengal in Odisha state, India. Front. Environ. Sci., 10: 994773.
- Pisoschi, A.M., Pop, A., Iordache, F., Stanca, L., Predoi, G. & Serban, A.I. 2021. Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. Eur. J. Med. Chem., 209: 112891. https://doi.org/ 10.1016/j.ejmech.2020.112891
- Putri, A., Bengen, D.G., Zamani, N.P., Salma, U., Kusuma, N.P., Diningsih, N.T. & Kleinertz, S. 2022. Mangrove habitat structure of mud crabs (S. serrata and S. olivacea) in the Bee Jay Bakau Resort Probolinggo, Indonesia. Ilmu Kelautan Indonesian Journal of Marine Science, 27(2): 124-132 https://doi.org/10.14710/ik.ijms.27. 2.124-132
- Rafferty, C., Johnson, K., O'Mahony, J., Burgoyne, B., Rea, R. & Balss, K.M. 2020. Analysis of chemometric models applied to Raman spectroscopy for monitoring key metabolites of cell culture. *Biotechnol. Prog.*, 36(4): e2977. https://doi.org/10.3389/fenvs.2022.994773
- Rahmawati, R., Bastian, F., Asfar, M., Laga, A., Tawali, A.B. & Fitrianti, A.N. 2023. Effect of decaffeination time on the chemical profile of green bean arabica coffee (*Coffea arabica L.*). *AIP Conf. Proc.*, 2596(1):. https://doi.org/10.1063/5.0118748
- Ren, X., Wang, Q., Shao, H., Xu, Y., Liu, P. & Li, J. 2021. Effects of low temperature on shrimp and crab physiology, behavior, and growth: a review.

- Front. Mar. Sci., 8: 746177. https://doi.org/ 10.3389/fmars.2021.746177
- Rozirwan, R., Almaniar, S. & Herpandi. 2021.
  Abundance and diversity of macrobenthos at Tanjung Api-Api waters, South Sumatra, Indonesia.
- Rozirwan, R., Az-Zahrah, S.A.F., Khotimah, N.N., Nugroho, R.Y., Putri, W.A.E., Fauziyah, F., Melki, M., Agustriani, F. & Siregar, Y.I. 2024. Ecological risk assessment of heavy metal contamination in water, sediment, and polychaeta (Neoleanira Tetragona) from Coastal Areas affected by aquaculture, urban rivers, and ports in South Sumatra. J. Ecol. Eng., 25(1):. https://doi.org/ 10.12911/22998993/175365
- Rozirwan, R., Hananda, H., Nugroho, R.Y., Apri, R., Khotimah, N.N., Fauziyah, F., Putri, W.A.E. & Aryawati, R. 2023a. Antioxidant activity, total phenolic, phytochemical content, and HPLC profile of selected mangrove species from Tanjung Api-Api Port Area, South Sumatra, Indonesia. *Trop. J. Nat. Prod. Res.*, 7(7):.... https://doi.org/10.26538/tjnpr/v7i7.29
- Rozirwan, R., Melki, M., Apri, R., Fauziyah, F., Agussalim, A., Hartoni, H. & Iskandar, I. 2021. Assessment the macrobenthic diversity and community structure in the Musi Estuary, South Sumatra, Indonesia. *Acta Ecol. Sin.*, 41(4): 346–350. https://doi.org/10.1016/j.chnaes.2021.
- Rozirwan, R., Nanda, N., Nugroho, R.Y., Diansyah, G., Muhtadi, M., Fauziyah, F., Putri, W. A. E. & Agussalim, A. 2023b. Phytochemical composition, total phenolic content and antioxidant activity of *Anadara granosa* (Linnaeus, 1758) collected from the east coast of South Sumatra, Indonesia. *Baghdad Sci. J.*, 20(4): 1258. https://doi.org/10.21123/bsj. 2023.6941
- Rozirwan, R., Nugroho, R.Y. & Fauziyah, F. 2022. Biodiversitas gastropoda dan krustasea di zona intertidal hutan mangrove Estuari Sungai Musi, Sumatera Selatan. 11(2):61-71. https://doi.org /10.33373/sim-bio.v11i2. 4653
- Rozirwan, R., Nugroho, R.Y., Hendri, M., Fauziyah, F., Putri, W.A.E. & Agussalim, A. 2022. Phytochemical profile and toxicity of extracts from the leaf of *Avicennia marina* (Forssk.) Vierh. collected in mangrove areas affected by port activities. *South African J. Bot.*, 150: 903–919. https://doi.org/10.1016/j.sajb.2022.08.037
- Rozirwan, R., Siswanto, A., Khotimah, N.N., Nugroho, R.Y., Putri, W.A.E. & Apri, R. 2024. Anti-

- inflammatory activity and phytochemical profile from the leaves of the mangrove Sonneratia caseolaris (L.) Engl. For future drug discovery. Sci. Technol. Indones., 9(2): 502–516. https://doi.org/10.26554/sti.2024.9.2.502-516
- Rozirwan, Saputri, A.P., Nugroho, R.Y., Khotimah, N.N., Putri, W.A.E., Fauziyah & Purwiyanto, A.I.S. 2023c. An assessment of Pb and Cu in waters, sediments, and mud crabs (S. serrata) from mangrove ecosystem near Tanjung Api-Api port area, South Sumatra, Indonesia. https:// doi.org/10.26554/sti.2023.8.4.675-683
- Sadiq, I.Z. 2023. Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. *Curr. Mol. Med.*, 23(1): 13–35. https://doi.org/10.2174/ 1566524022666211222161637
- Saputra, A., Nugroho, R.Y., Isnaini, R. & Rozirwan. 2021. A review: The potential of microalgae as a marine food alternative in Banyuasin Estuary, South Sumatra, Indonesia. Egypt. J. Aquat. Biol. Fish., 59: 1053–1065. https://doi.org/10. 21608/EJABF.2021.170654
- Shaffai, A. El, Mettwally, W.S.A. & Mohamed, S.I.A. 2023. A comparative study of the bioavailability of Red Sea seagrass, *Enhalus acoroides* (Lf) Royle (leaves, roots, and rhizomes) as anticancer and antioxidant with preliminary phytochemical characterization using HPLC, FT-IR, and UPLC-ESI-TOF-MS spectroscopic a. *Beni-Suef Univ. J. Basic Appl. Sci.*, 12(1): 41. https://doi.org/10.1186/s43088-023-00376-7
- Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L. & Jin, B. 2022. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem., 383: 132531. https:// doi.org/10.1016/j.foodchem.2022.132531
- Shofinita, D., Lestari, D., Purwadi, R., Sumampouw, G.A., Gunawan, K.C., Ambarwati, S.A., Achmadi, A.B. & Tjahjadi, J.T. 2024. Effects of different decaffeination methods on caffeine contents, physicochemical, and sensory properties of coffee. *Int. J. Food Eng.*, 20(8): 561–581. https://doi.org/10.1515/ijfe-2024-0013
- Suwandi, R., Ula, M.Z. & Pertiwi, R.M. 2020. Characteristics of chemical compounds of horseshoe crabs *Tachypleus gigas* in different body proportions. *IOP Conf. Ser. Earth Environ.* Sci., 404(1): 12029. https://doi.org/10.1088/1755-1315/404/1/012029
- Taufik, M., Shahrul, I., Nordin, A.R.M., Ikhwanuddin, M. & Abol-Munafi, A.B. 2020. Fatty acid composition of hepatopancreas and gonads in both sexes of orange mud crab, Scylla olivacea

- cultured at various water flow velocities. *Tropical Life Sci. Res.*, 31(2): 79, https://doi.org/10.21315/tlsr2020.31.2.5
- Teleanu, D.M., Niculescu, A.G., Lungu, I.I., Radu, C.I., Vladâcenco, O., Roza, E., Costăchescu, B., Grumezescu, A.M. & Teleanu, R.I. 2022. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. *Int. J. Mol.* Sci., 23(11):5938. https://doi.org/10.3390/ iims23115938
- Thiruvengadarajan, V. S., Rajasekaran, A., Harshini, N., Kalpana, P., Monisha, K., Sri, R. S. & Subakurinji, U. 2024. Bioactive potential and nutriomic studies of crustaceans: a review.
- Tjandrawinata, R.R. & Nurkolis, F. 2024. A comparative analysis on impact of extraction methods on carotenoids composition, antioxidants, antidiabetes, and antiobesity properties in seagrass *Enhalus acoroides*: In Silico and In Vitro Study. *Mar. Drugs*, 22(8): 365. https://doi.org/10.3390/md22080365
- Triajie, H., Andayani, S., Yanuhar, U. & Ekawati, W. 2020. Time of mangrove crabs Scylla paramamosain final premolt stadia (D4) to reach ecdysis of the male and female growth under different salinity. Eurasian J. Biosci., 14(2): 7889–7897.
- Tumilaar, S.G., Hardianto, A., Dohi, H. & Kurnia, D. 2024. A comprehensive review of free radicals, oxidative stress, and antioxidants: overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. J. Chem., 2024(1): 5594386 https://doi.org/10.1615/CritRevEukaryotGeneExpr.2018022258
- Ullah, A., Mostafa, N.M., Halim, S.A., Elhawary, E.A., Ali, A., Bhatti, R., Shareef, U., Al Naeem, W., Khalid, A. & Kashtoh, H. 2024. Phytoconstituents with cardioprotective properties: A pharmacological overview on their efficacy against myocardial infarction. *Phyther. Res.*, 38(9): 4467–4501. https://doi.org/10.1002/ptr.8292
- Vásquez, P., Cian, R.E. & Drago, S.R. 2023. Marine Bioactive Peptides (Fishes, Algae, Cephalopods, Molluscs, and Crustaceans). *Handb. Food Bioact. Ingredients Prop. Appl.*, 1–30. https: //doi.org/10.1007/978-3-030-81404-5\_16-1
- Vermeiren, P., Lennard, C. & Trave, C. 2021. Habitat, sexual and allometric influences on morphological traits of intertidal crabs. 44(5): 1344–1362. https://doi.org/10.1007/s1223

#### 7-020-00856-4

- Wang, J., Tong, Y., Feng, L., Zhao, D., Zheng, C. & Tang, J. 2021. Satellite-observed decreases in water turbidity in the Pearl River Estuary: potential linkage with sea-level rise. J. Geophys. Res. Ocean., 126(4): e2020JC016842. https://doi.org/10.1029/2020JC016842
- Wu, Q., Jiang, Y., Chen, E., Mu, C. & Waiho, K. 2021. Chinese gallnut (Galla chinensis) against Vibrio parahaemolyticus: in vitro activity and the use of medicated bath method to treat infected mud crab Scylla paramamosain. 539: 736632. https://doi.org/10.1016/j.aquaculture.2021.7 36632
- Yang, Y., Li, R., Liu, A., Xu, J., Li, L., Zhao, R., Qu, M. & Di, Y. 2023. How does the internal distribution of microplastics in S. serrata link with the antioxidant response in functional tissues? Environ. Pollut., 324: 121423. https://doi.org/10.1016/j.envpol.2023.121423
- Yao, H., Li, X., Tang, L., Wang, H., Wang, C., Mu, C. & Shi, C. 2020. Metabolic mechanism of the mud crab (Scylla paramamosain) adapting to salinity sudden drop based on GC-MS technology. Aquacult. Reports, 18, 100533. https://doi.org/ 10.1016/j.aqrep.2020.100533
- Yao, J., Zhu, J., Zhao, M., Zhou, L. & Marchioni, E. 2023. Untargeted lipidomics method for the discrimination of five crab species by Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry combined with chemometrics. 28(9): 3653, https://doi.org/10.3390/molecules28093653
- Yogeshwaran, A., Gayathiri, K., Muralisankar, T., Gayathiri, V., Monica, J.I., Rajaram, R., Marimuthu, K. & Bhavan, P.S. 2020. Bioaccumulation of heavy metals, antioxidants, and metabolic enzymes in the crab S. serrata from different regions of Tuticorin, Southeast Coast of India. *Mar. Pollut. Bull.*, 158: 111443. https://doi.org/10.1016/j.marpolbul. 2020.111443
- Yuniarti, R., Nadia, S., Alamanda, A., Zubir, M., Syahputra, R.A. & Nizam, M. 2020. Characterization, phytochemical screenings and antioxidant activity test of kratom leaf ethanol extract (*Mitragyna speciosa Korth*) using DPPH method. *J. Phys. Conf. Ser.*, 1462(1): 12026. https://doi.org/10.1088/1742-6596/ 1462/1/012026
- Yusni, E. & Haq, F.A. 2020. Inventory and prevalence of ectoparasites Octolasmis sp. in the mangrove crab (Scylla tranquebarica) in Lubuk Kertang, Langkat. IOP Conf. Ser. Earth Environ. Sci.,

454(1): 12121.https://doi.org/10.1088/1755-1315/454/1/012121

Yusof, W.R.W., Ahmad, N.M., Zailani, M.A., Shahabuddin, M.M., Sing, N.N. & Husaini, A.A.S.A. 2020. Nutritional composition, antioxidants and antimicrobial activities in muscle tissues of mud crab, Scylla paramamosain. Res. J. Biotechnol., 15: 4.

Zang, L., Xu, H., Huang, C., Wang, C., Wang, R., Chen, Y., Wang, L. & Wang, H. 2022. A link between chemical structure and biological activity in triterpenoids. Recent Pat. Anticancer. Drug Discov., 17(2): 145–161 https://doi.org/10.2174/1574892816666210512031635

Zeng, L., Wang, Y.H., Ai, C.X., Zhang, B., Zhang, H., Liu, Z.M., Yu, M.H. & Hu, B. 2024. Differential effects of oxytetracycline on detoxification and antioxidant defense in the hepatopancreas and intestine of Chinese mitten crab under cadmium stress. Sci. Total Environ., 930: 172633. https://doi.org/10.1016/j.scitotenv.2024.172633

Commented [A2]: 1.Too many self-citations, please reduce

them.

2. References in red need to be completed. Several information missing.

Check format reference in article publish 2025

### **Response to Reviewers**

### Reviewer

| <b>Reviewer Comments</b>                                                                                                                                                    | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source?Reference? Table 1. Characteristic concentration value of IC50                                                                                                       | We thank the reviewer for this valuable comment. We have carefully revised <b>Table 1</b> and added the appropriate references to support the IC <sub>50</sub> values presented. Each concentration value is now accompanied by its corresponding citation to ensure clarity and traceability.                                                                                                                                                                                                                                                                                                                                         |
| References Too many self-citations, please reduce them. References in red need to be completed. Several information missing. Check format reference in article publish 2025 | <ul> <li>We greatly appreciate this observation. In the revised manuscript:</li> <li>We have reduced the number of self-citations to avoid potential bias and to align with the journal's standards.</li> <li>All references highlighted in red have been verified and completed with missing information (authors, year, volume, issue, page numbers, and DOIs where available).</li> <li>The reference list has been reformatted according to the journal's latest 2025 guidelines to ensure consistency and accuracy.</li> <li>We believe these revisions improve the overall quality and readability of the manuscript.</li> </ul> |

## Screening and Profiling of Antioxidant Activity in Mud Crab (Scylla Serrata) from Banyuasin Waters

Rozirwan<sup>1\*</sup>, Ning Intan Lestari<sup>1</sup>, Yoga Winarta<sup>1</sup>, Isnaini<sup>1</sup>, Wike Ayu Eka Putri<sup>1</sup>, Muhammad Hendri<sup>1</sup>, Tengku Zia Ulqodry<sup>1</sup>, Fauziyah<sup>1</sup>, Melki<sup>1</sup>, Redho Yoga Nugroho<sup>1</sup>, Che Abd Rahim Mohamed<sup>2</sup>

<sup>1</sup>Department of Marine Science, Faculty of Mathematics and Natural Sciences, Sriwijaya University Indralaya 30862, South Sumatra, Indonesia

<sup>2</sup>Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, Malaysia

Email: rozirwan@unsri.ac.id

#### Abstract

Mangrove crab (Scylla serrata) as one of the crustacean species, has a variety of bioactive compounds that can be utilized in the field of pharmacology. Antioxidant compounds act as therapeutic agents against degenerative diseases. Banyuasin waters have mangrove vegetation with associated marine organisms that have the potential to be studied for bioactive compounds. This study aims to identify the phytochemical profile quantitatively and qualitatively, samples were collected from mud flats near mangrove ecosystems in Banyuasin waters, South Sumatra. Samples were tested for antioxidant activity using the DPPH test, and IC50 values, qualitative phytochemical identification, and phytochemical profiles were calculated using Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Based on the results of antioxidant testing, the IC50 value of S. serrata extract is 2.25 ppm, the sample is included in the category of very strong antioxidants. Phytochemical test results showed that the compound is thought to contain antioxidant activity from flavonoids and triterpenoids. GC-MS analysis detected major compound groups of alkaloids, purines, and vitamins. Minor compound groups detected amines, terpenoids, monosaccharides, amino acids, fatty acids, silanes, formamides, heterocycles, carboxylic acids, aminoglycosides, naphthalene derivatives, nitriles, amides, glycosides, and peptides. S. serrata extract shows very strong antioxidant activity, with major compounds such as alkaloids, purines, and vitamins. S. serrata extract detected compounds that have been reported as anti-inflammatory, anticancer, antimicrobial, and antiviral. These findings highlight the pharmaceutical potential of S. serrata as a source of bioactive compounds. The results of this study provide valuable information for the development of alternative medicines derived from marine organisms.

Keywords: Antioxidant, Bioactive compounds, DPPH, GC-MS, S. serrata

#### Introduction

Scylla serrata, or mud crab, as one of the crustacean species, has great potential in the field of beauty and health (De Castro et al., 2023), because of its diverse bioactive compounds (Yusof et al., 2020; Beslin and Geni, 2021; Neelima et al., 2022). The diversity of bioactive compounds triggers great potential in the search for alternative medicinal ingredients from marine organisms, including antioxidant compounds (Yogeshwaran et al., 2020; Karnila and Ramadhani, 2021; Fajriaty et al., 2024). Antioxidant compounds in mud crabs have a role as therapeutic agents (Wu et al., 2021) in fighting degenerative diseases such as cancer (Nagarajan et al., 2024), cardiovascular diseases (Nanda et al., 2021), and neurodegenerative disorders (Galal-Khallaf et al., 2024), caused by oxidative stress due to free radicals.

Antioxidants are the reaction of a compound in neutralizing free radicals (Delta et al., 2021; Rozirwan et al., 2023a; 2023b). This process involves a highly efficient electron donation mechanism. Antioxidants work by donating electrons to free radicals (Fajriaty et al., 2024; Frías-Espericueta et al., 2022; Pati et al., 2022; Yang et al., 2023). Free radicals, which have one or more unpaired electrons, are highly reactive and can cause oxidative damage to DNA, proteins, and cellular lipids (Alkadi, 2020; Di Meo and Venditti, 2020). Free radicals are often generated as byproducts of various metabolic processes in the body or due to environmental exposures such as pollution and ultraviolet radiation (Martemucci et al., 2022; Sadiq, 2023). The damage caused by free radicals can contribute to the development of various degenerative diseases, including cancer, heart disease, and neurodegenerative disorders (Teleanu et al., 2022; Chaudhary et al., 2023). In inhibiting free radicals, antioxidant compounds such as carotenoids and polyphenols will interact with free radicals to enhance the activity of detoxification enzymes, resulting in accelerated elimination of free radicals and strengthened antibodies (Pisoschi et al., 2021; Tumilaar et al., 2024).

The analysis of antioxidant compounds in S. serrata requires an accurate technique to ensure that identification and quantification are targeted (Baag and Mandal, 2023; Yao et al., 2023). Previous studies have mainly reported the antioxidant potential of S. serrata using spectrophotometric or colorimetric assays such as DPPH, ABTS, and FRAP, which provide only general antioxidant capacity without revealing the identity of specific compounds (Yogeshwaran et al., 2020; Karnila and Ramadhani, 2021; Neelima et al., 2022). In contrast, Gas Chromatography-Mass Spectrometry (GC-MS) offers higher resolution in profiling bioactive compounds by separating and identifying molecules based on their mass and chemical characteristics (Jabbar et al., 2022; Musa et al., 2022; Palma et al., 2023; Rozirwan et al., 2024). This advanced method not only allows the detection of a broader spectrum of antioxidant molecules but also quantifies their abundance, thereby providing a more comprehensive understanding of their therapeutic potential.

Although antioxidant compounds such as flavonoids, carotenoids, and polyphenols have been reported from different body parts of S. serrata (Yogeshwaran et al., 2020; Karnila and Ramadhani, 2021; Neelima et al., 2022; Yang et al., 2023; Fajriaty

et al., 2024), most of these studies remain descriptive and do not provide detailed profiles of the specific types and relative quantities of individual compounds. To date, there is still no comprehensive based profiling that systematically characterizes the antioxidant repertoire of S. serrata meat. This represents a critical knowledge gap, since understanding the diversity and concentration of specific compounds is essential to support its therapeutic application. The present study aims to provide a detailed GC-MS profiling of antioxidant compounds in S. serrata. This work contributes novel insights into its biochemical composition and strengthens its potential utilization as a sustainable source of natural antioxidants for pharmaceutical and nutraceutical development.

#### **Materials and Methods**

Mangrove crab samples were collected in January 2023 from Banyuasin Waters, South Sumatra, Indonesia (Figure 1). At this location, numerous crustacean and gastropod populations were found inhabiting the intertidal zone —(Rozirwan et al., 2021; Rozirwan et al., 2021; Rozirwan et al., 2021). The crab fishing area had a mud substrate with a depth of 1-2 m and was locasted within a mangrove vegetation zone directly connected to port and pond activities (Fitria et al., 2023). Anthropogenic pollutants that accumulate in these waters are known to trigger an increase in the defense mechanisms of organisms, such as the production of antioxidant compounds derived from secondary metabolites (Rozirwan et al., 2023).



Figure 1. Map of Sampling Location in Banyuasin Waters Area

#### Sample identification and collection

Crustacean samples were taken using folding trawl gear. The samples were collected and stored in a cool box. The crab identification process was conducted based on the examination of morphological characteristics, such as body shape, color pattern, claw shape, and leg shape (Hidir et al., 2021; Vermeiren et al., 2021). Morphometric measurements were performed on the crab samples, and the identification process was completed in the laboratory. Taxon determination was carried out using data from the World Register of Marine Species (WoRMS) accessed in January 2023 (WoRMS, 2023).

#### Environmental characteristics of sampling area

Environmental quality calculations were conducted to assess the condition of the sampling environment. Environmental parameter data were measured, including salinity, temperature, pH, and dissolved oxygen (D0) (Fitria et al., 2023; Rozirwan et al., 2024). Each parameter was measured in three repetitions to ensure consistency, and the results were then averaged. Environmental parameter measurements are typically used to evaluate habitat conditions, as they provide insights into the physical and chemical characteristics of the ecosystem. Repetition in measurements is a standard approach to improve data reliability.

#### Sample preparation

The preparation method described by Ambekar et al. (2023), involves cleaning the crab to remove contaminants. In this study, the carapace and crab meat were separated and rinsed with distilled water to eliminate any remaining impurities. The wet weight of the crab meat was measured, and the samples were then dried in an oven at 40°C for 3  $\times$  24 h. After drying, the samples were ground into powder using a blender. The dry weight of the crab meat was recorded for data analysis.

#### Sample maceration and extraction

The wet maceration method was used in this study. A total of 250 g of S. serrata meat powder was

weighed and immersed in 1000 mL of 96% ethanol solvent at a ratio of 1:4 (b/v). The soaking process was conducted for 3 × 24 h, with stirring performed periodically to ensure optimal extraction. The maceration results were filtered using filter paper (No. 42, 125 mm). The extraction process was then carried out using a rotary evaporator at 40°C with a rotating speed of 3000 rpm (Hashim et al., 2021). The resulting extract was stored as a stock solution. A total of 0.05 g of S. serrata extract was used as an additive for the stock solution (Habib et al., 2022). Wet maceration is a commonly employed extraction method due to its ability to preserve heat-sensitive compounds. Stirring during the maceration process enhances solute dissolution, while rotary evaporation ensures efficient solvent removal under controlled temperature conditions.

#### Determination of antioxidant activity and IC50 value

Antioxidant testing was conducted using the DPPH method (Vásquez et al., 2023). The stock solution of S. serrata extract was used as the test solution, while vitamin C served as a reference. The sample was dissolved in 96% ethanol. A total of 1 mL of sample solution was prepared for each concentration: 100, 150, 200, 250, and 300 mg.L-1. Each concentration was mixed with 40  $\mu g.mL$ -1 DPPH solution and incubated in the dark for 30 min. Absorbance was measured at 517 nm using UV-Vis spectrophotometry. The strength of antioxidant activity is classified according to IC50 values, as shown in Table 1. The IC50 value is calculated using the following formula.

$$inhibition = \frac{blank\ abs - sample\ abs.}{blank\ abs}\ x\ 100\ \%$$

The IC $_{50}$  results were entered in the linear regression equation y= ax + b. The sample concentration is the abscissa (X-axis), and the percentage of antioxidant inhibition is the ordinate (Y-axis) (Yuniarti et al., 2020). The concentration corresponding to 50% inhibition was interpolated from the regression equation. All determinations were conducted in triplicate, and the mean IC $_{50}$  values were statistically compared using one-way ANOVA, followed by Duncan's multiple range test (P< 0.05).

**Table 1.** Characteristic concentration value of IC50 (Molyneux, 2004)

| Concentration Value (µg.mL <sup>-1</sup> ) | Characteristic |
|--------------------------------------------|----------------|
| <50                                        | Very Strong    |
| 50-100                                     | Strong         |
| 100-150                                    | Moderate       |
| 150-200                                    | Low            |

#### Phytochemical screening

Phytochemical tests of S. serrata meat extracts were conducted using qualitative methods to identify the presence of bioactive compounds. The analysis included steroid and triterpenoid tests, which were performed using the Liebermann-Burchard method, alkaloid tests using Mayer and Dragendorff reagents, flavonoid tests with the Shinoda staining method, tannin tests using the FeCl<sub>3</sub> reaction, and saponin tests using the foam test method. Each test was carried out following the procedures described in standard literature (Suwandi et al., 2020; Dinesh et al., 2022).

## Gas Chromatography-Mass Spectrometry (GC-MS) analysis

The identification of bioactive compound components in S. serrata meat extract was performed using the GC-MS analysis method, following Rozirwan et al. (2022) with modifications. A total of 1 µL of extract was injected into an RTX-5MS capillary column (30 m × 0.25 mm i.d., 0.25 µm film thickness) using helium as the carrier gas at a constant flow rate of 1.0 mL.min-1 and a split ratio of 1:50. The oven temperature was initially set at 50°C for 5 min, then increased at a rate of 5°C/min to 280°C, and held for 5 min. The injector and ion source temperatures were 280°C and 230°C, respectively, with an electron ionization (EI) energy of 70 eV. The mass spectrometer was operated in scan mode with a mass range of 40-550 m/z. The Wiley 7 Library database was used as a reference for spectral comparison (Rafferty et al., 2020).

#### **Result and Discussion**

#### Sample identification and collection

Taxon determination was conducted using data from the World Register of Marine Species (WoRMS) accessed in January 2023 (WoRMS, 2023). Based on their morphological characteristics, the crustacean samples were identified as S. serrata.

Mangrove crabs of this species were caught using folding traps. The fishing process was carried out during low tide to facilitate crab capture. In this

study, 2-5 crabs were used as stock samples. The crabs obtained were weighed, with weights ranging from 200 to 320 g, widths of approximately 21.5 cm, and lengths of around 13.5 cm. The crabs were then stored in a cool box filled with ice cubes for preservation. The species identification of mangrove crabs is based on morphological characteristics, which include features such as the eyes, propodus, carpus, merus, carapace, claws, walking legs, and swimming legs (Figure 2). Taxonomic data from databases such as WoRMS is widely used to confirm species classification accurately.

#### Environmental Characteristics of Sampling Area

results of environmental measurements in the S. serrata sampling areas in Banyuasin waters revealed diverse conditions. Measurements water physicochemical parameters, including dissolved oxygen, pH, temperature, and salinity, were taken to assess the habitat suitability for S. serrata (Rozirwan et al., 2021). The dissolved oxygen concentration was found to be 4.2 mg.L-1, which is sufficient to support the respiration process of aquatic organisms (Ouyang et al., 2021). The pH value of the water at the sampling location was 7, indicating neutral pH, which represents optimal ecological conditions (Chowdhury et al., 2021). This is consistent with previous studies (Yusni and Haq, 2020; Muhtar and Lanuru, 2021; Putri et al., 2022), which state that waters with a pH between 6.5 and 7.5 are ideal for the survival of mangrove crabs. The water temperature was measured at 28°C, indicating favorable conditions for mangrove crab growth (Indarjo et al., 2020; Ren et al., 2021) Water salinity was recorded at 18 psu, reflecting typical conditions in estuarine areas or areas directly influenced by tidal movements (Wang et al., 2021). S. serrata grows best in salinities between 15 psu and 25 psu but grows more slowly at salinities greater than 25 to 30 psu (Triajie et al., 2020; Pati et al., 2023; Adnan et al., 2024).

Environmental conditions at the sampling site, particularly salinity (18 psu) and temperature (28°C), could also influence the diversity and concentration of secondary metabolites in S. serrata. Estuarine environments are dynamic, and organisms inhabiting them may prioritize the synthesis of specific bioactive compounds for stress adaptation.

Table 2. Observation of Environmental Parameters of the Research Site

|                               | Station         |
|-------------------------------|-----------------|
| Environment Parameter Quality | Sungsang Waters |
| Dissolved oxygen (mg.L-1)     | 4.2             |
| pH                            | 7               |
| Temperature (°C)              | 28              |
| Salinity (psu)                | 18              |

Previous studies reported that salinity stress can regulate secondary metabolite production, including alkaloids and flavonoids, in marine organisms (Pati et al., 2023). Furthermore, the choice of ethanol as the extraction solvent, although safer and less toxic than methanol, may have influenced the recovery efficiency of certain compounds, possibly underestimating the abundance of more polar metabolites.

#### Determination of antioxidant activity by DPPH assay

Antioxidant analysis using the DPPH (2,2diphenyl-1-picrylhydrazyl) method on Rozirwan et al. (2023) S. serrata meat extract showed promising results. The DPPH solution changed from purple to yellow, indicating the presence of antioxidants in the extract. The test results revealed that the S. serrata extract had an IC50 value of 2.25 ppm, while Vitamin C, used as a comparison solution, had an IC50 value of 2.16 ppm (Table 3). Both solutions demonstrated low IC50 values, categorizing them as very strong antioxidant compounds. The IC50 value, which is the concentration required to inhibit 50% of DPPH radical activity, is a critical parameter for assessing the antioxidant potential of a compound (Martinez-Morales et al., 2020). The results indicate that S. serrata extract possesses an IC50 value comparable to that of Vitamin C. The percentage inhibition of DPPH free radicals by S. serrata meat extract increased as the extract concentration increased.

This suggests that the extract has the ability to donate electrons or hydrogen to the DPPH radical, neutralizing it and converting it into a more stable form (Gulcin and Alwasel, 2023).

The discovery of compounds such as flavonoids and triterpenoids, which were identified in the phytochemical analysis of S. serrata extracts, suggests that they may possess high antioxidant activity (Akinwumi et al., 2022; Hajar-Azira et al., 2023). Flavonoids are well known for their ability to capture free radicals and interrupt the chain of oxidative reactions. Triterpenoids are also recognized for their significant antioxidant activity through a similar mechanism. The combination of these compounds in S. serrata extract creates a synergistic effect, enhancing the overall capacity of the extract to neutralize free radicals.

S. serrata is known for its rich antioxidant system and strong enzymatic defense system, which help it survive in the dynamic and often challenging mangrove environment (Pati et al., 2023). Mud craba also possess defense enzymes such as superoxide dismutase (SOD), catalase, and glutathione peroxidase, which work synergistically to detoxify reactive oxygen species (ROS) and maintain redox balance in the body (Jerome et al., 2020; Bal et al., 2021; Costantini et al., 2022; Zeng et al., 2024). These enzymes play a crucial role in protecting the crab from oxidative stress generated by fluctuating environmental conditions, pollution, and pathogens.

Table 3. Calculation results of antioxidant activity of S. serrata in Sungsang waters

| Sample        |        | Linear Regression |                |                                 | •           |
|---------------|--------|-------------------|----------------|---------------------------------|-------------|
|               | а      | b                 | R <sup>2</sup> | — IC <sub>50</sub> Value Catego | Category    |
| S. serrata    | 6.9429 | 52.808            | 0.9327         | 2.25 mg.L <sup>-1</sup>         | Very Strong |
| Ascorbic Acid | 6.7135 | 55.866            | 0.9435         | 2.16 mg.L <sup>-1</sup>         | Very Strong |

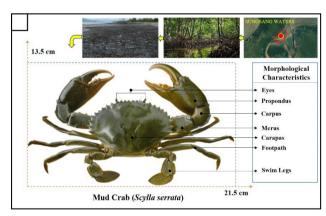



Figure 2. Crustacean species, S. Serrata

This combination of antioxidant compounds and defence enzymes not only ensures the survival of mud crabs in their habitat but also positions them as a potential source for the development of natural health products that can harness their protective mechanisms. Antioxidants and defence enzymes play a vital role in organisms' survival, especially in harsh environments. The synergy between these compounds and enzymes contributes significantly to mitigating oxidative stress and preserving cellular function, which can be explored for potential therapeutic applications.

#### Phytochemical screening

Phytochemical tests were carried out to identify the compounds present in gastropod and crustacean extracts using ethanol as the solvent (Fitria et al., 2023; Rozirwan et al., 2024) The phytochemical test aimed to determine the compounds in the test extract (Chen et al., 2022), allowing for the identification of compounds that influence the strong or weak antioxidant activity of the extract (Baliyan et al., 2022). The results of the phytochemical test, after UV-Vis spectrophotometric analysis of the extract, are presented in Table 4. The test results showed that only certain compounds were extracted by the ethanol solvent (Yuniarti et al., 2020).

Qualitative phytochemical analysis of S. serrata extract showed significant results in identifying the content of bioactive compounds. Based on the test results, S. serrata extract tested positive for flavonoid and triterpenoid compounds. A similar finding was reported by Elshaarawy et al. (2023) for Scylla olivacea samples. These two compounds offer various health benefits and therapeutic potential, particularly due to their strong antioxidant properties. Flavonoids are a group of polyphenolic compounds that are widely recognized for their potent antioxidant activity (Shen et al., 2022). These compounds can neutralize free radicals and prevent oxidative damage to cells and tissues. Additionally, flavonoids possess anti-inflammatory, anticancer, and cardioprotective properties (Mounika et al., 2021; Jain et al., 2024; Ullah et al., 2024). The identification of flavonoid compounds in S. serrata indicates that mud crabs are not only valuable as food but also hold potential as an alternative source of medicine from marine organisms.

Triterpenoids are a group of terpenoid compounds that have potential biological activities (Mabou and Yossa, 2021; Zang et al., 2022). These compounds are known to possess anti-inflammatory, antitumor, antimicrobial, and immunomodulatory properties (Harun et al., 2020; Ahmad et al., 2021). As antioxidant agents, triterpenoids have been used in pharmacology to treat inflammatory diseases and cancer. Similar to flavonoids, these compounds can neutralize free radicals caused by oxidative stress on body tissues. The discovery of triterpenoid compounds in S. serrata shows promising results, given their antioxidant potential that can be applied to address various diseases. Thus, the opportunity to explore alternative medicinal raw materials from S. serrata extract is increasingly attractive for further research. Overall, the phytochemical results focusing on flavonoid and triterpenoid compounds confirm the importance of S. serrata as a potential source of compounds. Further research encouraged at the stage of isolation and purification of these compounds, so that alternative medicinal materials derived from this marine organism can contribute to the development of therapeutic agents from marine organisms.

#### Phytochemical profile screening

The antioxidant compound profile in S. serrata was determined using GC-MS (Gas Chromatography-Mass Spectrometry) analysis on the ethanol extract of mud crab. Figure 3 shows the chromatogram with 37 peaks identified in the extract. Each peak on the chromatogram represents a distinct chemical compound found in the extract, which was analyzed using GC-MS.

GC-MS analysis is a powerful technique for identifying and quantifying individual compounds in complex mixtures, providing insights into the chemical composition of the extract. This method is widely used for its ability to separate and identify volatile compounds, making it an essential tool for profiling bioactive compounds, such as antioxidants, in natural products.

 Table 4. Phytochemical screening results of S. Serrata

| Parameters    | Analysis Result | Analysis Type |
|---------------|-----------------|---------------|
| Alkaloids     | -               | Qualitative   |
| Flavonoids    | +               | Qualitative   |
| Triterpenoids | +               | Qualitative   |
| Saponin       | -               | Qualitative   |
| Tannins       | =               | Qualitative   |
| Steroid       | -               | Qualitative   |

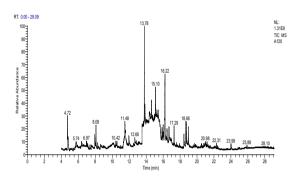



Figure 3. GC-MS chromatogram of ethanol extract S. Serrata

Terpenoid, alkaloid, steroid, and tannin groups were among the pure compounds successfully detected using GC-MS. Based on the GC-MS analysis of the ethanol extract compound components presented in Table 5, the main components identified in the extract were Calycotomine, N-methyl-, with a value of 8.31% of the total area, and uric acid, with a value of 8.71% of the total area.

At a retention time of 4.72 min, the compound 2-Cyclohexylpiperidine was detected with an area of 3.45%, a probability of 6.07, and a chemical formula of C11H21N, which belongs to the alkaloid compound group. At a retention time of 5.74 min, the compound 2-Pyridinamine, 3,6-dimethyl was detected with an area of 1.69%, a probability of 7.02, and a chemical formula of C7H10N2, which belongs to the aminopyridine compound group. Furthermore, at a retention time of 6.97 min, the compound Pentanoic acid, dodec-9-ynyl ester was detected with an area of 1.00%, a probability of 8.47, and a chemical formula of C17H30O2, which belongs to the protein compound group.

At a retention time of 8.08 min, the compound L-Homoserine lactone, N, N-dimethyl was detected with an area of 1.97%, a probability of 82.23, and a chemical formula of C6H11NO2, which belongs to the amino acid compound group. At a retention time of 10.42 min, the compound Thieno[2,3-c]furan-3carbonitrile, 2-amino-4,6-dihydro-4,4,6,6-tetramethyl was detected with an area of 0.74%, a probability of 43.35, and a chemical formula of C11H14N2OS, which belongs to the EPA compound group. At a retention time of 11.48 min, the compound 1H-2-Indenol, 2,3,4,5,6,7- hexahydro -1-(2-hydroxy-2methylpropyl) was detected with an area of 4.83%, a probability of 12.26, and a chemical formula of C13H22O2, which belongs to the lactone compound group.

At a retention time of 12.66 min, the compound dl-Lysine was detected with an area of 0.86%, a probability of 23.13, and a chemical formula

of C6H14N2O2, which belongs to the amino acid compound group. At a retention time of 13.78 min, the compound Calycotomine, N-methyl- was detected with an area of 8.31%, a probability of 43.35, and a chemical formula of C13H19NO3, which belongs to the alkaloid compound group. At a retention time of 15.10 min, the compound Dasycarpidan-8(16H)-ethanol, 3,18-dihydro-1-(hydroxymethyl)-, (2.xi,4.xi,)-was detected with an area of 4.14%, a probability of 12.00, and a chemical formula of C20H28N2O2, which belongs to the group of molport compounds.

At a retention time of 16.22 min, the uric acid compound was detected with an area of 8.71%, a probability of 55.93, and a chemical formula of C5H4N4O3, which belongs to the allantoin compound group. At a retention time of 17.29 min, the compound Actinomycin C2 was detected with an area of 1.49%, a probability of 30.73, and a chemical formula of C63H88N12O16, which belongs to a group of peptide compounds that are derivatives of peptide compounds.

Animals produce a diverse mixture of secondary metabolites such as phenols, alkaloids, flavonoids, tannins, and saponins. Several animal studies have shown the potential use of these metabolites as antibacterial agents due to the presence of abundant biomolecules. Synthetic drugs often have high secondary failure rates and severe side effects, while animal products contain a variety of free radical scavenging molecules with substantial antioxidant properties.

As a more taxonomically relevant comparison, Yao et al. (2020) conducted a GC-MS-based metabolomic study on Scylla paramamosain experiencing acute salinity reduction (from 23 psu to 3 psu). This study identified 519 metabolites (mainly lipids), with 13 significantly enriched metabolic pathways (P< 0.05), related to signaling, lipid metabolism, and transport. Additionally, in that study, combining LC-MS and GC-MS data revealed 28 significant metabolic pathways, dominated by amino

Table 5. Proposed peak order, retention time, probability, area, compound name, and molecular formula

| Peak#      | R.<br>Time | Probability | Area% | Name                                                                                                                                | Molecular<br>formula |
|------------|------------|-------------|-------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1          | 4.72       | 6.07        | 3.45  | 2-Cyclohexylpiperidine                                                                                                              | C11H21N              |
| 2          | 4.81       | 18.58       | 1.37  | Edulan II                                                                                                                           | C13H200              |
| 3          | 5.74       | 7.02        | 1.69  | 2-Pyridinamine, 3,6-dimethyl                                                                                                        | C7H10N2              |
| 4          | 6.39       | 8.12        | 0.83  | Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate                                                                                          | C16H28O3             |
| 5          | 6.61       | 11.07       | 0.66  | d-Mannose                                                                                                                           | C6H12O6              |
| 6          | 6.81       | 50.91       | 0.89  | Deoxyspergualin                                                                                                                     | C17H37N7O3           |
| 7          | 6.97       | 8.47        | 1.00  | Pentanoic acid, dodec-9-ynyl ester                                                                                                  | C17H3002             |
| 8          | 7.93       | 51.03       | 1.42  | trans-(2 Chlorovinyl)dimethylethoxysil ane                                                                                          | C6H13ClOSi           |
| 9          | 8.08       | 82.23       | 1.97  | L-Homoserine lactone, N.N-dimethyl-                                                                                                 | C6H11NO2             |
| 9<br>10    | 8.28       | 32.09       | 0.64  | 2-Propyl-tetrahydropyran-3-ol                                                                                                       | C8H16O2              |
|            | 8.62       | 32.45       | 0.04  |                                                                                                                                     |                      |
| 11         |            |             |       | Imidazole                                                                                                                           | C3H4N2               |
| 12         | 10.00      | 11.83       | 0.76  | Tertbutyloxyformamide, N-methyl-N-[4-(1-pyrrolidinyl)-2-buty nyl]-                                                                  | C14H24N2O2           |
| 13         | 10.42      | 15.27       | 0.74  | Thieno[2,3-c]furan-3-carbonitrile, 2-amino-4,6-dihydro-4,4,6,6-tetrameth yl                                                         | C11H14N2OS           |
| 14         | 11.48      | 12.26       | 4.83  | 1H-2-Indenol, 2,3,4,5,6,7-hexahydro-1-(2-hydroxy-2-methylpropyl)                                                                    | C13H22O2             |
| 15         | 11.55      | 48.75       | 2.53  | dl-Citrulline                                                                                                                       | C6H13N3O3            |
| 16         | 11.96      | 7.38        | 1.45  | 2-Pyridineacetic acid, hexahydro-                                                                                                   | C7H13NO2             |
| 17         | 12.66      | 23.13       | 0.86  | dl-Lysine                                                                                                                           | C6H14N2O2            |
| 18         | 13.51      | 60.28       | 1.62  | D-Streptamine, 0-6-amino-6-deoxy-à-D-glucopyranosy I-(1-4)-0-                                                                       | C6H13N02             |
|            |            |             |       | (3-deoxy-4-C-methyl-3-(meth ylamino)-á-L-arabinopyranosyl-(1-6))- 2-deoxy                                                           |                      |
| 19         | 13.78      | 43.35       | 8.31  | Calycotomine, N-methyl-                                                                                                             | C13H19N03            |
| 20         | 13.99      | 17.84       | 2.38  | 4-[4-Diethylamino-1-methylbutylamino]-1,2-dimethoxy-6-<br>bromonaphthalene                                                          | C21H31BrN2O2         |
| 21         | 14.35      | 32.83       | 1.22  | Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)-                                                      | C20H28N2O2           |
| 22         | 14.62      | 12.2        | 2.67  | 4-[4-Diethylamino-1-methylbutylamino]-1,2-dimethoxy-6-bromonaphthalene                                                              | C21H31BrN2O2         |
| 23         | 15.10      | 12.00       | 4.14  | Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)-                                                      | C20H28N2O2           |
| 24         | 15.21      | 32.49       | 0.87  | Cystine                                                                                                                             | C6H12N2O4S2          |
| 25         | 15.65      | 33.28       | 1.26  | 3-[N-[2-Diethylaminoethyl]-1-cyclopes tenylamino]propionitrile                                                                      | C14H25N3             |
| 26<br>26   | 15.86      | 16.52       | 0.92  | á-Hydroxyquebrachamine                                                                                                              | CH3CH(OH)COOH        |
| 27         | 15.99      | 14.23       | 1.02  | 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropyl ester, (Z,Z,Z)-                                                                  | C21H36O4             |
| 28         | 16.22      | 55.93       | 8.71  | Uric acid                                                                                                                           | C5H4N403             |
| 20<br>29   | 16.45      | 8.30        | 1.33  | Aminoacetamide, N-methyl-N-[4-(1-pyrrolidinyl)-2-buty nyl]-                                                                         | C5H4N4O3             |
| 29<br>30   |            |             |       |                                                                                                                                     |                      |
| <b>5</b> U | 16.69      | 32.32       | 2.06  | Glucopyranuronamide, 1-(4-amino-2-oxo-1(2H)-pyrimidinyl)-<br>1,4-dideoxy-4-(D-2-(2-(methylamino)<br>acetamido)hydracrylamido)-, á-D | C10H14N2O            |
| 31         | 16.90      | 29.78       | 0.80  | 1,2,4-Trioxolane-2-octanoic acid, 5-octyl-, methyl ester                                                                            | C6H11NO6             |
| 32         | 17.29      | 30.73       | 1.49  | Actinomycin C2                                                                                                                      | C19H36O5             |
| 33         | 18.45      | 37.85       | 2.00  | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-                                                                     | C63H88N12016         |
| 34         | 18.66      | 90.13       | 2.23  | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-                                                                     | C63H88N12016         |
| 35         | 18.76      | 60.11       | 2.62  | 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6 H-dipyrrolo[1,2-a:1',2'-dloyrazine                                                            | C11H18N2O2           |
| 36         | 18.97      | 36          | 2.13  | I-(+)-Ascorbic acid                                                                                                                 | C14H22               |
| 37         | 20.98      | 13.19       | 1.29  | cis-13-Octadecenoic acid                                                                                                            | C6H8O6               |
| 38         | 21.17      | 13.49       | 0.94  | Ricinoleic acid                                                                                                                     | C18H34O2             |
| 30<br>39   | 23.99      | 31.48       | 0.94  |                                                                                                                                     | C18H34O3             |
| <b>3</b> 9 | 23.99      | 31.40       | 0.09  | Ergotaman-3',6',18-trione, 12'-hydroxy-2'-methyl-5'-<br>(phenylmeth yl)-, (5'à)-                                                    | 01003403             |

acid and energy metabolism, with lipid metabolism playing a supporting role. In comparison, in our study, Scylla serrata ethanol extract showed only 8.31% alkaloid content among the dominant compounds. This difference suggests that environmental stress factors such as sudden salinity reduction can significantly modulate the metabolite profile among

related *Scylla* species, especially under similar polar extraction conditions.

Interestingly, alkaloid compounds were not detected in the qualitative phytochemical screening, but several alkaloids such as Calycotomine and Imidazole were identified through GC-MS analysis.

This discrepancy is not only due to methodological differences but may also be related to the detection sensitivity. Qualitative tests often fail to detect compounds present at low concentrations, whereas GC-MS has a higher sensitivity and can identify minor constituents. In addition, the polarity of ethanol as a solvent might have selectively extracted certain alkaloids in low yield, which escaped detection in qualitative assays but were quantifiable in GC-MS analysis. Similar observations were reported in marine-derived extracts where alkaloids were inconsistently detected depending on the analytical method (Rahmawati et al., 2023; Shofinita et al., 2024).

The main group of compounds in the ethanol extract of mud crab (S. serrata) was represented by three peaks on the GC chromatogram, which had a higher percentage area than the others. These peaks were identified as Calycotomine, N-methyl- (8.31%), uric acid (8.71%), and Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-(2.xi.,4.xi.)-4.14%). Antioxidant compounds detected in the GC-MS analysis included 2-Cyclohexylpiperidine with an area of 3.45%, which belongs to the alkaloid group. In addition, the Edullan II compound with an area of 1.37% belongs to the volatile compound group. The compound Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate, with an area of 0.83%, belongs to the terpenoid compound group, and Imidazole with an area of 0.93% also belongs to the alkaloid group.

In a study conducted by Karnila et al. (2021) on mud crab (S. serrata), antioxidant compounds such as astaxanthin with a peak area of 18.6% and β-carotene with a peak area of 7.9% were identified through GC-MS analysis, both of which belong to the carotenoid group and contribute to antioxidant activity. Similarly, a study by (Surrete, 2013)Thiruvengadarajan et al. (2024) on the nutritional composition of S. serrata reported the presence of unsaturated fatty acids such as eicosapentaenoic acid (EPA, 5.42%) and docosahexaenoic acid (DHA, 4.87%), which are categorized as bioactive lipids and known for their health-promoting effects.

The group of compounds identified in Scylla serrata are alkaloids. Based on research by Karim et al. (2024) analyzing muscle and hepatopancreas extracts of S. olivacea, they reported a lipid profile including EPA and DHA content, as well as significant antioxidant capacity measured through the DPPH and ferric-reducing tests. Similarly, Taufik et al. (2020) applied GC-MS to S. olivacea tissues, revealing a predominance of monounsaturated polyunsaturated fatty acids, including long-chain polyunsaturated fatty acids (PUFAs) in the gonads and hepatopancreas. Although specific alkaloid compounds have not been reported for Scylla, these lipid-based metabolites provide relevant biological context within the genus Scylla. Therefore, comparisons of the alkaloid profiles of S. serrata should emphasize the same metabolic pathways within this genus and highlight the need for targeted alkaloid profile studies on Scylla species.

#### Conclusion

This study successfully demonstrated that S. serrata extract possesses very strong antioxidant activity, supported by the presence of flavonoids, triterpenoids, and various bioactive compounds identified through phytochemical and GC-MS analyses. These findings confirm that the research objective to explore and characterize the antioxidant potential and compound profile of S. serrata has been achieved. The extract's bioactive profile, comprising both major and minor compounds, reinforces its potential as a promising source of natural with additional pharmacological antioxidants properties, including anti-inflammatory, anticancer, antimicrobial, and antiviral activities. Overall, this study contributes to the growing evidence that marine organisms represent valuable resources for the development of alternative medicinal agents.

#### **Acknowledgement**

The research/publication of this article was funded by DIPA of Public Service Agency of Universitas Sriwijaya 2024. Nomor SP DIPA 023.17.2.677515/2024, On November 24, 2023. In accordance with the Rector's Degree Number: 0013/UN9/LP2M.PT/2024, On May 20, 2024.

#### References

- Adnan, A.S., Gamburud, L.C., Affendi, I.S.M., Pauzi, M.M., Mahsol, H.H., Muhammad, T., Manan, H, Naimullah, M., Ismail, C.Z.C. & Harman, M.F. 2024. Moulting performances evaluation of female orange mud crab, Scylla olivacea (Herbst, 1796) in-captivity: effects of water salinity and limb autotomy. Trop. Life Sci. Res., 35(1): 197. https://doi.org/10.21315/tlsr 2024.35.1.11
- Ahmad, M.F., Ahmad, F.A., Khan, M.I., Alsayegh, A.A., Wahab, S., Alam, M.I. & Ahmed, F. 2021. *Ganoderma lucidum*: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. *Int. J. Biol. Macromol.*, 187: 769–779. 10.1016/j.ijbiomac.2021.06.122
- Akinwumi, K.A., Abam, E.O., Oloyede, S.T., Adeduro, M.N., Adeogun, Y.A. & Uwagboe, J.E. 2022. Acrostichium aureum Linn: traditional use, phytochemistry and biological activity. Clin. Phytoscience, 8(1): 18. https://doi.org/10.1186/s40816-022-00349-w

- Alkadi, H. 2020. A review on free radicals and antioxidants. Infect. Disord. Targets (Formerly Curr. Drug Targets-Infectious Disord., 20(1): 16– 26. https://doi.org/10.2174/187152651866 6180628124323
- Ambekar, A.A., Sivaperumal, P., Kamala, K., Kubal, P. & Prakash, C. 2023. Effect of temperature changes on antioxidant enzymes and oxidative stress in gastropod Nerita oryzarum collected along India's first Tarapur Atomic Power Plant site. Environ. Res., 216: 114334. https://doi.org/10.1016/j.envres.2022.114334
- Baag, S. & Mandal, S. 2023. Do global environmental drivers' ocean acidification and warming exacerbate the effects of oil pollution on the physiological energetics of S. serrata? Environ. Sci. Pollut. Res., 30: 23213–23224. https://doi.org/10.1007/s11356-022-23849-1
- Bal, A., Panda, F., Pati, S.G., Das, K., Agrawal, P.K. & Paital, B. 2021. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 241: 108971. https://doi.org/ 10.1016/j.cbpc.2020.108971
- Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R.P. & Chang, C.M. 2022. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. 27(4): 1326. https://doi.org/10.3390/molecules27041326
- Beslin, L.G. & Geni, G. 2021. Biochemical Profile and Antibacterial Examination of Freshwater Crab S. serrata (FORSKAL, 1775). Int. J. Clin. Invent. Med. Sci., 3(2): 53–65. https://doi.org/ 10.36079/lamintang.ijcims-0302.233
- Chaudhary, P., Janmeda, P., Docea, A.O., Yeskaliyeva, B., Abdull Razis, A.F., Modu, B., Calina, D. & Sharifi-Rad, J. 2023. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem., 11: 1158198 https://doi.org/10.3389/ fchem.2023.1158198
- Chen, X., He, X., Sun, J. & Wang, Z. 2022. Phytochemical composition, antioxidant activity, \( \alpha \) glucosidase and acetylcholinesterase inhibitory activity of quinoa extract and its fractions. 27(8): 2420, https://doi.org/ 10.3390/ molecules27082420
- Chowdhury, M., Kiraga, S., Islam, M.N., Ali, M., Reza, M.N., Lee, W.H. & Chung, S.O. 2021. Effects of temperature, relative humidity, and carbon dioxide concentration on growth and

- glucosinolate content of kale grown in a plant factory. 10(7): 1524. https://doi.org/10.3390/foods10071524
- Costantini, M., Esposito, R. & Ruocco, N. 2022. Crustaceans as Good Marine Model Organisms to Study Stress Responses by—Omics Approaches. In *Crustaceans* (pp. 82–106). CRC Press. https://doi.org/10.1201/9780367853 426-6
- De Castre, J.D.Y., Fabia, S.B.C., Merlin, A.B. & Tadina, K.A.Y. B. 2023. Pangasinan's Best: Microplastics Properties Found in Pangasinan Mangrove crab (S. serrata) Production.
- Delta, M., Rozirwan & Hendri, M. 2021. Aktivitas antioksidan ekstrak daun dan kulit batang mangrove Sonneratia alba di Tanjung Carat, Kabupaten Banyuasin, Provinsi Sumatera Selatan. Maspari J. Mar. Sci. Res., 13(2): 129– 144. https://doi.org/10.56064/maspari.v13 i2.14577
- Di Meo, S. & Venditti, P. 2020. Evolution of the knowledge of free radicals and other oxidants. *Oxid. Med. Cell. Longev.*, 2020(1): 9829176. https://doi.org/10.1155/2020/9829176
- Dinesh, D., Murugan, K., Subramaniam, J., Paulpandi, M., Chandramohan, B., Pavithra, K., Anitha, J., Vasanthakumaran, M., Fraceto, L.F. & Wang, L. 2022. Salvia leucantha essential oil encapsulated in chitosan nanoparticles with toxicity and feeding physiology of cotton bollworm Helicoverpa armigera. In Biopesticides (pp. 159–181). Elsevier. https://doi.org/ 10.1016/B978-0-12-823355-9.00022-5
- Elshaarawy, R., Aboali, E., Alian, A., Ibrahim, H., El-Nabi, S.H., Mohammed-Geba, K. & Galal-Khallaf, A. 2023. Preliminary assessment of bioactive ingredients and antioxidant activity of some Red Sea invertebrates' extracts. Egypt. J. Aquat. Biol. Fish., 27(4):. https://doi.org/10.21608/ejabf.2023.311303
- Fajriaty, I., Fidrianny, I., Kurniati, N.F., Fauzi, N.M., Mustafa, S.H. & Adnyana, I.K. 2024. In vitro and in silico studies of the potential cytotoxic, antioxidant, and HMG CoA reductase inhibitory effects of chitin from Indonesia mangrove crab (S. serrata) shells. Saudi J. Biol. Sci., 31(5): 103964. https://doi.org/10.1016/j.sjbs.2024. 103964
- Fitria, Y., Rozirwan, R., Fitrani, M., Nugroho, R.Y., Fauziyah, F. & Putri, W.A.E. 2023. Gastropods as bioindicators of heavy metal pollution in the Banyuasin estuary shrimp pond area, South Sumatra, Indonesia. Acta Ecol. Sin., 43(6): 1129

Formatted: Indent: Left 0 ch, First line: 0 ch

- -1137. https://doi.org/10.1016/j.chnaes.20 23.05.009
- Frías-Espericueta, M.G., Bautista-Covarrubias, J.C., Osuna-Martínez, C.C., Delgado-Alvarez, C., Bojórquez, C., Aguilar-Juárez, M., Roos-Muñoz, S., Osuna-López, I. & Páez-Osuna, F. 2022. Metals and oxidative stress in aquatic decapod crustaceans: A review with special reference to shrimp and crabs. Aquat. Toxicol., 242: 106024. https://doi.org/10.1016/j.aquatox.2021.106024
- Galal-Khallaf, A., Samir Aboali, E., El-Sayed Hassab El-Nabi, S., El-Tantawy, A.I., Schott, E.J. & Mohammed-Geba, K. 2024. As healthy as invasive: Charybdis natator shell extract reveals beneficial metabolites with promising antioxidant and anti-inflammatory potentials. Front. Mar. Sci., 11: 1376768.10.3389/fmars.2024.1376768
- Gulcin, İ. & Alwasel, S.H. 2023. DPPH radical scavenging assay. <u>Processes.</u> 11(8): 2248. https://doi.org/<u>10.3390/pr11082248</u>
- Habib, M.R., Hamed, A.A., Ali, R.E.M., Zayed, K.M., Gad El-Karim, R.M., Sabour, R., Abu El-Einin, H.M. & Ghareeb, M.A. 2022. Thais savignyi tissue extract: bioactivity, chemical composition, and molecular docking. *Pharm. Biol.*, 60(1): 1899–1914. https://doi.org/10.1080/1388 0209.2022.2123940
- Hajar-Azira, Z., Aaqillah-Amr, M.A., Rasdi, N.W., Ma, H. & Ikhwanuddin, M. 2023. Preliminary investigation on the effect of fiddlehead fern, Diplazium esculentum, extract to the growth performance of giant freshwater prawn, Macrobrachium rosenbergii, postlarvae. Aquac. Int., 31(1): 81–101. https://doi.org/10.1007/s10499-022-00965-w
- Harun, N.H., Septama, A.W., Ahmad, W.A.N.W. & Suppian, R. 2020. Immunomodulatory effects and structure-activity relationship of botanical pentacyclic triterpenes: A review. *Chinese Herb. Med.*, 12(2): 118–124. https://doi.org/10. 1016/j.chmed.2019.11.007
- Hashim, N., Abdullah, S., Hassan, L.S., Ghazali, S.R. & Jalil, R. 2021. A study of neem leaves: Identification of method and solvent in extraction. *Mater. Today Proc.*, 42: 217–221. https://doi.org/10.1016/j.matpr.2020.11.726
- Hidir, A., Aaqillah-Amr, M.A., Azra, M.N., Shahreza, M.S., Abualreesh, M.H., Peng, T.H., Ma, H., Waiho, K., Fazhan, H. & Ikhwanuddin, M. 2021. Sexual dimorphism of mud crab, genus Scylla between sexes based on morphological and physiological characteristics. Aquac. Res.,

- 52(12): 5943-5961. https://doi.org/10.1111 /are.15497
- Indarjo, A., Salim, G., Zein, M., Septian, D. & Bija, S. 2020. The population and mortality characteristics of mangrove crab (S. serrata) in the mangrove ecosystem of Tarakan City, Indonesia. *Biodiversitas J. Biol. Divers.*, 21(8):. https://doi.org/10.13057/biodiv/d210855
- Jabbar, A.A., Abdullah, F.O., Abdulrahman, K.K., Galali, Y. & Sardar, A.S. 2022. GC-MS Analysis of bioactive compounds in methanolic Extracts of Papaver decaisnei and determination of Its antioxidants and anticancer activities. J. Food Qual., 2022(1): 1405157. https://doi.org/10. 1155/2022/1405157
- Jain, A., Sarsaiya, S., Gong, Q., Wu, Q. & Shi, J. 2024. Chemical diversity, traditional uses, and bioactivities of Rosa roxburghii Tratt: A comprehensive review. *Pharmacol. Ther*, 108657. https://doi.org/10.1016/j.pharmther a.2024.108657
- Jerome, F.C., Hassan, A. & Chukwuka, A.V. 2020.

  Metalloestrogen uptake, antioxidant modulation and ovotestes development in *Callinectes amnicola* (blue crab): a first report of crustacea intersex in the Lagos lagoon (Nigeria). Sci. Total Environ., 704: 135235. https://doi.org/10.1016/j.scitotenv.2019.135235
- Karim, N.U., Mohd Noor, N. S., Sofian, M. F., Hassan, M., Ikhwanuddin, M. & Nirmal, N. P. 2024. Lipid profile and antioxidant activities of mud crab (Scylla olivacea) extract obtained from muscle and hepatopancreas. CyTA-Journal of Food, 22(1): 2363923. https://doi.org/ 10.1080/ 19476337.2024.2363923
- Karnila, R. & Ramadhani, N.R. 2021. Antioxidant activity of astaxanthin flour extract of mud crab (S. serrata) with different acetone concentrations. IOP Conf. Ser. Earth Environ. Sci., 695(1): 12047. https://doi.org/10.1088/ 1755-1315/695/1/012047
- Mabou, F.D. & Yossa, I.B.N. 2021. TERPENES: Structural classification and biological activities. *IOSR J Pharm Biol Sci*, 16: 25-40. https://doi.org/10.9790/3008-1603012540
- Martemucci, G., Costagliola, C., Mariano, M., D'andrea, L., Napolitano, P. & D'Alessandro, A.G. 2022. Free radical properties, source and targets, antioxidant consumption and health. 2(2): 48–78. https://doi.org/10.3390/oxygen 2020006
- Martinez-Morales, F., Alonso-Castro, A.J., Zapata-Morales, J.R., Carranza-Álvarez, C. & Aragon-

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

- Martinez, O.H. 2020. Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants. *Chem. Pap.*, 74: 3325–3334
- Mediarman, G.N., Riyadi, P.H., Rianingsih, L. & Purnamayati, L. 2021. Potentials of CaO powder result of calcination from green shells (*Perna viridis*), scallops (*Placuna placenta*), and blood clams (*Anadara granosa*) as antibacterial agent. IOP Conf. Ser. Earth Environ. Sci., 890(1): 12043. https://doi.org/10.1088/1755-1315/ 890/1/012043
- Molyneux, P. 2004. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol., 26(2), 211–219.
- Mounika, S., Jayaraman, R., Jayashree, D., Hanna Pravalika, K., Balaji, A., Banu, M.S. & Prathyusha, M. 2021. A comprehensive review of medicinal plants for cardioprotective potential. Int. J. Adv. Pharm. Biotechnol., 7(1): 24–29. https://doi.org/10.1007/s11696-020-01161-x
- Muhtar, K.M.Y. & Lanuru, M. 2021. Water quality assessment for the development of silvofishery pattern mangrove crabs in Coastal Area, Polewali Mandar, West Sulawesi. *Intl J Sci Res Publ*, 11(11): 391–395. https://doi.org/10.29322/IJSRP.11.11.2021.p11952
- Musa, M., Jan, G., Jan, F.G., Hamayun, M., Irfan, M., Rauf, A., Alsahammari, A., Alharbi, M., Suleria, H.A.R. & Ali, N. 2022. Pharmacological activities and gas chromatography-mass spectrometry analysis for the identification of bioactive compounds from *Justicia adhatoda L. Front. Pharmacol.*, 13: 922388. https://doi.org/ 10.3389/fphar.2022.922388
- Nagarajan, P., Louis, L.R.P., Patil, S.J., Adam, J.K. & Krishna, S.B.N. 2024. Therapeutic potential of biologically active peptides from marine organisms for biomedical applications. Stud. Nat. Prod. Chem., 81: 467–500. https://doi. org/10.1016/B978-0-443-15628-1.00019-2
- Nanda, P.K., Das, A.K., Dandapat, P., Dhar, P., Bandyopadhyay, S., Dib, A.L., Lorenzo, J.M. & Gagaoua, M. 2021. Nutritional aspects, flavour profile and health benefits of crab meat based novel food products and valorisation of processing waste to wealth: A review. *Trends Food Sci. Technol.*, 112: 252–267. https://doi.org/10.1016/j.tifs.2021.03.059
- Neelima, S., Anju, M.V, Anooja, V.V, Athira, P.P., Archana, K., Musthafa, S.M. & Philip, R. 2022.

- Characterisation of a novel crustin isoform from mud crab, S. serrata (Forsskål, 1775) and its functional analysis in silico. Silico Pharmacol., 11(1): 2. https://doi.org/10.1007/s40203-022-00138-w
- Ouyang, Z., Tian, J., Yan, X. & Shen, H. 2021. Effects of different concentrations of dissolved oxygen on the growth, photosynthesis, yield and quality of greenhouse tomatoes and changes in soil microorganisms. Agric. Water Manag., 245: 106579. https://doi.org/10.1016/j.agwat.20 20.106579
- Palma, A., Ruiz-Montoya, M., Díaz, M. J., Giráldez, I. & Morales, E. 2023. Optimization of bioactive compounds by ultrasound extraction and gas chromatography-mass spectrometry in fast-growing leaves. *Microchem. J.*, 193: 109231. https://doi.org/10.1016/j.microc.2023.109231
- Pati, S.G., Paital, B., Panda, F., Jena, S. & Sahoo, D.K. 2023. Impacts of habitat quality on the physiology, ecology, and economical value of mud crab Scylla sp.: a comprehensive review. 15(11): 2029. https://doi.org/10.3390/w15 112029
- Pati, S.G., Panda, F., Jena, S., Sahoo, D.K. & Paital, B. 2022. Effects of soil trace metals, organic carbon load and physicochemical stressors on active oxygen species metabolism in S. serrata sampled along the Bay of Bengal in Odisha state. India. Front. Environ. Sci., 10: 994773.
- Pisoschi, A.M., Pop, A., lordache, F., Stanca, L., Predoi, G. & Serban, A.I. 2021. Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. *Eur. J. Med. Chem.*, 209: 112891. https://doi.org/10.1016/j.ejmech.2020.112891
- Putri, A., Bengen, D.G., Zamani, N.P., Salma, U., Kusuma, N.P., Diningsih, N.T. & Kleinertz, S. 2022. Mangrove habitat structure of mud crabs (S. serrata and S. olivacea) in the Bee Jay Bakau Resort Probolinggo, Indonesia. *Ilmu Kelautan Indonesian Journal of Marine Science*, 27(2): 124-132 https://doi.org/10.14710/ik.ijms.27. 2.124-132
- Rafferty, C., Johnson, K., O'Mahony, J., Burgoyne, B., Rea, R. & Balss, K.M. 2020. Analysis of chemometric models applied to Raman spectroscopy for monitoring key metabolites of cell culture. *Biotechnol. Prog.*, 36(4): e2977. https://doi.org/10.3389/fenvs.2022.994773
- Rahmawati, R., Bastian, F., Asfar, M., Laga, A., Tawali, A.B. & Fitrianti, A.N. 2023. Effect of decaffeination time on the chemical profile of green bean arabica coffee (Coffea arabica L.).

Formatted: Font: Italic, Complex Script Font: Italic

AIP Conf. Proc., 2596(1):. https://doi.org/ 10.1063/5.0118748

Ren, X., Wang, Q., Shao, H., Xu, Y., Liu, P. & Li, J. 2021. Effects of low temperature on shrimp and crab physiology, behavior, and growth: a review. Front. Mar. Sci., 8: 746177. https://doi.org/ 10.3389/fmars.2021.746177

Rozirwan, R., Almaniar, S. & Herpandi. 2021. Abundance and diversity of macrobenthos at Tanjung Api Api waters, South Sumatra, Indonesia.

- Rozirwan, R., Az-Zahrah, S.A.F., Khotimah, N.N., Nugroho, R.Y., Putri, W.A.E., Fauziyah, F., Melki, M., Agustriani, F. & Siregar, Y.I. 2024. Ecological risk assessment of heavy metal contamination in water, sediment, and polychaeta (Neoleanira Tetragona) from Coastal Areas affected by aquaculture, urban rivers, and ports in South Sumatra. J. Ecol. Eng., 25(1):. https://doi.org/ 10.12911/22998993/175365
- Rozirwan, R., Hananda, H., Nugroho, R.Y., Apri, R., Khotimah, N.N., Fauziyah, F., Putri, W.A.E. & Aryawati, R. 2023a. Antioxidant activity, total phenolic, phytochemical content, and HPLC profile of selected mangrove species from Tanjung Api-Api Port Area, South Sumatra, Indonesia. *Trop. J. Nat. Prod. Res.*, 7(7):...... https://doi.org/10.26538/tjnpr/v7i7.29.
- Rozirwan, R., Melki, M., Apri, R., Fauziyah, F., Agussalim, A., Hartoni, H. & Iskandar, I. 2021. Assessment the macrobenthic diversity and community structure in the Musi Estuary, South Sumatra, Indonesia. Acta Ecol. Sin., 41(4): 346– 350. https://doi.org/10.1016/j.chnaes.2021. 02.015
- Rozirwan, R., Nanda, N., Nugroho, R.Y., Diansyah, G., Muhtadi, M., Fauziyah, F., Putri, W. A. E. & Agussalim, A. 2023b. Phytochemical composition, total phenolic content and antioxidant activity of Anadara granosa (Linnaeus, 1758) collected from the east coast of South Sumatra, Indonesia. Baghdad Sci. J., 20(4): 1258. https://doi.org/10.21123/bsj. 2023.6941
- Rozirwan, R., Nugroho, R.Y. & Fauziyah, F. 2022. Biodiversitas gastropoda dan krustasea di zona intertidal hutan mangrove Estuari Sungai Musi, Sumatera Selatan. 11(2):61-71. https://doi.org /10.33373/sim-bio.v11i2. 4653
- Rozirwan, R., Nugroho, R.Y., Hendri, M., Fauziyah, F., Putri, W.A.E. & Agussalim, A. 2022. Phytochemical profile and toxicity of extracts from the leaf of *Avicennia marina* (Forssk.) Vierh. collected in mangrove areas affected by port

activities. South African J. Bot., 150: 903-919 https://doi.org/10.1016/j.sajb.2022.08.037

Rozirwan, R., Siswanto, A., Khotimah, N.N., Nugroho, R.Y., Putri, W.A.E. & Apri, R. 2024. Antinflammatory activity and phytochemical profile from the leaves of the mangrove Sonneratic caseolaris (L.) Engl. For future drug discovery. Sci. Technol. Indones., 9(2): 502–516. https://doi.org/10.26554/sti.2024.9.2.502-516.

Rozirwan, Saputri, A.P., Nugroho, R.Y., Khotimarl, N.N., Putri, W.A.E., Fauziyah & Purwiyanto, A.I.S. 2023c. An assessment of Pb and Cu in waters, sediments, and mud crabs (S. serrata) from mangrove ecosystem near Tanjung Api-Api pot area, South Sumatra, Indonesia. https://doi.org/10.26554/sti.2023.8.4.675-683

Sadiq, I.Z. 2023. Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. *Curr. Mol. Med.*, 23(1): 13–35. https://doi.org/\_10.2174/1566524022666211222161637.

Saputra, A., Nugroho, R.Y., Isnaini, R. & Rozirwar 2021. A review: The potential of microalgae as marine food alternative in Banyuasin Estuary South Sumatra, Indonesia. Egypt. J. Aquat. Bio Fish., 59: 1053–1065. https://doi.org/10 21608/EJABF.2021.170654

Shaffai, A. El, Mettwally, W.S.A. & Mohamed, S.I.A. 2023. A comparative study of the bioavailability of Red Sea seagrass, *Enhalus acoroides* (Lf) Royle (leaves, roots, and rhizomes) as anticancer and antioxidant with preliminary phytochemical characterization using HPLC, FT-IR, and UPLC-ESI-TOF-MS spectroscopic a. *Ben-Suef Univ. J. Basic Appl. Sci.*, 12(1): 41. https://doi.org/10.1186/s43088-023-00376-7

Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L. & Jin, B. 2022. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem., 383: 132531. https://doi.org/10.1016/j.foodchem.2022.132531

Shofinita, D., Lestari, D., Purwadi, R., Sumampouw G.A., Gunawan, K.C., Ambarwati, S.A., Achmad A.B. & Tjahjadi, J.T. 2024. Effects of differer decaffeination methods on caffeine contents physicochemical, and sensory properties of coffee. *Int. J. Food Eng.*, 20(8): 561–581 https://doi.org/10.1515/ijfe-2024-0013

Surette, M.E. 2013. Dietary omega-3 PUFA and health: Stearidonic acid-containing seed oils as effective and sustainable alternatives to traditional marine oils. Molecular Nutrition of Research, 57(5), 748-759. DO 10.1002/mnfr.201200706

Formatted: Font color: Text 1
Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Indent: Left 0 ch, First line: 0 ch

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

**Formatted:** Font color: Text 1 **Formatted:** Font color: Text 1

Formatted: Font color: Text 1
Formatted: Font color: Text 1

Formatted: Font: Italic, Font color: Text 1, Complex Script

Font: Italic

Formatted: Font color: Text 1

- Suwandi, R., Ula, M.Z. & Pertiwi, R.M. 2020. Characteristics of chemical compounds of horseshoe crabs *Tachypleus gigas* in different body proportions. *IOP Conf. Ser. Earth Environ*. *Sci.*, 404(1): 12029. https://doi.org/ 10. 1088/1755-1315/404/1/012029
- Taufik, M., Shahrul, I., Nordin, A.R.M., Ikhwanuddin, M. & Abol-Munafi, A.B. 2020. Fatty acid composition of hepatopancreas and gonads in both sexes of orange mud crab, Scylla olivacea cultured at various water flow velocities. *Tropical Life Sci. Res.*, 31(2): 79, https://doi.org/10.21315/tlsr2020.31.2.5
- Teleanu, D.M., Niculescu, A.G., Lungu, I.I., Radu, C.I., Vladâcenco, O., Roza, E., Costăchescu, B., Grumezescu, A.M. & Teleanu, R.I. 2022. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. *Int. J. Mol.* Sci., 23(11):5938. https://doi.org/\_10.3390/ iims23115938.

Thiruvengadarajan, V. S., Rajasekaran, A., Harshini, N., Kalpana, P., Monisha, K., Sri, R. S. & Subakurinji, U. 2024. Bioactive potential and nutriomic studies of crustaceans: a review.

- Tjandrawinata, R.R. & Nurkolis, F. 2024. A comparative analysis on impact of extraction methods on carotenoids composition, antioxidants, antidiabetes, and antiobesity properties in seagrass *Enhalus acoroides*: In Silico and In Vitro Study. *Mar. Drug*s, 22(8): 365. https://doi.org/10.3390/md22080365
- Triajie, H., Andayani, S., Yanuhar, U. & Ekawati, W. 2020. Time of mangrove crabs Scylla paramamosain final premolt stadia (D4) to reach ecdysis of the male and female growth under different salinity. Eurasian J. Biosci., 14(2): 7889–7897.
- Tumilaar, S.G., Hardianto, A., Dohi, H. & Kurnia, D. 2024. A comprehensive review of free radicals, oxidative stress, and antioxidants: overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. *J. Chem.*, 2024(1): 5594386 https://doi.org/10.1615/CritRevEukaryotGeneExpr.2018022258
- Ullah, A., Mostafa, N.M., Halim, S.A., Elhawary, E.A., Ali, A., Bhatti, R., Shareef, U., Al Naeem, W., Khalid, A. & Kashtoh, H. 2024. Phytoconstituents with cardioprotective properties: A pharmacological overview on their efficacy against myocardial infarction. *Phyther. Res.*, 38(9): 4467–4501. https://doi.org/10.1002/ptr.8292

- Vásquez, P., Cian, R.E. & Drago, S.R. 2023. Marine Bioactive Peptides (Fishes, Algae, Cephalopods, Molluscs, and Crustaceans). *Handb. Food Bioact. Ingredients Prop. Appl.*, 1–30. https: //doi.org/10.1007/978-3-030-81404-5\_16-1
- Vermeiren, P., Lennard, C. & Trave, C. 2021. Habitat, sexual and allometric influences on morphological traits of intertidal crabs. 44(5): 1344–1362. https://doi.org/10.1007/s12237-020-00856-4
- Wang, J., Tong, Y., Feng, L., Zhao, D., Zheng, C. & Tang, J. 2021. Satellite-observed decreases in water turbidity in the Pearl River Estuary: potential linkage with sea-level rise. *J. Geophys. Res. Ocean.*, 126(4): e2020J0016842. https://doi.org/10.1029/2020J0016842
- Wu, Q., Jiang, Y., Chen, E., Mu, C. & Waiho, K. 2021. Chinese gallnut (Galla chinensis) against Vibrio parahaemolyticus: in vitro activity and the use of medicated bath method to treat infected mud crab Scylla paramamosain. 539: 736632. https://doi.org/10.1016/j.aquaculture.2021.7 36632.
- Yang, Y., Li, R., Liu, A., Xu, J., Li, L., Zhao, R., Qu, M. & Di, Y. 2023. How does the internal distribution of microplastics in S. serrata link with the antioxidant response in functional tissues? Environ. Pollut., 324: 121423. https://doi.org/10.1016/j.envpol.2023.121423
- Yao, H., Li, X., Tang, L., Wang, H., Wang, C., Mu, C. & Shi, C. 2020. Metabolic mechanism of the mud crab (Scylla paramamosain) adapting to salinity sudden drop based on GC-MS technology. Aquacult. Reports, 18, 100533. https://doi.org/ 10.1016/j.aqrep.2020.100533
- Yao, J., Zhu, J., Zhao, M., Zhou, L. & Marchioni, E. 2023. Untargeted lipidomics method for the discrimination of five crab species by Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry combined with chemometrics. <u>Molecules.</u>, 28(9): 3653. https://doi.org/10.3390/molecules28093653
- Yogeshwaran, A., Gayathiri, K., Muralisankar, T., Gayathri, V., Monica, J.I., Rajaram, R., Marimuthu, K. & Bhavan, P.S. 2020. Bioaccumulation of heavy metals, antioxidants, and metabolic enzymes in the crab S. serrata from different regions of Tuticorin, Southeast Coast of India. Mar. Pollut. Bull., 158: 111443. https://doi.org/10.1016/j.marpolbul. 2020.111443.
- Yuniarti, R., Nadia, S., Alamanda, A., Zubir, M., Syahputra, R.A. & Nizam, M. 2020. Characterization, phytochemical screenings and

Formatted: Font color: Text 1
Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Indent: Left 0 ch, First line: 0 ch

Formatted: Font color: Text 1
Formatted: Font color: Text 1

Formatted: Font color: Text 1
Formatted: Font color: Text 1

Formatted: Font color: Text 1
Formatted: Font color: Text 1

Formatted: Font color: Text 1
Formatted: Font color: Text 1

Formatted: Font color: Text 1
Formatted: Font color: Text 1

antioxidant activity test of kratom leaf ethanol extract (*Mitragyna speciosa Korth*) using DPPH method. *J. Phys. Conf. Ser.*, 1462(1): 12026. https://doi.org/10.1088/1742-6596/1462/1/012026

Yusni, E. & Haq, F.A. 2020. Inventory and prevalence of ectoparasites Octolasmis sp. in the mangrove crab (Scylla tranquebarica) in Lubuk Kertang, Langkat. IOP Conf. Ser. Earth Environ. Sci., 454(1): 12121.https://doi.org/10.1088/1755-1315/454/1/012121

Yusof, W.R.W., Ahmad, N.M., Zailani, M.A., Shahabuddin, M.M., Sing, N.N. & Husaini, A.A.S.A. 2020. Nutritional composition, antioxidants and antimicrobial activities in muscle tissues of mud crab, Scylla paramamosain. Res. J. Biotechnol., 15: 4.

Zang, L., Xu, H., Huang, C., Wang, C., Wang, R., Chen, Y., Wang, L. & Wang, H. 2022. A link between chemical structure and biological activity in triterpenoids. Recent Pat. Anticancer. Drug Discov., 17(2): 145-161 https://doi.org/ 10.2174/1574892816666210512031635

Zeng, L., Wang, Y.H., Ai, C.X., Zhang, B., Zhang, H., Liu, Z.M., Yu, M.H. & Hu, B. 2024. Differential effects of oxytetracycline on detoxification and antioxidant defense in the hepatopancreas and intestine of Chinese mitten crab under cadmium stress. Sci. Total Environ., 930: 172633. https://doi.org/10.1016/j.scitotenv.2024.172633.

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1



Rozirwan ROZIRWAN <rozirwan@unsri.ac.id>

### [IK.IJMS] [ID-70658] Revised Version Acknowledgement

1 pesan

Ambariyanto <ijms@live.undip.ac.id> Balas Ke: "Dr Rozirwan M.Sc. Rozirwan" <rozirwan@unsri.ac.id> Kepada: "Dr Rozirwan M.Sc. Rozirwan" <rozirwan@unsri.ac.id> 15 September 2025 pukul 23.26

#### Dr Rozirwan M.Sc. Rozirwan:

Thank you for submitting the revision of manuscript, "SCREENING AND PROFILING OF ANTIOXIDANT ACTIVITY IN MUD CRAB (Scylla serrata) FROM BANYUASIN WATERS" to ILMU KELAUTAN: Indonesian Journal of Marine Sciences. With the online journal management system that we are using, you will be able to track its progress through the editorial process by logging in to the journal web site:

Manuscript URL: https://ejournal.undip.ac.id/index.php/ijms/author/submission/70658

Username: rozirwan

Editor: Indonesian Journal of Marine Science

If you have any questions, please contact me. Thank you for considering this journal as a venue for your work.

Ambariyanto

ILMU KELAUTAN: Indonesian Journal of Marine Sciences

INDONESIAN JOURNAL OF MARINE SCIENCE http://ejournal.undip.ac.id/index.php/ijms



Rozirwan ROZIRWAN <rozirwan@unsri.ac.id>

#### [IK.IJMS] [70658] Article Publication of IK.IJMS-2025-70658

2 pesan

Indonesian Journal of Marine Science <ejournal@rumahjurnalundip.id> Balas Ke: Indonesian Journal of Marine Science <ijms.undip@gmail.com> 2 Oktober 2025 pukul 10.03

Kepada: "Dr Rozirwan M.Sc. Rozirwan" <rozirwan@unsri.ac.id>

Cc: Ning Intan Lestari <ningintanlestari00@gmail.com>, Yoga Winarta <rolazyoga96@gmail.com>, Isnaini Isnaini <isnaini@mipa.unsri.ac.id>, Wike Ayu Eka Putri <wike\_ayu\_ep@unsri.ac.id>, Muhammad Hendri <muhammad.hendri@unsri.ac.id>, Tengku Zia Ulqodry <zia\_uul@unsri.ac.id>, Fauziyah Fauziyah <siti\_fauziyah@yahoo.com>, Melki Melki <melki@unsri.ac.id>, Redho Yoga Nugroho <redhoyoganugroho@mipa.unsri.ac.id>, Che Abd Rahim Mohamed <carmohd@ukm.edu.my>

Dear Rozirwan Rozirwan, Ning Intan Lestari, Yoga Winarta, Isnaini Isnaini, Wike Ayu Eka Putri, Muhammad Hendri, Tengku Zia Ulqodry, Fauziyah Fauziyah, Melki Melki, Redho Yoga Nugroho, Che Abd Rahim Mohamed,

As co-author of the article entitled "Screening and Profiling of Antioxidant Activity in Mud Crab (Scylla Serrata) from Banyuasin Waters", we are pleased to let you know that the final open access version, containing full bibliographic details, is now available online.

The URL below is a quick and easy way to share your work with colleagues, other co-authors, and friends. Anyone clicking on the link will be taken directly to the final version of your article on the ILMU KELAUTAN: Indonesian Journal of Marine Sciences website (https://ejournal.undip.ac.id/index.php/ijms).

Your article link: https://ejournal.undip.ac.id/index.php/ijms/article/view/70658

DOI: 10.14710/ik.ijms.30.3.438-452

Send the cost of publication (Rp. 2.500.000,-) to Widianingsih

Bank: Bank Negara Indonesia (BNI) Branch: UNDIP Semarang, Indonesia

Account No: 0162816376

You can also use this link to download a copy of the article for your own archive. It also provides a quick and easy way to share your work with colleagues, co-authors, and friends. And you are welcome to add it to your homepage or social media profiles, such as Facebook, Google+, and Twitter.

Kind regards,

Indonesian Journal of Marine Science ijms.undip@gmail.com

INDONESIAN JOURNAL OF MARINE SCIENCE

http://ejournal.undip.ac.id/index.php/ijms

#### Rozirwan ROZIRWAN <rozirwan@unsri.ac.id>

Kepada: Indonesian Journal of Marine Science <ijms.undip@gmail.com>

2 Oktober 2025 pukul 13.48

Dear Editor,

We confirm that we have successfully completed the payment for the publication of our manuscript titled "Screening and Profiling of Antioxidant Activity in Mud Crab (Scylla Serrata) from Banyuasin Waters" in 30/3 pp 438-452.

As requested, please find the payment receipt attached to this email for your reference.

Should you require any further information or documents, please do not hesitate to contact us.

#### Best regards

[Kutipan teks disembunyikan]

Prof. Dr. Rozirwan, S.Pi., M.Sc Head of Marine Bioecology Laboratory Department of Marine Science Faculty of Mathematics and Natural Sciences

Sriwijava University

Jalan Raya Palembang-Prabumulih KM 32, Indralaya Ogan Ilir, Sumatera Selatan, Indonesia, Pos Code: 30862

Email: rozirwan@unsri.ac.id, rozirwan@gmail.com

https://mail.google.com/mail/u/2/?ik=a5375c729a&view=pt&search=all&permthid=thread-f:1844837588185440183&simpl=msg-f:1844837588185...



**Payment APC\_Screening and Profiling.jpeg** 91K



# Transfer berhasil

Rp2.500.000

02 Okt 2025 • 10:44:58 WIB •

Ref ID: 20251002104436000665

## **Penerima**

WIDIANINGSIH

BNI · 162816376

## Sumber dana

ROZIRWAN

\*\*\*\*\*764

## **Detail transfer**

Nominal Rp2.500.000

Biaya transaksi RpO

Catatan Publication fee Rozirwan et Al

Rp2.500.000

## Screening and Profiling of Antioxidant Activity in Mud Crab (*Scylla Serrata*) from Banyuasin Waters

Rozirwan<sup>1\*</sup>, Ning Intan Lestari<sup>1</sup>, Yoga Winarta<sup>1</sup>, Isnaini<sup>1</sup>, Wike Ayu Eka Putri<sup>1</sup>, Muhammad Hendri<sup>1</sup>, Tengku Zia Ulqodry<sup>1</sup>, Fauziyah<sup>1</sup>, Melki<sup>1</sup>, Redho Yoga Nugroho<sup>1</sup>, Che Abd Rahim Mohamed<sup>2</sup>

<sup>1</sup>Department of Marine Science, Faculty of Mathematics and Natural Sciences, Sriwijaya University JI. Palembang-Prabumulih KM. 32 Indralaya 30862, South Sumatra, Indonesia 

<sup>2</sup>Faculty of Science and Technology, Universiti Kebangsaan Malaysia 

43600 UKM Bangi, Selangor, Malaysia 

Email: rozirwan@unsri.ac.id

#### Abstract

Mangrove crab (Scylla serrata) as one of the crustacean species, has a variety of bioactive compounds that can be utilized in the field of pharmacology. Antioxidant compounds act as therapeutic agents against degenerative diseases. Banyuasin waters have mangrove vegetation with associated marine organisms that have the potential to be studied for bioactive compounds. This study aims to identify the phytochemical profile quantitatively and qualitatively, samples were collected from mud flats near mangrove ecosystems in Banyuasin waters, South Sumatra. Samples were tested for antioxidant activity using the DPPH test, and IC50 values, qualitative phytochemical identification, and phytochemical profiles were calculated using Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Based on the results of antioxidant testing, the IC50 value of S. serrata extract is 2.25 ppm, the sample is included in the category of very strong antioxidants. Phytochemical test results showed that the compound is thought to contain antioxidant activity from flavonoids and triterpenoids. GC-MS analysis detected major compound groups of alkaloids, purines, and vitamins. Minor compound groups detected amines, terpenoids, monosaccharides, amino acids, fatty acids, silanes, formamides, heterocycles, carboxylic acids, aminoglycosides, naphthalene derivatives, nitriles, amides, glycosides, and peptides. S. serrata extract shows very strong antioxidant activity, with major compounds such as alkaloids, purines, and vitamins. S. serrata extract detected compounds that have been reported as anti-inflammatory, anticancer, antimicrobial, and antiviral. These findings highlight the pharmaceutical potential of S. serrata as a source of bioactive compounds. The results of this study provide valuable information for the development of alternative medicines derived from marine organisms.

Keywords: Antioxidant, Bioactive compounds, DPPH, GC-MS, S. serrata

#### Introduction

Scylla serrata, or mud crab, as one of the crustacean species, has great potential in the field of beauty and health, because of its diverse bioactive compounds (Yusof et al., 2020; Beslin and Geni, 2021; Neelima et al., 2022). The diversity of bioactive compounds triggers great potential in the search for alternative medicinal ingredients from marine including antioxidant organisms. compounds (Yogeshwaran et al., 2020; Karnila and Ramadhani, 2021; Fajriaty et al., 2024). Antioxidant compounds in mud crabs have a role as therapeutic agents (Wu et al., 2021) in fighting degenerative diseases such as cancer (Nagarajan et al., 2024), cardiovascular diseases (Nanda et 2021), al., neurodegenerative disorders (Galal-Khallaf et al., 2024), caused by oxidative stress due to free radicals.

Antioxidants are the reaction of a compound in neutralizing free radicals (Delta et al., 2021; Rozirwan et al., 2023a; 2023b). This process involves a highly efficient electron donation mechanism. Antioxidants work by donating electrons to free radicals (Fajriaty et al., 2024; Frías-Espericueta et al., 2022; Pati et al., 2022; Yang et al., 2023). Free radicals, which have one or more unpaired electrons, are highly reactive and can cause oxidative damage to DNA, proteins, and cellular lipids (Alkadi, 2020; Di Meo and Venditti, 2020). Free radicals are often generated as byproducts of various metabolic processes in the body or due to environmental exposures such as pollution and ultraviolet radiation (Martemucci et al., 2022; Sadig, 2023). The damage caused by free radicals can contribute to the development of various degenerative diseases, including cancer, heart disease, and neurodegenerative disorders (Teleanu et al., 2022; Chaudhary et al., 2023). In inhibiting free radicals, antioxidant compounds such as carotenoids and polyphenols will interact with free radicals to enhance the activity of detoxification enzymes, resulting in accelerated elimination of free radicals and strengthened antibodies (Pisoschi *et al.*, 2021; Tumilaar *et al.*, 2024).

The analysis of antioxidant compounds in S. serrata requires an accurate technique to ensure that identification and quantification are targeted (Baag and Mandal, 2023; Yao et al., 2023). Previous studies have mainly reported the antioxidant potential of S. serrata using spectrophotometric or colorimetric assays such as DPPH, ABTS, and FRAP, which provide only general antioxidant capacity without revealing the identity of specific compounds (Yogeshwaran et al., 2020; Karnila and Ramadhani, 2021; Neelima et al., 2022). In contrast, Gas Chromatography-Mass Spectrometry (GC-MS) offers higher resolution in profiling bioactive compounds by separating and identifying molecules based on their mass and chemical characteristics (Jabbar et al., 2022; Musa et al., 2022; Palma et al., 2023; Rozirwan et al., 2024). This advanced method not only allows the detection of a broader spectrum of antioxidant molecules but also quantifies their abundance, thereby providing a more comprehensive understanding of their therapeutic potential.

Although antioxidant compounds such as flavonoids, carotenoids, and polyphenols have been reported from different body parts of S. serrata (Yogeshwaran et al., 2020; Karnila and Ramadhani, 2021; Neelima et al., 2022; Yang et al., 2023;

Fajriaty et al., 2024), most of these studies remain descriptive and do not provide detailed profiles of the specific types and relative quantities of individual compounds. To date, there is still no comprehensive GC-MS based profiling that systematically characterizes the antioxidant repertoire of S. serrata meat. This represents a critical knowledge gap, since understanding the diversity and concentration of specific compounds is essential to support its therapeutic application. The present study aims to provide a detailed GC-MS profiling of antioxidant compounds in S. serrata. This work contributes novel insights into its biochemical composition and strengthens its potential utilization as a sustainable source of natural antioxidants for pharmaceutical and nutraceutical development.

### **Materials and Methods**

Mangrove crab samples were collected in January 2023 from Banyuasin Waters, South Sumatra, Indonesia (Figure 1). At this location, numerous crustacean and gastropod populations were found inhabiting the intertidal zone (Rozirwan et al., 2021; Rozirwan et al., 2021). The crab fishing area had a mud substrate with a depth of 1-2 m and was located within a mangrove vegetation zone directly connected to port and pond activities (Fitria et al., 2023). Anthropogenic pollutants that accumulate in these waters are known to trigger an increase in the defense mechanisms of organisms, such as the production of antioxidant compounds derived from secondary metabolites (Rozirwan et al., 2023).



Figure 1. Map of sampling location in Banyuasin Waters area

### Sample identification and collection

Crustacean samples were taken using folding trawl gear. The samples were collected and stored in a cool box. The crab identification process was conducted based on the examination of morphological characteristics, such as body shape, color pattern, claw shape, and leg shape (Hidir et al., 2021; Vermeiren et al., 2021). Morphometric measurements were performed on the crab samples, and the identification process was completed in the laboratory. Taxon determination was carried out using data from the World Register of Marine Species (WoRMS) accessed in January 2023 (WoRMS, 2023).

#### Environmental characteristics of sampling area

Environmental quality calculations were conducted to assess the condition of the sampling environment. Environmental parameter data were measured, including salinity, temperature, pH, and dissolved oxygen (DO) (Fitria et al., 2023; Rozirwan et al., 2024). Each parameter was measured in three repetitions to ensure consistency, and the results were then averaged. Environmental parameter measurements are typically used to evaluate habitat conditions, as they provide insights into the physical and chemical characteristics of the ecosystem. Repetition in measurements is a standard approach to improve data reliability.

## Sample preparation

The preparation method described by Ambekar et al. (2023), involves cleaning the crab to remove contaminants. In this study, the carapace and crab meat were separated and rinsed with distilled water to eliminate any remaining impurities. The wet weight of the crab meat was measured, and the samples were then dried in an oven at  $40\,^{\circ}$ C for  $3\times24$  h. After drying, the samples were ground into powder using a blender. The dry weight of the crab meat was recorded for data analysis.

### Sample maceration and extraction

The wet mace ration method was used in this study. A total of 250 g of S. serrata meat powder was  $\frac{1}{2}$ 

weighed and immersed in 1000 mL of 96% ethanol solvent at a ratio of 1:4 (b/v). The soaking process was conducted for 3 × 24 h, with stirring performed periodically to ensure optimal extraction. The maceration results were filtered using filter paper (No. 42, 125 mm). The extraction process was then carried out using a rotary evaporator at 40°C with a rotating speed of 3000 rpm (Hashim et al., 2021). The resulting extract was stored as a stock solution. A total of 0.05 g of S. serrata extract was used as an additive for the stock solution (Habib et al., 2022). Wet maceration is a commonly employed extraction method due to its ability to preserve heat-sensitive compounds. Stirring during the maceration process enhances solute dissolution, while rotary evaporation ensures efficient solvent removal under controlled temperature conditions.

## Determination of antioxidant activity and IC50 value

Antioxidant testing was conducted using the DPPH method (Vásquez et al., 2023). The stock solution of S. serrata extract was used as the test solution, while vitamin C served as a reference. The sample was dissolved in 96% ethanol. A total of 1 mL of sample solution was prepared for each concentration: 100, 150, 200, 250, and 300 mg.L $^{-1}$ . Each concentration was mixed with 40 µg.mL $^{-1}$  DPPH solution and incubated in the dark for 30 min. Absorbance was measured at 517 nm using UV-Vis spectrophotometry. The strength of antioxidant activity is classified according to IC50 values, as shown in Table 1. The IC50 value is calculated using the following formula.

$$inhibition = \frac{blank\ abs - sample\ abs.}{blank\ abs}\ x\ 100\ \%$$

The IC<sub>50</sub> results were entered in the linear regression equation y= ax + b. The sample concentration is the abscissa (X-axis), and the percentage of antioxidant inhibition is the ordinate (Y-axis) (Yuniarti *et al.*, 2020). The concentration corresponding to 50% inhibition was interpolated from the regression equation. All determinations were conducted in triplicate, and the mean IC<sub>50</sub> values were statistically compared using one-way ANOVA, followed by Duncan's multiple range test (P< 0.05).

Table 1. Characteristic concentration value of IC<sub>50</sub> (Molyneux, 2004)

| Concentration Value (µg.mL <sup>-1</sup> ) | Characteristic |
|--------------------------------------------|----------------|
| <50                                        | Very Strong    |
| 50-100                                     | Strong         |
| 100-150                                    | Moderate       |
| 150-200                                    | Low            |

### Phytochemical screening

Phytochemical tests of *S. serrata* meat extracts were conducted using qualitative methods to identify the presence of bioactive compounds. The analysis included steroid and triterpenoid tests, which were performed using the Liebermann-Burchard method, alkaloid tests using Mayer and Dragendorff reagents, flavonoid tests with the Shinoda staining method, tannin tests using the FeCl<sub>3</sub> reaction, and saponin tests using the foam test method. Each test was carried out following the procedures described in standard literature (Suwandi *et al.*, 2020; Dinesh *et al.*, 2022).

# Gas Chromatography-Mass Spectrometry (GC-MS) analysis

The identification of bioactive compound components in S. serrata meat extract was performed using the GC-MS analysis method, following Rozirwan et al. (2022) with modifications. A total of 1 µL of extract was injected into an RTX-5MS capillary column (30 m × 0.25 mm i.d., 0.25 µm film thickness) using helium as the carrier gas at a constant flow rate of 1.0 mL.min<sup>-1</sup> and a split ratio of 1:50. The oven temperature was initially set at 50°C for 5 min, then increased at a rate of 5°C/min to 280°C, and held for 5 min. The injector and ion source temperatures were 280°C and 230°C, respectively, with an electron ionization (EI) energy of 70 eV. The mass spectrometer was operated in scan mode with a mass range of 40-550 m/z. The Wiley 7 Library database was used as a reference for spectral comparison (Rafferty et al., 2020).

## **Result and Discussion**

## Sample identification and collection

Taxon determination was conducted using data from the World Register of Marine Species (WoRMS) accessed in January 2023 (WoRMS, 2023). Based on their morphological characteristics, the crustacean samples were identified as *S. serrata*.

Mangrove crabs of this species were caught using folding traps. The fishing process was carried out during low tide to facilitate crab capture. In this

study, 2-5 crabs were used as stock samples. The crabs obtained were weighed, with weights ranging from 200 to 320 g, widths of approximately 21.5 cm, and lengths of around 13.5 cm. The crabs were then stored in a cool box filled with ice cubes for preservation. The species identification of mangrove crabs is based on morphological characteristics, which include features such as the eyes, propodus, carpus, merus, carapace, claws, walking legs, and swimming legs (Figure 2). Taxonomic data from databases such as WoRMS is widely used to confirm species classification accurately.

### Environmental characteristics of sampling area

results of environmental quality measurements in the S. serrata sampling areas in Banyuasin waters revealed diverse conditions. Measurements of water physicochemical parameters, including dissolved oxygen, pH, temperature, and salinity, were taken to assess the habitat suitability for S. serrata (Rozirwan et al., 2021). The dissolved oxygen concentration was found to be 4.2 mg.L<sup>-1</sup>, which is sufficient to support the respiration process of aquatic organisms (Ouyang et al., 2021). The pH value of the water at the sampling location was 7, indicating neutral pH, which represents optimal ecological conditions (Chowdhury et al., 2021). This is consistent with previous studies (Yusni and Haq, 2020; Muhtar and Lanuru, 2021; Putri et al., 2022), which state that waters with a pH between 6.5 and 7.5 are ideal for the survival of mangrove crabs. The water temperature was measured at 28°C, indicating favorable conditions for mangrove crab growth (Indarjo et al., 2020; Ren et al., 2021) Water salinity was recorded at 18 psu. reflecting typical conditions in estuarine areas or areas directly influenced by tidal movements (Wang et al., 2021). S. serrata grows best in salinities between 15 psu and 25 psu but grows more slowly at salinities greater than 25 to 30 psu (Triajie et al., 2020; Pati et al., 2023; Adnan et al., 2024).

Environmental conditions at the sampling site, particularly salinity (18 psu) and temperature (28°C), could also influence the diversity and concentration of secondary metabolites in S. serrata. Estuarine environments are dynamic, and organisms inhabiting them may prioritize the synthesis of specific bioactive compounds for stress adaptation.

Table 2. Observation of Environmental Parameters of the Research Site

|                                        | Station         |
|----------------------------------------|-----------------|
| Environment Parameter Quality          | Sungsang Waters |
| Dissolved oxygen (mg.L <sup>-1</sup> ) | 4.2             |
| рН                                     | 7               |
| Temperature (°C)                       | 28              |
| Salinity (psu)                         | 18              |

Previous studies reported that salinity stress can regulate secondary metabolite production, including alkaloids and flavonoids, in marine organisms (Pati et al., 2023). Furthermore, the choice of ethanol as the extraction solvent, although safer and less toxic than methanol, may have influenced the recovery efficiency of certain compounds, possibly underestimating the abundance of more polar metabolites.

### Determination of antioxidant activity by DPPH assay

Antioxidant analysis using the DPPH (2,2diphenyl-1-picrylhydrazyl) method on Rozirwan et al. (2023) S. serrata meat extract showed promising results. The DPPH solution changed from purple to vellow, indicating the presence of antioxidants in the extract. The test results revealed that the S. serrata extract had an IC50 value of 2.25 ppm, while Vitamin C, used as a comparison solution, had an IC50 value of 2.16 ppm (Table 3). Both solutions demonstrated low IC50 values, categorizing them as very strong antioxidant compounds. The IC50 value, which is the concentration required to inhibit 50% of DPPH radical activity, is a critical parameter for assessing the antioxidant potential of a compound (Martinez-Morales et al., 2020). The results indicate that S. serrata extract possesses an IC50 value comparable to that of Vitamin C. The percentage inhibition of DPPH free radicals by S. serrata meat extract increased as the extract concentration increased. This suggests that the extract has the ability to donate

electrons or hydrogen to the DPPH radical, neutralizing it and converting it into a more stable form (Gulcin and Alwasel, 2023).

The discovery of compounds such as flavonoids and triterpenoids, which were identified in the phytochemical analysis of *S. serrata* extracts, suggests that they may possess high antioxidant activity (Akinwumi *et al.*, 2022; Hajar-Azira *et al.*, 2023). Flavonoids are well known for their ability to capture free radicals and interrupt the chain of oxidative reactions. Triterpenoids are also recognized for their significant antioxidant activity through a similar mechanism. The combination of these compounds in *S. serrata* extract creates a synergistic effect, enhancing the overall capacity of the extract to neutralize free radicals.

S. serrata is known for its rich antioxidant system and strong enzymatic defense system, which help it survive in the dynamic and often challenging mangrove environment (Pati et al., 2023). Mud crabs also possess defense enzymes such as superoxide dismutase (SOD), catalase, and glutathione peroxidase, which work synergistically to detoxify reactive oxygen species (ROS) and maintain redox balance in the body (Jerome et al., 2020; Bal et al., 2021; Costantini et al., 2022; Zeng et al., 2024). These enzymes play a crucial role in protecting the crab from oxidative stress generated by fluctuating environmental conditions, pollution, and pathogens.

 Table 3. Calculation results of antioxidant activity of S. serrata in Sungsang waters

| Sample        |        | Linear Regression |                |                          |             |
|---------------|--------|-------------------|----------------|--------------------------|-------------|
|               | а      | b                 | R <sup>2</sup> | - IC <sub>50</sub> Value | Category    |
| S. serrata    | 6.9429 | 52.808            | 0.9327         | 2.25 mg.L <sup>-1</sup>  | Very Strong |
| Ascorbic Acid | 6.7135 | 55.866            | 0.9435         | 2.16 mg.L <sup>-1</sup>  | Very Strong |

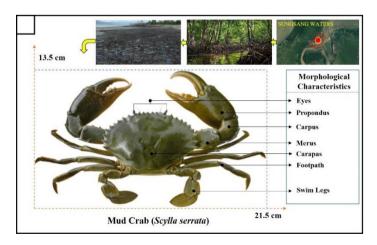



Figure 2. Crustacean species, S. serrata

This combination of antioxidant compounds and defence enzymes not only ensures the survival of mud crabs in their habitat but also positions them as a potential source for the development of natural health products that can harness their protective mechanisms. Antioxidants and defence enzymes play a vital role in organisms' survival, especially in harsh environments. The synergy between these compounds and enzymes contributes significantly to mitigating oxidative stress and preserving cellular function, which can be explored for potential therapeutic applications.

### Phytochemical screening

Phytochemical tests were carried out to identify the compounds present in gastropod and crustacean extracts using ethanol as the solvent (Fitria et al., 2023; Rozirwan et al., 2024) The phytochemical test aimed to determine the compounds in the test extract (Chen et al., 2022), allowing for the identification of compounds that influence the strong or weak antioxidant activity of the extract (Baliyan et al., 2022). The results of the phytochemical test, after UV-Vis spectrophotometric analysis of the extract, are presented in Table 4. The test results showed that only certain compounds were extracted by the ethanol solvent (Yuniarti et al., 2020).

Qualitative phytochemical analysis of S. serrata extract showed significant results in identifying the content of bioactive compounds. Based on the test results, S. serrata extract tested positive for flavonoid and triterpenoid compounds. A similar finding was reported by Elshaarawy et al. (2023) for Scylla olivacea samples. These two compounds offer various health benefits and therapeutic potential, particularly due to their strong antioxidant properties. Flavonoids are a group of polyphenolic compounds that are widely recognized for their potent antioxidant activity (Shen et al., 2022). These compounds can neutralize free radicals and prevent oxidative damage to cells and tissues. Additionally, flavonoids possess anti-inflammatory, anticancer, and cardioprotective properties (Mounika et al., 2021; Jain et al., 2024; Ullah et al., 2024). The identification of flavonoid compounds in S. serrata indicates that mud crabs are not only valuable as

food but also hold potential as an alternative source of medicine from marine organisms.

Triterpenoids are a group of terpenoid compounds that have potential biological activities (Mabou and Yossa, 2021; Zang et al., 2022). These compounds are known to possess anti-inflammatory, antitumor, antimicrobial, and immunomodulatory properties (Harun et al., 2020; Ahmad et al., 2021). As antioxidant agents, triterpenoids have been used in pharmacology to treat inflammatory diseases and cancer. Similar to flavonoids, these compounds can neutralize free radicals caused by oxidative stress on body tissues. The discovery of triterpenoid compounds in S. serrata shows promising results. given their antioxidant potential that can be applied to address various diseases. Thus, the opportunity to explore alternative medicinal raw materials from S. serrata extract is increasingly attractive for further research. Overall, the phytochemical results focusing on flavonoid and triterpenoid compounds confirm the importance of S. serrata as a potential source of bioactive compounds. Further research encouraged at the stage of isolation and purification of these compounds, so that alternative medicinal materials derived from this marine organism can contribute to the development of therapeutic agents from marine organisms.

## Phytochemical profile screening

The antioxidant compound profile in S. serrata was determined using GC-MS (Gas Chromatography-Mass Spectrometry) analysis on the ethanol extract of mud crab. Figure 3 shows the chromatogram with 37 peaks identified in the extract. Each peak on the chromatogram represents a distinct chemical compound found in the extract, which was analyzed using GC-MS.

GC-MS analysis is a powerful technique for identifying and quantifying individual compounds in complex mixtures, providing insights into the chemical composition of the extract. This method is widely used for its ability to separate and identify volatile compounds, making it an essential tool for profiling bioactive compounds, such as antioxidants, in natural products.

Table 4. Phytochemical screening results of S. Serrata

| Parameters    | Analysis Result | Analysis Type |
|---------------|-----------------|---------------|
| Alkaloids     | -               | Qualitative   |
| Flavonoids    | +               | Qualitative   |
| Triterpenoids | +               | Qualitative   |
| Saponin       | -               | Qualitative   |
| Tannins       | -               | Qualitative   |
| Steroid       | -               | Qualitative   |

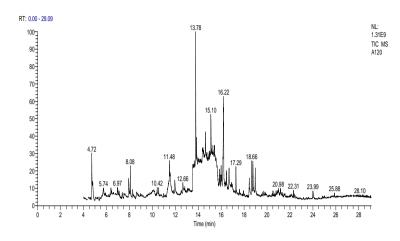



Figure 3. GC-MS chromatogram of ethanol extract S. Serrata

Terpenoid, alkaloid, steroid, and tannin groups were among the pure compounds successfully detected using GC-MS. Based on the GC-MS analysis of the ethanol extract compound components presented in Table 5, the main components identified in the extract were Calycotomine, N-methyl-, with a value of 8.31% of the total area, and uric acid, with a value of 8.71% of the total area.

At a retention time of 4.72 min, the compound 2-Cyclohexylpiperidine was detected with an area of 3.45%, a probability of 6.07, and a chemical formula of C11H21N, which belongs to the alkaloid compound group. At a retention time of 5.74 min, the compound 2-Pyridinamine, 3,6-dimethyl detected with an area of 1.69%, a probability of 7.02, and a chemical formula of C7H10N2, which belongs to the aminopyridine compound group. Furthermore, at a retention time of 6.97 min, the compound Pentanoic acid, dodec-9-ynyl ester was detected with an area of 1.00%, a probability of 8.47, and a chemical formula of C17H3002, which belongs to the protein compound group.

At a retention time of 8.08 min, the compound L-Homoserine lactone, N, N-dimethyl was detected with an area of 1.97%, a probability of 82.23, and a chemical formula of C6H11NO2, which belongs to the amino acid compound group. At a retention time of 10.42 min, the compound Thieno[2,3-c]furan-3-carbonitrile, 2-amino-4,6-dihydro-4,4,6,6-tetramethyl was detected with an area of 0.74%, a probability of 43.35, and a chemical formula of C11H14N2OS, which belongs to the EPA compound group. At a retention time of 11.48 min, the compound 1H-2-Indenol, 2,3,4,5,6,7- hexahydro -1-(2-hydroxy-2-methylpropyl) was detected with an area of 4.83%, a probability of 12.26, and a chemical formula of

C13H22O2, which belongs to the lactone compound group.

At a retention time of 12.66 min, the compound dl-Lysine was detected with an area of 0.86%, a probability of 23.13, and a chemical formula of C6H14N2O2, which belongs to the amino acid compound group. At a retention time of 13.78 min, the compound Calycotomine, N-methyl- was detected with an area of 8.31%, a probability of 43.35, and a chemical formula of C13H19NO3, which belongs to the alkaloid compound group. At a retention time of 15.10 min, the compound Dasycarpidan-8(16H)-ethanol, 3,18-dihydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)-was detected with an area of 4.14%, a probability of 12.00, and a chemical formula of C20H28N2O2, which belongs to the group of molport compounds.

At a retention time of 16.22 min, the uric acid compound was detected with an area of 8.71%, a probability of 55.93, and a chemical formula of C5H4N4O3, which belongs to the allantoin compound group. At a retention time of 17.29 min, the compound Actinomycin C2 was detected with an area of 1.49%, a probability of 30.73, and a chemical formula of C63H88N12O16, which belongs to a group of peptide compounds that are derivatives of peptide compounds.

Animals produce a diverse mixture of secondary metabolites such as phenols, alkaloids, flavonoids, tannins, and saponins. Several animal studies have shown the potential use of these metabolites as antibacterial agents due to the presence of abundant biomolecules. Synthetic drugs often have high secondary failure rates and severe side effects, while animal products contain a variety of free radical scavenging molecules with substantial antioxidant properties.

As a more taxonomically relevant comparison, Yao et al. (2020) conducted a GC-MS-based

metabolomic study on Scylla paramamosain experiencing acute salinity reduction (from 23 psu to 3 psu). This study identified 519 metabolites (mainly lipids), with 13 significantly enriched metabolic pathways (P< 0.05), related to signaling, lipid metabolism, and transport. Additionally, in that study, combining LC-MS and GC-MS data revealed 28

significant metabolic pathways, dominated by amino acid and energy metabolism, with lipid metabolism playing a supporting role. In comparison, in our study, Scylla serrata ethanol extract showed only 8.31% alkaloid content among the dominant compounds.

Table 5. Proposed peak order, retention time, probability, area, compound name, and molecular formula

| Peak#    | R.<br>Time     | Probability | Area%        | Name                                                                                                                                   | Molecular<br>formula |
|----------|----------------|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1        | 4.72           | 6.07        | 3.45         | 2-Cyclohexylpiperidine                                                                                                                 | C11H21N              |
| 2        | 4.81           | 18.58       | 1.37         | Edulan II                                                                                                                              | C13H200              |
| 3        | 5.74           | 7.02        | 1.69         | 2-Pyridinamine, 3,6-dimethyl                                                                                                           | C7H10N2              |
| 4        | 6.39           | 8.12        | 0.83         | Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate                                                                                             | C16H28O3             |
| 5        | 6.61           | 11.07       | 0.66         | d-Mannose                                                                                                                              | C6H12O6              |
| 5<br>6   | 6.81           | 50.91       | 0.89         | Deoxyspergualin                                                                                                                        | C17H37N7O3           |
| 7        | 6.97           | 8.47        | 1.00         | Pentanoic acid, dodec-9-ynyl ester                                                                                                     | C17H3002             |
| 8        | 7.93           | 51.03       | 1.42         | trans-(2 Chlorovinyl)dimethylethoxysil ane                                                                                             | C6H13ClOSi           |
| 9        | 8.08           | 82.23       | 1.97         | L-Homoserine lactone, N,N-dimethyl-                                                                                                    | C6H11NO2             |
| 10       | 8.28           | 32.09       | 0.64         | 2-Propyl-tetrahydropyran-3-ol                                                                                                          | C8H16O2              |
| 11       | 8.62           | 32.45       | 0.93         | Imidazole                                                                                                                              | C3H4N2               |
| 12       | 10.00          | 11.83       | 0.76         | Tertbutyloxyformamide, N-methyl-N-[4-(1-pyrrolidinyl)-2-buty nyl]-                                                                     | C14H24N2O2           |
| 13       | 10.42          | 15.27       | 0.74         | Thieno[2,3-c]furan-3-carbonitrile, 2-amino-4,6-dihydro-4,4,6,6-tetrameth yl                                                            | C11H14N2OS           |
| 14       | 11.48          | 12.26       | 4.83         | 1H-2-Indenol, 2,3,4,5,6,7-hexahydro-1-(2-hydroxy-2-methylpropyl)                                                                       | C13H22O2             |
| 15       | 11.55          | 48.75       | 2.53         | dl-Citrulline                                                                                                                          | C6H13N3O3            |
| 16       | 11.96          | 7.38        | 1.45         | 2-Pyridineacetic acid, hexahydro-                                                                                                      | C7H13NO2             |
| 17       | 12.66          | 23.13       | 0.86         | dl-Lysine                                                                                                                              | C6H14N2O2            |
| 18       | 13.51          | 60.28       | 1.62         | D-Streptamine, O-6-amino-6-deoxy-à-D-glucopyranosy l-(1-4)-O-(3-deoxy-4-C-methyl-3-(meth ylamino)-á-L-arabinopyranosyl-(1-6))- 2-deoxy | C6H13N02             |
| 19       | 13.78          | 43.35       | 8.31         | Calycotomine, N-methyl-                                                                                                                | C13H19NO3            |
| 20       | 13.99          | 17.84       | 2.38         | 4-[4-Diethylamino-1-methylbutylamino]-1,2-dimethoxy-6-bromonaphthalene                                                                 | C21H31BrN2O2         |
| 21       | 14.35          | 32.83       | 1.22         | Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)-                                                         | C20H28N2O2           |
| 22       | 14.62          | 12.2        | 2.67         | 4-[4-Diethylamino-1-methylbutylamino]-1,2-dimethoxy-6-bromonaphthalene                                                                 | C21H31BrN2O2         |
| 23       | 15.10          | 12.00       | 4.14         | Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-, (2.xi.,4.xi.)-                                                         | C20H28N2O2           |
| 24       | 15.21          | 32.49       | 0.87         | Cystine                                                                                                                                | C6H12N2O4S2          |
| 25       | 15.65          | 33.28       | 1.26         | 3-[N-[2-Diethylaminoethyl]-1-cyclopes tenylamino]propionitrile                                                                         | C14H25N3             |
| 26       | 15.86          | 16.52       | 0.92         | á-Hydroxyquebrachamine                                                                                                                 | CH3CH(OH)COOH        |
| 27       | 15.99          | 14.23       | 1.02         | 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropyl ester, (Z,Z,Z)-                                                                     | C21H36O4             |
| 28       | 16.22          | 55.93       | 8.71         | Uric acid                                                                                                                              | C5H4N4O3             |
| 29       | 16.45          | 8.30        | 1.33         | Aminoacetamide, N-methyl-N-[4-(1-pyrrolidinyl)-2-buty nyl]-                                                                            | C5H4N4O3             |
| 30       | 16.69          | 32.32       | 2.06         | Glucopyranuronamide, 1-(4-amino-2-oxo-1(2H)-pyrimidinyl)-1,4-dideoxy-4-(D-2-(2-(methylamino) acetamido)hydracrylamido)-, á-D           | C10H14N2O            |
| 31       | 16.90          | 29.78       | 0.80         | 1,2,4-Trioxolane-2-octanoic acid, 5-octyl-, methyl ester                                                                               | C6H11NO6             |
| 32       | 17.29          | 30.73       | 1.49         | Actinomycin C2                                                                                                                         | C19H36O5             |
| 33       | 18.45          | 37.85       | 2.00         | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-                                                                        | C63H88N12016         |
| 34       | 18.66          | 90.13       | 2.23         | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-                                                                        | C63H88N12016         |
| 35       | 18.76          | 60.11       | 2.62         | 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6 H-dipyrrolo[1,2-a:1',2'-d]pyrazine                                                               | C11H18N2O2           |
| 36<br>37 | 18.97<br>20.98 | 36<br>13.19 | 2.13<br>1.29 | I-(+)-Ascorbic acid<br>cis-13-Octadecenoic acid                                                                                        | C14H22<br>C6H8O6     |
|          |                |             |              |                                                                                                                                        |                      |

| 38 | 21.17 | 13.49 | 0.94 | Ricinoleic acid            |                           | C18H34O2 |
|----|-------|-------|------|----------------------------|---------------------------|----------|
| 39 | 23.99 | 31.48 | 0.89 | Ergotaman-3',6',18-trione, | 12'-hydroxy-2'-methyl-5'- | C18H34O3 |
|    |       |       |      | (phenylmeth yl)-, (5'à)-   |                           |          |

This difference suggests that environmental stress factors such as sudden salinity reduction can significantly modulate the metabolite profile among related Scylla species, especially under similar polar extraction conditions.

Interestingly, alkaloid compounds were not detected in the qualitative phytochemical screening, but several alkaloids such as Calycotomine and Imidazole were identified through GC-MS analysis. This discrepancy is not only due to methodological differences but may also be related to the detection sensitivity. Qualitative tests often fail to detect compounds present at low concentrations, whereas GC-MS has a higher sensitivity and can identify minor constituents. In addition, the polarity of ethanol as a solvent might have selectively extracted certain alkaloids in low yield, which escaped detection in qualitative assays but were quantifiable in GC-MS analysis. Similar observations were reported in marine-derived extracts where alkaloids were inconsistently detected depending on the analytical method (Rahmawati et al., 2023; Shofinita et al., 2024).

The main group of compounds in the ethanol extract of mud crab (S. serrata) was represented by three peaks on the GC chromatogram, which had a higher percentage area than the others. These peaks were identified as Calycotomine, N-methyl- (8.31%), uric acid (8.71%), and Dasycarpidan-8(16H)-ethanol, 3,18-didehydro-1-(hydroxymethyl)-(2.xi.,4.xi.)-4.14%). Antioxidant compounds detected in the GC-MS analysis included 2-Cyclohexylpiperidine with an area of 3.45%, which belongs to the alkaloid group. In addition, the Edullan II compound with an area of 1.37% belongs to the volatile compound group. The Z-(13.14-Epoxy)tetradec-11-en-1-ol acetate, with an area of 0.83%, belongs to the terpenoid compound group, and Imidazole with an area of 0.93% also belongs to the alkaloid group.

In a study conducted by Karnila et al. (2021) on mud crab (S. serrata), antioxidant compounds such as astaxanthin with a peak area of 18.6% and βcarotene with a peak area of 7.9% were identified through GC-MS analysis, both of which belong to the carotenoid group and contribute to antioxidant activity. Similarly, a study by (Surrete, 2013) on the nutritional composition of S. serrata reported the presence of unsaturated fatty acids such as eicosapentaenoic acid (EPA, 5.42%) docosahexaenoic acid (DHA, 4.87%), which are categorized as bioactive lipids and known for their health-promoting effects.

The group of compounds identified in Scylla serrata are alkaloids. Based on research by Karim et al. (2024) analyzing muscle and hepatopancreas extracts of S. olivacea, they reported a lipid profile including EPA and DHA content, as well as significant antioxidant capacity measured through the DPPH and ferric-reducing tests. Similarly, Taufik et al. (2020) applied GC-MS to S. olivacea tissues, revealing a predominance of monounsaturated polyunsaturated fatty acids, including long-chain polyunsaturated fatty acids (PUFAs) in the gonads and hepatopancreas. Although specific alkaloid compounds have not been reported for Scylla, these lipid-based metabolites provide relevant biological context within the genus Scylla. Therefore, comparisons of the alkaloid profiles of S. serrata should emphasize the same metabolic pathways within this genus and highlight the need for targeted alkaloid profile studies on Scylla species.

### Conclusion

This study successfully demonstrated that S. serrata extract possesses very strong antioxidant activity, supported by the presence of flavonoids, triterpenoids, and various bioactive compounds identified through phytochemical and GC-MS analyses. These findings confirm that the research objective to explore and characterize the antioxidant potential and compound profile of S. serrata has been achieved. The extract's bioactive profile, comprising both major and minor compounds, reinforces its potential as a promising source of natural pharmacological antioxidants with additional properties, including anti-inflammatory, anticancer, antimicrobial, and antiviral activities. Overall, this study contributes to the growing evidence that marine organisms represent valuable resources for the development of alternative medicinal agents.

## **Acknowledgement**

The research/publication of this article was funded by DIPA of Public Service Agency of Universitas Sriwijaya 2024. Nomor SP DIPA 023.17.2.677515/2024, On November 24, 2023. In accordance with the Rector's Degree Number: 0013/UN9/LP2M.PT/2024, On May 20, 2024.

#### References

Adnan, A.S., Gamburud, L.C., Affendi, I.S.M., Pauzi,

- M.M., Mahsol, H.H., Muhammad, T., Manan, H., Naimullah, M., Ismail, C.Z.C. & Harman, M.F. 2024. Moulting performances evaluation of female orange mud crab, *Scylla olivacea* (Herbst, 1796) in-captivity: effects of water salinity and limb autotomy. *Trop. Life Sci. Res.*, 35(1): p.197. https://doi.org/10.21315/tlsr20 24.35.1.11
- Ahmad, M.F., Ahmad, F.A., Khan, M.I., Alsayegh, A.A., Wahab, S., Alam, M.I. & Ahmed, F. 2021. Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. Int. J. Biol. Macromol., 187: 769–779. https://doi.org/10.1016/j.ijbiomac.2021. 06.122
- Akinwumi, K.A., Abam, E.O., Oloyede, S.T., Adeduro, M.N., Adeogun, Y.A. & Uwagboe, J.E. 2022. Acrostichium aureum Linn: traditional use, phytochemistry and biological activity. Clin. Phytoscience, 8(1): p.18. https://doi.org/10.1186/s40816-022-00349-w
- Alkadi, H. 2020. A review on free radicals and antioxidants. Infect. Disord. Targets (Formerly Curr. Drug Targets-Infectious Disord., 20(1): 16–26. https://doi.org/10.2174/187152651866 6180628124323
- Ambekar, A.A., Sivaperumal, P., Kamala, K., Kubal, P. & Prakash, C. 2023. Effect of temperature changes on antioxidant enzymes and oxidative stress in gastropod *Nerita oryzarum* collected along India's first Tarapur Atomic Power Plant site. *Environ. Res.*, 216: p.114334. https://doi.org/10.1016/j.envres.2022.114334
- Baag, S. & Mandal, S. 2023. Do global environmental drivers' ocean acidification and warming exacerbate the effects of oil pollution on the physiological energetics of S. serrata? Environ. Sci. Pollut. Res., 30: 23213–23224. https://doi.org/10.1007/s11356-022-23849-1
- Bal, A., Panda, F., Pati, S.G., Das, K., Agrawal, P.K. & Paital, B. 2021. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 241: p.108971. https://doi.org/10.1016/j.cbpc.2020.108971
- Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R.P. & Chang, C.M. 2022. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of *Ficus religiosa*. *Molecules*, 27(4): p.1326. https://doi.org/10.

#### 3390/molecules27041326

- Beslin, L.G. & Geni, G. 2021. Biochemical Profile and Antibacterial Examination of Freshwater Crab S. serrata (FORSKAL, 1775). *Int. J. Clin. Invent. Med.* Sci., 3(2): 53–65. https://doi.org/10.36079/lamintang.ijcims-0302.233
- Chaudhary, P., Janmeda, P., Docea, A.O., Yeskaliyeva, B., Abdull Razis, A.F., Modu, B., Calina, D. & Sharifi-Rad, J. 2023. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. *Front. Chem.*, 11: p.1158198 https://doi.org/10.3389/fchem.2023.1158198
- Chen, X., He, X., Sun, J. & Wang, Z. 2022. Phytochemical composition, antioxidant activity, α-glucosidase and acetylcholinesterase inhibitory activity of quinoa extract and its fractions. 27(8): p.2420. https://doi.org/ 10.3390/ molecules27082420
- Chowdhury, M., Kiraga, S., Islam, M.N., Ali, M., Reza, M.N., Lee, W.H. & Chung, S.O. 2021. Effects of temperature, relative humidity, and carbon dioxide concentration on growth and glucosinolate content of kale grown in a plant factory. *Foods*, 10(7): p.1524. https://doi.org/10.3390/foods10071524
- Costantini, M., Esposito, R. & Ruocco, N. 2022. Crustaceans as Good Marine Model Organisms to Study Stress Responses by—Omics Approaches. In *Crustaceans* (pp. 82–106). CRC Press. https://doi.org/10.1201/9780367853 426-6
- Delta, M., Rozirwan & Hendri, M. 2021. Aktivitas antioksidan ekstrak daun dan kulit batang mangrove Sonneratia alba di Tanjung Carat, Kabupaten Banyuasin, Provinsi Sumatera Selatan. Maspari J. Mar. Sci. Res., 13(2): 129–144. https://doi.org/10.56064/maspari.v13i 2.14577
- Di Meo, S. & Venditti, P. 2020. Evolution of the knowledge of free radicals and other oxidants. Oxid. Med. Cell. Longev., 2020(1): p.9829176. https://doi.org/10.1155/2020/9829176
- Dinesh, D., Murugan, K., Subramaniam, J., Paulpandi, M., Chandramohan, B., Pavithra, K., Anitha, J., Vasanthakumaran, M., Fraceto, L.F. & Wang, L. 2022. Salvia leucantha essential oil encapsulated in chitosan nanoparticles with toxicity and feeding physiology of cotton bollworm Helicoverpa armigera. Biopesticides (pp. 159–181). Elsevier. https://doi.org/10.

#### 1016/B978-0-12-823355-9.00022-5

- Elshaarawy, R., Aboali, E., Alian, A., Ibrahim, H., El-Nabi, S.H., Mohammed-Geba, K. & Galal-Khallaf, A. 2023. Preliminary assessment of bioactive ingredients and antioxidant activity of some Red Sea invertebrates' extracts. *Egypt. J. Aquat. Biol. Fish.*, 27(4): p495. https://doi.org/10.21608/ejabf.2023.311303
- Fajriaty, I., Fidrianny, I., Kurniati, N.F., Fauzi, N.M., Mustafa, S.H. & Adnyana, I.K. 2024. In vitro and in silico studies of the potential cytotoxic, antioxidant, and HMG CoA reductase inhibitory effects of chitin from Indonesia mangrove crab (S. serrata) shells. Saudi J. Biol. Sci., 31(5): p.103964. https://doi.org/10.1016/j.sjbs.2024.103964
- Fitria, Y., Rozirwan, R., Fitrani, M., Nugroho, R.Y., Fauziyah, F. & Putri, W.A.E. 2023. Gastropods as bioindicators of heavy metal pollution in the Banyuasin estuary shrimp pond area, South Sumatra, Indonesia. *Acta Ecol. Sin.*, 43(6): 1129 –1137. https://doi.org/10.1016/j.chnaes.20 23.05.009
- Frías-Espericueta, M.G., Bautista-Covarrubias, J.C., Osuna-Martínez, C.C., Delgado-Alvarez, C., Bojórquez, C., Aguilar-Juárez, M., Roos-Muñoz, S., Osuna-López, I. & Páez-Osuna, F. 2022. Metals and oxidative stress in aquatic decapod crustaceans: A review with special reference to shrimp and crabs. *Aquat. Toxicol.*, 242: p.106024. https://doi.org/10.1016/j.aquatox. 2021.106024
- Galal-Khallaf, A., Samir Aboali, E., El-Sayed Hassab El-Nabi, S., El-Tantawy, A.I., Schott, E.J. & Mohammed-Geba, K. 2024. As healthy as invasive: Charybdis natator shell extract reveals beneficial metabolites with promising antioxidant and anti-inflammatory potentials. *Front. Mar. Sci.*, 11: p.1376768. https://doi.org/10.3389/fmars.2024.1376768
- Gulcin, İ. & Alwasel, S.H. 2023. DPPH radical scavenging assay. *Processes.*, 11(8): p.2248. https://doi.org/10.3390/pr110822 48
- Habib, M.R., Hamed, A.A., Ali, R.E.M., Zayed, K.M., Gad El-Karim, R.M., Sabour, R., Abu El-Einin, H.M. & Ghareeb, M.A. 2022. Thais savignyi tissue extract: bioactivity, chemical composition, and molecular docking. *Pharm. Biol.*, 60(1): 1899–1914. https://doi.org/10.1080/1388 0209.2022.2123940
- Hajar-Azira, Z., Aaqillah-Amr, M.A., Rasdi, N.W., Ma, H. & Ikhwanuddin, M. 2023. Preliminary

- investigation on the effect of fiddlehead fern, *Diplazium* esculentum, extract to the growth performance of giant freshwater prawn, Macrobrachium rosenbergii, postlarvae. *Aquac. Int.*, 31(1): 81–101. https://doi.org/10.1007/s10499-022-00965-w
- Harun, N.H., Septama, A.W., Ahmad, W.A.N.W. & Suppian, R. 2020. Immunomodulatory effects and structure-activity relationship of botanical pentacyclic triterpenes: A review. *Chinese Herb. Med.*, 12(2): 118–124. https://doi.org/10.1016/j.chmed.2019.11.007
- Hashim, N., Abdullah, S., Hassan, L.S., Ghazali, S.R. & Jalil, R. 2021. A study of neem leaves: Identification of method and solvent in extraction. *Mater. Today Proc.*, 42: 217-221. https://doi.org/10.1016/j.matpr.2020.11.726
- Hidir, A., Aaqillah-Amr, M.A., Azra, M.N., Shahreza, M.S., Abualreesh, M.H., Peng, T.H., Ma, H., Waiho, K., Fazhan, H. & Ikhwanuddin, M. 2021. Sexual dimorphism of mud crab, genus Scylla between sexes based on morphological and physiological characteristics. *Aquac. Res.*, 52(12): 5943–5961. https://doi.org/10.1111/are.15497
- Indarjo, A., Salim, G., Zein, M., Septian, D. & Bija, S. 2020. The population and mortality characteristics of mangrove crab (S. serrata) in the mangrove ecosystem of Tarakan City, Indonesia. *Biodiversitas J. Biol. Divers.*, 21(8):. https://doi.org/10.13057/biodiv/d210855
- Jabbar, A.A., Abdullah, F.O., Abdulrahman, K.K., Galali, Y. & Sardar, A.S. 2022. GC-MS Analysis of bioactive compounds in methanolic Extracts of *Papaver decaisnei* and determination of Its antioxidants and anticancer activities. *J. Food Qual.*, 2022(1): p.1405157. https://doi.org/10.1155/2022/1405157
- Jain, A., Sarsaiya, S., Gong, Q., Wu, Q. & Shi, J. 2024. Chemical diversity, traditional uses, and bioactivities of Rosa roxburghii Tratt: A comprehensive review. *Pharmacol. Ther.*, 259: p.108657. https://doi.org/10.1016/j.pharmth era.2024.108657
- Jerome, F.C., Hassan, A. & Chukwuka, A.V. 2020. Metalloestrogen uptake, antioxidant modulation and ovotestes development in *Callinectes amnicola* (blue crab): a first report of crustacea intersex in the Lagos lagoon (Nigeria). *Sci. Total Environ.*, 704: p.135235. https://doi.org/10.1016/j.scitotenv.2019.135235
- Karim, N.U., Mohd Noor, N. S., Sofian, M. F., Hassan,

- M., Ikhwanuddin, M. & Nirmal, N. P. 2024. Lipid profile and antioxidant activities of mud crab (*Scylla olivacea*) extract obtained from muscle and hepatopancreas. *CyTA-Journal of Food*, 22(1): p.2363923. https://doi.org/ 10.1080/19476337.2024.2363923
- Karnila, R. & Ramadhani, N.R. 2021. Antioxidant activity of astaxanthin flour extract of mud crab (S. serrata) with different acetone concentrations. *IOP Conf. Ser. Earth Environ.* Sci., 695(1): p.12047. https://doi.org/10.108 8/1755-1315/695/1/012047
- Mabou, F.D. & Yossa, I.B.N. 2021. TERPENES: Structural classification and biological activities. *IOSR J Pharm Biol Sci*, 16: 25–40. https://doi.org/10.9790/3008-1603012540
- Martemucci, G., Costagliola, C., Mariano, M., D'andrea, L., Napolitano, P. & D'Alessandro, A.G. 2022. Free radical properties, source and targets, antioxidant consumption and health. 2(2): 48–78. https://doi.org/10.3390/oxygen 2020006
- Martinez-Morales, F., Alonso-Castro, A.J., Zapata-Morales, J.R., Carranza-Álvarez, C. & Aragon-Martinez, O.H. 2020. Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants. *Chem. Pap.*, 74: 3325–3334.
- Mediarman, G.N., Riyadi, P.H., Rianingsih, L. & Purnamayati, L. 2021. Potentials of CaO powder result of calcination from green shells (*Perna viridis*), scallops (*Placuna placenta*), and blood clams (*Anadara granosa*) as antibacterial agent. *IOP Conf. Ser. Earth Environ. Sci.*, 890(1): 12043. https://doi.org/10.1088/1755-1315/890/1/012043
- Molyneux, P. 2004. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol., 26(2), 211–219.
- Mounika, S., Jayaraman, R., Jayashree, D., Hanna Pravalika, K., Balaji, A., Banu, M.S. & Prathyusha, M. 2021. A comprehensive review of medicinal plants for cardioprotective potential. *Int. J. Adv. Pharm. Biotechnol.*, 7(1): 24–29. https://doi.org/10.1007/s11696-020-01161-x
- Muhtar, K.M.Y. & Lanuru, M. 2021. Water quality assessment for the development of silvofishery pattern mangrove crabs in Coastal Area, Polewali Mandar, West Sulawesi. *Intl J Sci Res*

- *Publ*, 11(11): 391–395. https://doi.org/10. 29322/IJSRP.11.11.2021.p11952
- Musa, M., Jan, G., Jan, F.G., Hamayun, M., Irfan, M., Rauf, A., Alsahammari, A., Alharbi, M., Suleria, H.A.R. & Ali, N. 2022. Pharmacological activities and gas chromatography-mass spectrometry analysis for the identification of bioactive compounds from *Justicia adhatoda* L. *Front. Pharmacol.*, 13: p.922388. https://doi.org/10.3389/fphar.2022.922388
- Nagarajan, P., Louis, L.R.P., Patil, S.J., Adam, J.K. & Krishna, S.B.N. 2024. Therapeutic potential of biologically active peptides from marine organisms for biomedical applications. *Stud. Nat. Prod. Chem.*, 81: 467–500. https://doi.org/10.1016/B978-0-443-15628-1.00019-2
- Nanda, P.K., Das, A.K., Dandapat, P., Dhar, P., Bandyopadhyay, S., Dib, A.L., Lorenzo, J.M. & Gagaoua, M. 2021. Nutritional aspects, flavour profile and health benefits of crab meat based novel food products and valorisation of processing waste to wealth: A review. *Trends Food Sci. Technol.*, 112: 252–267. https://doi.org/10.1016/j.tifs.2021.03.059
- Neelima, S., Anju, M.V, Anooja, V.V, Athira, P.P., Archana, K., Musthafa, S.M. & Philip, R. 2022. Characterisation of a novel crustin isoform from mud crab, S. serrata (Forsskål, 1775) and its functional analysis in silico. Silico Pharmacol., 11(1): p.2. https://doi.org/10.1007/s40203-022-00138-w
- Ouyang, Z., Tian, J., Yan, X. & Shen, H. 2021. Effects of different concentrations of dissolved oxygen on the growth, photosynthesis, yield and quality of greenhouse tomatoes and changes in soil microorganisms. *Agric. Water Manag.*, 245: p.106579. https://doi.org/10.1016/j.agwat.20 20.106579
- Palma, A., Ruiz-Montoya, M., Díaz, M. J., Giráldez, I. & Morales, E. 2023. Optimization of bioactive compounds by ultrasound extraction and gas chromatography-mass spectrometry in fast-growing leaves. *Microchem. J.*, 193: p.109231. https://doi.org/10.1016/j.microc.2023.109231
- Pati, S.G., Paital, B., Panda, F., Jena, S. & Sahoo, D.K. 2023. Impacts of habitat quality on the physiology, ecology, and economical value of mud crab *Scylla* sp.: a comprehensive review. 15(11): p.2029. https://doi.org/10.3390/w15 112029
- Pati, S.G., Panda, F., Jena, S., Sahoo, D.K. & Paital, B. 2022. Effects of soil trace metals, organic

- carbon load and physicochemical stressors on active oxygen species metabolism in S. serrata sampled along the Bay of Bengal in Odisha state, India. *Front. Environ. Sci.*, 10: p.994773.
- Pisoschi, A.M., Pop, A., Iordache, F., Stanca, L., Predoi, G. & Serban, A.I. 2021. Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. *Eur. J. Med. Chem.*, 209: p.112891. https://doi.org/10.1016/j.ejmech.2020.112891
- Putri, A., Bengen, D.G., Zamani, N.P., Salma, U., Kusuma, N.P., Diningsih, N.T. & Kleinertz, S. 2022. Mangrove habitat structure of mud crabs (S. serrata and S. olivacea) in the Bee Jay Bakau Resort Probolinggo, Indonesia. Ilmu Kelautan Indonesian Journal of Marine Science, 27(2): 124-132 https://doi.org/10.14710/ik.ijms.27. 2.124-132
- Rafferty, C., Johnson, K., O'Mahony, J., Burgoyne, B., Rea, R. & Balss, K.M. 2020. Analysis of chemometric models applied to Raman spectroscopy for monitoring key metabolites of cell culture. *Biotechnol. Prog.*, 36(4): e2977. https://doi.org/10.3389/fenvs.2022.994773
- Rahmawati, R., Bastian, F., Asfar, M., Laga, A., Tawali, A.B. & Fitrianti, A.N. 2023. Effect of decaffeination time on the chemical profile of green bean arabica coffee (*Coffea arabica* L.). *AIP Conf. Proc.*, 2596(1): p.0118748. https://doi.org/ 10.1063/5.0118748
- Ren, X., Wang, Q., Shao, H., Xu, Y., Liu, P. & Li, J. 2021. Effects of low temperature on shrimp and crab physiology, behavior, and growth: a review. *Front. Mar. Sci.*, 8: p.746177. https://doi.org/10.3389/fmars.2021.746177
- Rozirwan, R., Az-Zahrah, S.A.F., Khotimah, N.N., Nugroho, R.Y., Putri, W.A.E., Fauziyah, F., Melki, M., Agustriani, F. & Siregar, Y.I. 2024. Ecological risk assessment of heavy metal contamination in water, sediment, and polychaeta (*Neoleanira Tetragona*) from Coastal Areas affected by aquaculture, urban rivers, and ports in South Sumatra. *J. Ecol. Eng.*, 25(1): 303-319. https://doi.org/10.12911/22998993/175365
- Rozirwan, R., Hananda, H., Nugroho, R.Y., Apri, R., Khotimah, N.N., Fauziyah, F., Putri, W.A.E. & Aryawati, R. 2023a. Antioxidant activity, total phenolic, phytochemical content, and HPLC profile of selected mangrove species from Tanjung Api-Api Port Area, South Sumatra, Indonesia. *Trop. J. Nat. Prod. Res.*, 7(7): 3482-3489. https://doi.org/10.26538/tjnpr/v7i7.29

- Rozirwan, R., Melki, M., Apri, R., Fauziyah, F., Agussalim, A., Hartoni, H. & Iskandar, I. 2021. Assessment the macrobenthic diversity and community structure in the Musi Estuary, South Sumatra, Indonesia. *Acta Ecol. Sin.*, 41(4): 346–350. https://doi.org/10.1016/j.chnaes.2021.02.015
- Rozirwan, R., Nanda, N., Nugroho, R.Y., Diansyah, G., Muhtadi, M., Fauziyah, F., Putri, W.A.E. & Agussalim, A. 2023b. Phytochemical composition, total phenolic content and antioxidant activity of *Anadara granosa* (Linnaeus, 1758) collected from the east coast of South Sumatra, Indonesia. *Baghdad Sci. J.*, 20(4): p.1258. https://doi.org/10.21123/bsj. 2023.6941
- Rozirwan, R., Nugroho, R.Y., Hendri, M., Fauziyah, F., Putri, W.A.E. & Agussalim, A. 2022. Phytochemical profile and toxicity of extracts from the leaf of *Avicennia marina* (Forssk.) Vierh. collected in mangrove areas affected by port activities. *South African J. Bot.*, 150: 903–919. https://doi.org/10.1016/j.sajb.2022.08.037
- Rozirwan, R., Siswanto, A., Khotimah, N.N., Nugroho, R.Y., Putri, W.A.E. & Apri, R. 2024. Anti-inflammatory activity and phytochemical profile from the leaves of the mangrove Sonneratia caseolaris (L.) Engl. For future drug discovery. Sci. Technol. Indones., 9(2): 502–516. https://doi.org/10.26554/sti.2024.9.2.502-516
- Rozirwan, Saputri, A.P., Nugroho, R.Y., Khotimah, N.N., Putri, W.A.E., Fauziyah & Purwiyanto, A.I.S. 2023c. An assessment of Pb and Cu in waters, sediments, and mud crabs (S. serrata) from mangrove ecosystem near Tanjung Api-Api port area, South Sumatra, Indonesia. Sci. Technol. Indon., 8(4): 675-683 https://doi.org/10.26554/sti.2023.8.4.675-683
- Sadiq, I.Z. 2023. Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. *Curr. Mol. Med.*, 23(1): 13–35. https://doi.org/10.2174/1566524022666211222161637
- Saputra, A., Nugroho, R.Y., Isnaini, R. & Rozirwan. 2021. A review: The potential of microalgae as a marine food alternative in Banyuasin Estuary, South Sumatra, Indonesia. *Egypt. J. Aquat. Biol. Fish.*, 59: 1053–1065. https://doi.org/10.21 6 08/EJABF.2021.170654
- Shaffai, A. El, Mettwally, W.S.A. & Mohamed, S.I.A. 2023. A comparative study of the bioavailability of Red Sea seagrass, *Enhalus acoroides* (Lf) Royle (leaves, roots, and rhizomes) as

- anticancer and antioxidant with preliminary phytochemical characterization using HPLC, FT-IR, and UPLC-ESI-TOF-MS spectroscopic a. *BeniSuef Univ. J. Basic Appl. Sci.*, 12(1): p.41. https://doi.org/10.1186/s43088-023-00376-7
- Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L. & Jin, B. 2022. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. *Food Chem.*, 383: p.132531. https://doi.org/10.1016/j.foodchem.2022.132531
- Shofinita, D., Lestari, D., Purwadi, R., Sumampouw, G.A., Gunawan, K.C., Ambarwati, S.A., Achmadi, A.B. & Tjahjadi, J.T. 2024. Effects of different decaffeination methods on caffeine contents, physicochemical, and sensory properties of coffee. *Int. J. Food Eng.*, 20(8): 561–581. https://doi.org/10.1515/ijfe-2024-0013
- Surette, M.E. 2013. Dietary omega-3 PUFA and health: Stearidonic acid-containing seed oils as effective and sustainable alternatives to traditional marine oils. *Mol. Nutr. Food Res.*, 57(5): 748–759. https://doi.org/10.1002/mn fr.201200706
- Suwandi, R., Ula, M.Z. & Pertiwi, R.M. 2020. Characteristics of chemical compounds of horseshoe crabs *Tachypleus gigas* in different body proportions. *IOP Conf. Ser. Earth Environ.* Sci., 404(1): p.12029. https://doi.org/ 10. 1088/1755-1315/404/1/012029
- Taufik, M., Shahrul, I., Nordin, A.R.M., Ikhwanuddin, M. & Abol-Munafi, A.B. 2020. Fatty acid composition of hepatopancreas and gonads in both sexes of orange mud crab, Scylla olivacea cultured at various water flow velocities. Tropical Life Sci. Res., 31(2): p.79, https://doi.org/10.21315/tlsr2020.31.2.5
- Teleanu, D.M., Niculescu, A.G., Lungu, I.I., Radu, C.I., Vladâcenco, O., Roza, E., Costăchescu, B., Grumezescu, A.M. & Teleanu, R.I. 2022. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. *Int. J. Mol. Sci.*, 23(11):5938. https://doi.org/10.3390/ij ms23115938
- Tjandrawinata, R.R. & Nurkolis, F. 2024. A comparative analysis on impact of extraction methods on carotenoids composition, antioxidants, antidiabetes, and antiobesity properties in seagrass *Enhalus acoroides*: In Silico and In Vitro Study. *Mar. Drugs*, 22(8): p.365. https://doi.org/10.3390/md22080365
- Triajie, H., Andayani, S., Yanuhar, U. & Ekawati, W. 2020. Time of mangrove crabs Scylla

- paramamosain final premolt stadia (D4) to reach ecdysis of the male and female growth under different salinity. *Eurasian J. Biosci.*, 14(2): 7889–7897.
- Tumilaar, S.G., Hardianto, A., Dohi, H. & Kurnia, D. 2024. A comprehensive review of free radicals, oxidative stress, and antioxidants: overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. *J. Chem.*, 2024(1): p.5594386 https://doi.org/10.1615/CritRevEukaryotGeneExpr.2018022258
- Ullah, A., Mostafa, N.M., Halim, S.A., Elhawary, E.A., Ali, A., Bhatti, R., Shareef, U., Al Naeem, W., Khalid, A. & Kashtoh, H. 2024. Phytoconstituents with cardioprotective properties: A pharmacological overview on their efficacy against myocardial infarction. *Phyther. Res.*, 38(9): 4467–4501. https://doi.org/10.1002/ptr.8292
- Vásquez, P., Cian, R.E. & Drago, S.R. 2023. Marine Bioactive Peptides (Fishes, Algae, Cephalopods, Molluscs, and Crustaceans). *Handb. Food Bioact. Ingredients Prop. Appl.*, p.1–30. https://doi.org/10.1007/978-3-030-81404-5\_16-1
- Vermeiren, P., Lennard, C. & Trave, C. 2021. Habitat, sexual and allometric influences on morphological traits of intertidal crabs. 44(5): 1344–1362. https://doi.org/10.1007/s12237-020-00856-4
- Wang, J., Tong, Y., Feng, L., Zhao, D., Zheng, C. & Tang, J. 2021. Satellite-observed decreases in water turbidity in the Pearl River Estuary: potential linkage with sea-level rise. *J. Geophys. Res. Ocean.*, 126(4): e2020JC016842. https://doi.org/10.1029/2020JC016842
- Wu, Q., Jiang, Y., Chen, E., Mu, C. & Waiho, K. 2021. Chinese gallnut (*Galla chinensis*) against Vibrio parahaemolyticus: in vitro activity and the use of medicated bath method to treat infected mud crab *Scylla paramamosain*. *Aquaculture*, 539: p.736632. https://doi.org/10.1016/j.aqua culture.2021.736632
- Yang, Y., Li, R., Liu, A., Xu, J., Li, L., Zhao, R., Qu, M. & Di, Y. 2023. How does the internal distribution of microplastics in S. serrata link with the antioxidant response in functional tissues? *Environ. Pollut.*, 324: 121423. https://doi.org/10.1016/j.envpol.2023.121423
- Yao, H., Li, X., Tang, L., Wang, H., Wang, C., Mu, C. & Shi, C. 2020. Metabolic mechanism of the mud crab (Scylla paramamosain) adapting to salinity

- sudden drop based on GC-MS technology. *Aquacult. Reports*, 18, 100533. https://doi.org/10.1016/j.aqrep.2020.100533
- Yao, J., Zhu, J., Zhao, M., Zhou, L. & Marchioni, E. 2023. Untargeted lipidomics method for the discrimination of five crab species by Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry combined with chemometrics. *Molecules.*, 28(9): p.3653. https://doi.org/10.3390/molecules28093653
- Yogeshwaran, A., Gayathiri, K., Muralisankar, T., Gayathri, V., Monica, J.I., Rajaram, R., Marimuthu, K. & Bhavan, P.S. 2020. Bioaccumulation of heavy metals, antioxidants, and metabolic enzymes in the crab S. serrata from different regions of Tuticorin, Southeast Coast of India. *Mar. Pollut. Bull.*, 158: p.111443. https://doi.org/10.1016/j.marpolb ul.2020.111443
- Yuniarti, R., Nadia, S., Alamanda, A., Zubir, M., Syahputra, R.A. & Nizam, M. 2020. Characterization, phytochemical screenings and antioxidant activity test of kratom leaf ethanol extract (*Mitragyna speciosa Korth*) using DPPH method. *J. Phys. Conf. Ser.*, 1462(1): p.12026. https://doi.org/10.1088/1742-659 6/1462/1/012026

- Yusni, E. & Haq, F.A. 2020. Inventory and prevalence of ectoparasites *Octolasmis* sp. in the mangrove crab (*Scylla tranquebarica*) in Lubuk Kertang, Langkat. *IOP Conf. Ser. Earth Environ. Sci.*, 454(1): p.12121. https://doi.org/10.1088/1755-1315/454/1/012121
- Yusof, W.R.W., Ahmad, N.M., Zailani, M.A., Shahabuddin, M.M., Sing, N.N. & Husaini, A.A.S.A. 2020. Nutritional composition, antioxidants and antimicrobial activities in muscle tissues of mud crab, Scylla paramamosain. Res. J. Biotechnol., 15: p.4.
- Zang, L., Xu, H., Huang, C., Wang, C., Wang, R., Chen, Y., Wang, L. & Wang, H. 2022. A link between chemical structure and biological activity in triterpenoids. *Recent Pat. Anticancer. Drug Discov.*, 17(2): 145–161 https://doi.org/10. 2174/1574892816666210512031635
- Zeng, L., Wang, Y.H., Ai, C.X., Zhang, B., Zhang, H., Liu, Z.M., Yu, M.H. & Hu, B. 2024. Differential effects of oxytetracycline on detoxification and antioxidant defense in the hepatopancreas and intestine of Chinese mitten crab under cadmium stress. *Sci. Total Environ.*, 930: p.172633. https://doi.org/10.1016/j.scitotenv.2024.172 633