1. collagen-hydrolysis-from-skinand-bone-of-pangasius-catfishprepared-by-bromelain-enzymeand-antioxidant-activity-of-hyd by Ace Baehaki **Submission date:** 05-Nov-2018 10:34AM (UTC+0800) **Submission ID:** 1032853889 File name: prepared-by-bromelain-enzyme-and-antioxidant-activity-of-hyd.pdf (157.1K) Word count: 1573 Character count: 8514 #### Available online at www.derpharmachemica.com #### ISSN 0975-413X CODEN (USA): PCHHAX Der Pharma Chemica, 2016, 8(4):155-158 (http://derpharmachemica.com/archive.html) ## Collagen Hydrolysis from skin and bone of Pangasius catfish Prepared by Bromelain Enzyme and Antioxidant Activity of Hydrolysate Ace Baehaki*, Shanti Dwita Lestari and Ida Desliani Study Program of Fisheries Product Technology, Faculty of Agriculture, Sriwijaya University, Indralaya, Ogan Ilir, South Sumatera, Indonesia #### _____ #### ABSTRACT The purpose of the research was to produce collagen hydrolysate from pangasius catfish skin and bone using bromelain enzyme. The resulted collagen peptides were expected to have antioxidative activity. Five different enzyme concentration ranged from 1-5% and different hydrolysis time (0, 5, 10, 20, 30, 40, 60, 90, 120 and 160 min) were used in the experiment. The parameters observed were yields of both skin and bone collagen, degree of hydrolysis and antioxidative activity (DPPH and reducing power). The result showed that collagen hydrolysate prepared by bromelain enzyme has antioxidative activity. The yield for both skin and bone collagen hydrolysate was 45.84% and 12.86% respectively. The highest degree of hydrolysis skin collagen hydrolysate was 2.58% at 160 minutes whereas the bone collagen hydrolysate had the highest degree of hydrolysis was 2.97% at 160 minutes. Based on the DPPH method skin and bone collagen hydrolysate had the antioxidative activity of 61.67% and 71.83%. In the other hand the reducing power method skin and bone collagen hydrolysate had the antioxidative activity of 0.35 and 0.38. Keywords: Antioxidant, collagen, bromelain, DPPH, reducing power ### INTRODUCTION Bromelain is proteolytic enzyme found in pineapple plant [1]. The name bromelain was first applied to the fruit enzyme. Later, the term 'bromelain' was introduced and originally applied to any protease from any plant member of the plant family Bromeliaceae [2]. Several fish skin collagens were hydrolyzed with proteolitic enzyme and hydrolysates ha potent antioxidant such as striped pangasius catfish skin by papain enzyme [3] and tuna skin by alcalase [4]. However, there is a little information regarding collagen peptide from Pangasius catfish (*Pangasius pangasius*) with bromelain enzyme and their antioxidative activity. #### MATERIALS AND METHODS Prep 3 ation of skin collagen Fish collagen was prepared from skin and 2 ne from Pangasius catfish (*Pangasius pangasius*). To remove noncollagenous proteins, the skin and bone fish was mixed with 0.1 mol/L NaOH at a solid to solution (NaOH) ratio of 1:10 (w/v) 6 ollowed by continuous stirring for 8 h using an overhead stirrer. The alkali solution was changed every 2 h. Pretreated skin fish was soaked in 1.5% acetic acid with a solid to solvent ratio 2 1:2 (w/v) for 24 h. Skin was washed with cold water until neutral pH, followed by extraction with aquades with a solid to solvent ratio of 2:1 (w/v) for 3 h at 50° C. #### Yield of extraction The extraction yield is ratio the mass extraction in mg with mass of sample in mg, Y (%) = 100 Mext / Msamp. Where in: Y is the % yield; Mext is the mass of the extract in mg and the Msamp is dry mass of the organ sample in mg. #### Degree of hydrolysis Collagen solutions 4 ere incubated at optimal temperature for proteolytic activity of each species for 10 min. Bromelain enzyme was added into the mixtures. At hydrolysis time designated (0, 5, 10, 20, 30, 40, 60, 90, 120 and 160 min). The degree of hydrolysis was estimated according to the method established by Hoyle and Merritt [5]. The degree of hydrolysis (DH) was calculated as follows: %DH= 100 x [(10% TCA – Soluble nitrogen in sample) / (Total nitrogen in sample)] #### DPPH radical scavenging activity DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity was measured based on methods described in Hanani *et al.* [6]. A total of 4.5 ml of test solution included in a test tube is then reacted with 0.5 ml of DPPH solution. Test tube is covered with aluminum foil and incubated at 37°C for 30 minutes then the absorbance was measured using a UV-Vis spectrophotometer at length wave 517 nm. The antioxidant activity of each sample was expressed in percentage inhibition of free radicals which is calculated by the formula: % Inhibition= <u>blanko absorbance</u> – <u>sample absorbance</u> x 100% blanko absorbance #### Reducing power Reducing power was determined by the method of Oyaiza [7], the absorbance was read at 700 nm. Increased absorbance of the reaction mixture indicates increasing reducing power. #### RESULTS AND DISCUSSION #### Yield of extraction Extraction yield (w/w) for collagen from skin and bone fish found to be in order of 45.83 and 12.86%, respectively. Extraction yield of collagen from skin fish was higher than that of these collagen from bone fish (Fig. 1) #### Degree of hydrolysis The progression in DH during the hydrolysis of by bromelain enzyme shown in Fig. 2. Figure 2. Degree of hydrolysis of collagen collagen hydrolysate from Skin and bone of Pangasius catfish by bromelain enzyme Bars represent the standar deviation from triplicate determinations Degree of hydrolysis of collagen hydrolysate from fish skin was higher than that of these hydrolysed collagen from fish bone (Fig. 1). Increasing of degree of hydrolysis linearly with time of hydrolysis. Degree of hydrolysis collagen from *Chanos chanos* treated with collagenase increased linearly with incubation time [8]. #### DPPH radical scavenging activity DPPH radical scavenging activities of fish collagen with different time of hydrolysis and source of bromelain depicted in Fig. 3. The collagen peptide from skin exhibited the highest activity (61.67%) after 60 min incubation and collagen peptide from fish bone exhibited the highest activity (71.83%) after 120 min incubation (Fig. 3). Figure 3. DPPH radical scavenging activity of collagen hydrolysate from Skin and bone of Pangasius catfish Bars represent the standar deviation from triplicate determinations. DPPH radical scavenging activities of fish collagen with different time of hydrolysis depicted in Fig. 1. DPPH radical scavenging activitiy of collagen hydrolysate from fish bone was higher (71.83%) than that of these hydrolysed collagen from fish skin (61.67%). Hydrolysate from skin fish can reduce the DPPH radical from 20,03% to 61.67% and the hydrolysate had the highest antioxidant activity by scavenging DPPH radical, which was 61.67% at the time of hydrolysis was 60 min. Hydrolysate from bone fish also can reduce the DPPH radical from 17.52% to 71.83% and the hydrolysate had the highest antioxidant activity, which was 71.83% at the time of hydrolysis was 120 min. #### Reducing power Fig 4 shows the reducing power activites (as indicated by the absorbance at 700 nm) of the collagen peptide hydrolysed from skin and bone from Pangasius catfish (*Pangasius pangasius*). Figure 4. Reducing power of hydrolysate from Skin and bone of Pangasius catfish Bars represent the standar deviation from triplicate determinations. The collagen peptide hydrolysed from skin and bone fish exhibited the highest activity at time of hydrolysis of 60 min.the reducing power activities of collage hydrolysate from fish skin was higher (0.41) than that of these hydrolysed collagen from fish bone (0.38). Consequently, the reducing ability of collagen peptide indicates that they could act as electron donors, reducing the oxidized intermediates of lipid peroxidation processes, and suggesting that the reducing power likely contributes to the antioxidant activity [9]. #### CONCLUSION Bioactive peptide from fish skin and fish bone collagen were produced using bromelain enzyme (protease). Peptides collagen exhibited DPPH scavenging, and reducing power activity. This research was support by Competitive Grant (Hibah Kompetitif Sriwijaya University 2013) from Directorate General of Higher Education (DIKTI), Ministry of National Education Republic Indonesia. #### REFERENCES - [1] H. Umesh Hebbar, B. Sumana, K.S. Raghavarao, Bioresour. Technol. 2008, 99(11), 4896-4902 - [2] A.D. Rowan, D.J. Buttle, A.J. Barrett, Biochem. J. 1990, 266(3), 869-875. - [3] A. Baehaki, R. Nopianti, S. Anggraeni, J. Chem. Pharm. Res. 2015, 7(11), 131-135 - [4]M.C. Gomez-Guillen, M.E. Lopez-Caballero, A. Aleman, A Lopez de Lecey, B. Ginenez, P. Montero. Antioxidant and antimicroba peptide fractions from squid and tuna skin gelatin. In: Sea by-product as real material: new ways of application. India: Transworld research network; 2010; 89-115. - [5] NT Hoyle; JH Merritt, J. Food Sci., 1994, 69, 615-619. - [6] E Hanani; B Moneim; R Sekarini, Magazine Pharm. Sci., 2005, 2, 127-133. - [7] M Oyaiza, J. Nutr., 1986, 44, 307-315. - [8] A. Baehaki, M. T. Suhartono, Sukarno, D. Syah, S. Setyahadi, Res. J. Pharm. Biol. Chem. Sci. 2016, 7(1): 1994-2000. - [9]A.P.F. Correa, D.J. Daroit, J. Coelho, S.M.M. Meira, F.C. Lopes, J. Segalin, P.H. Risso. A. Brandelli, J. Sci. Food Agric., 2011, 91(12), 2247-2254. 1. collagen-hydrolysis-from-skin-and-bone-of-pangasius-catfish-prepared-by-bromelain-enzyme-and-antioxidant-activity-of-hyd **ORIGINALITY REPORT** 20% % 20% 0% SIMILARITY INDEX INTERNET SOURCES **PUBLICATIONS** STUDENT PAPERS **PRIMARY SOURCES** Ana Paula F Corrêa. "Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease", Journal of the Science of Food and Agriculture, 2011 3% Publication Kittiphattanabawon, P.. "Isolation and characterization of collagen from the cartilages of brownbanded bamboo shark (Chiloscyllium punctatum) and blacktip shark (Carcharhinus limbatus)", LWT - Food Science and Technology, 201006 3% Publication 3 Klompong, V.. "Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type", Food Chemistry, 2007 3% Publication | 4 | proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity", Comparative Biochemistry and Physiology, Part B, 200812 | 2 % | |---|---|------------| | 5 | Phanat Kittiphattanabawon, Soottawat
Benjakul, Wonnop Visessanguan, Takashi
Nagai, Munehiko Tanaka. "Characterisation of
acid-soluble collagen from skin and bone of
bigeye snapper (Priacanthus tayenus)", Food
Chemistry, 2005
Publication | 2% | | 6 | Phanat Kittiphattanabawon, Soottawat
Benjakul, Wonnop Visessanguan, Hideki
Kishimura, Fereidoon Shahidi. "Isolation and
Characterisation of collagen from the skin of
brownbanded bamboo shark (Chiloscyllium
punctatum)", Food Chemistry, 2010
Publication | 1% | | 7 | "Production and Characterization of
Collagenolytic Protease from Bacillus
licheniformis F11.4 Originated from Indonesia",
Asian Journal of Chemistry, 2014. | 1% | | 8 | "QSAR and Molecular Docking of Phthalazine
Derivatives as Epidermal Growth Factor | 1% | # Receptor (EGFR) Inhibitors", Journal of Applied Pharmaceutical Science, 2017 Publication Asaduzzaman, A. K. M., and Byung-Soo Chun. "Recovery of functional materials with thermally stable antioxidative properties in squid muscle hydrolyzates by subcritical water", Journal of Food Science and Technology, 2015. 1% Publication Franco, Leandro Guimarães, Juan Carlos Duque Moreno, Antônio Raphael Teixeira Neto, Moisés Caetano e Souza, and Luiz Antônio Franco da Silva. "Tramadol effects on clinical variables and the mechanical nociceptive threshold in horses", Ciência Rural, 2014. 1% Publication Ace Baehaki, Indah Widiastuti, Herpandi Nurul Jannah. "Antioxidant Activity of Extracts of HalodulepinifoliaSeagrass from Solvents with Different Polarities", Oriental Journal of Chemistry, 2017 1% Publication Exclude quotes On Exclude matches < 15 words #### PENJELASAN HASIL SIMILARITY DI ATAS: - Hasil uji kemiripan (similarity) artikel yang berjudul: Collagen Hydrolysis from skin and bone of Pangasius catfish Prepared by Bromelain Enzyme and Antioxidant Activity of Hydrolysate terhadap dokumen (primary source) menggunakan program turnitin, hasil kemiripan yang paling tinggi adalah 3%. - 2. Menurut pedoman operasional penilaian angka kredit kenaikan jabatan akademik/pangkat dosen tahun 2019 Dirjen Sumberdaya Iptek dan Dikti Kemenristekdikti halaman 25, bila hasil uji kemiripan melebihi 25% (duapuluh lima persen) terhadap 1 (satu) dokumen/primary source (tidak termasuk daftar pustaka, kemiripan kalimat yang kurang dari 3% (tiga persen)), maka peer review secara subtansi harus memberikan pendapat ada tidaknya indikasi plagiasi. - 3. Berdasarkan pedoman penilaian angka kredit kenaikan jabatan akademik/pangkat dosen tahun 2019, hasil uji kemiripan artikel ini tidak terindikasi plagiasi.