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Abstract. Heavy-duty diesel (HDD) construction equipment consumes a
significant amount of fuel and subsequently emits a substantial amount of
pollutants into the environment. In most construction activities, HDD construction
equipment is the primary source of emissions. The purpose of this paper is to
demonstrate the comparative models for estimating fuel use and emission rates for
HDD construction equipment specifically excavators. Second by second data were
collected from portable emission measurement system (PEMS), containing fuel
use and emission rates datasets along with engine performance data from three
excavators. Emission pollutants include nitrogen oxides (NO,), hydrocarbons
(HC), carbon monoxide (CO), carbon dioxide (CO,), and particulate matter (PM).
For each excavator, predictive models were developed using simple linear
regression (SLR) and multiple linear regression (MLR). Results yielded that the
MLR accounted for the highest percentage of variability in the data compared to
SLR based on the values of coefficient of determination (R?) for each model. In
order to exhibit the significant impact of which engine data that may affect the
emission rates, the variable impact analysis was also conducted.
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Introduction

The construction sector plays an essential role in improving climate change due to the
impact of greenhouse gas (GHG) emissions primarily caused by its major activities.
Construction activities consume a significant amount of fuel and consequently emit a
substantial amount of pollutants into the environment. According to the United States
Environmental Protection Agency [2], there are approximately two million items of
construction and mining equipment in the United States that spend about six billion
gallons of diesel fuel annually. Furthermore, in most construction activities, heavy-duty
diesel (HDD) construction equipment is the primary source of emissions. The EPA also
estimates that in 2005, HDD construction vehicles produced U.S. national annual totals
of 657,000 tons of NO,, 1,100,000 tons of CO, 63,000 tons of PM,, and 94,000 tons of
SO, [2].
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Of these pollutants, NO, and PM are the most prominent among HDD equipment
[3]. Other pollutants found in diesel exhaust (DE) include hydrocarbons (HC) and
carbon dioxide (CO,). In order to quantify and characterize the HDD emissions
problem, reliable prediction models are needed; however, most emission prediction
tools are based on engine dynamometer data and not real-world data [1]. The objective
of this paper is to demonstrate two different predictive modeling methodologies for
estimating fuel use and emission rates for HDD construction equipment, specifically
excavators, based on real-world data.

1. Previous work

As the need of conforming to emission standards has been largely increasing,
numerous studies have been extensively piloted to quantify and characterize emissions
and energy consumption of HDD construction equipment. Many studies have been
completed using experimental designs such as dynamometer tests and real-world in-use
measurements. Dynamometer tests are commonly used in quantifying emissions at
steady-state conditions in the laboratory. Other studies conducted emission
quantification by engaging Portable Emission Measurement Systems (PEMS), models,
and simulations. The Environmental Protection Agency (EPA) and other government
agency also develop other models such as the Nonroad model, the Offroad model, and
the Urbemis model.

PEMS is generally used to gather fuel use and emissions field data of vehicles
based upon real-world measurement. In-use emissions quantification enables data
collection by capturing the actual duty cycle on second by second basis measurement.
Commercial PEMS are obtainable for any kinds of applications as well as for different
types of fuel use. Some of the most prominent real-world emissions measurements
from HDD construction equipment were completed by the researchers at North
Carolina State University [1, 5, 6, 7, 8]. Other researchers from West Virginia
University and the University of California — Riverside also directed their studies on
the use of on-board emission measurement for particular construction equipment.

2. Methodology

This paper presents two different predictive modeling methodologies for estimating
fuel use and emissions rates based on the real-world dataset from the research team at
North Carolina State University. Simple linear regression (SLR) and multiple linear
regression (MLR) models were developed and compared for three excavators. Engine
performance data from the excavators, including manifold absolute pressure (MAP),
revolutions per minute (RPM), and intake air temperature (IAT), were used to develop
prediction models for fuel use and emission rates of NO,, HC, CO, CO,, and PM.

Table 1 displays the summary of engine attribute data for each excavator,
including engine size (HP), displacement, model year, and EPA engine tier. The rated
engine horsepower (HP) ranged from 93 HP to 254 HP and the model year ranged from
1998 to 2003; thus, all three of the excavators were either EPA engine tier 1 or 2.
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Table 1. Summary of engine attribute data

Equipment Horsepower Displacement Model Engine
(HP) (Liters) Year Tier
Excavator 1 254 83 2001 1
Excavator 2 138 6.4 2003 2
Excavator 3 93 39 1998 1

3. Simple linear regression

Simple linear regression models were developed to determine the relationship between
a single response variable and a single predictor variable. Since it has been shown by
others that MAP is highly correlated to fuel use and emission rates [4, 5, 7], simple
linear regression models were formulated based on the relationship between MAP as a
predictor variable and fuel use as a response variable, as well as MAP and mass per
time (grams per second) emission rates of NO,, HC, CO, CO,, and PM. These SLR
models take the form of:

Yis =ax+c (H
where:
Yis = Fuel use or emission rate of NO,, HC, CO, CO,, or PM (g/s)
a = slope of the regression line
X = MAP (kilopascal)
c = y-intercept of regression line

4. Multiple linear regression

Multiple linear regression was used to model the relationship between three predictor
variables based on engine performance data (MAP, RPM, IAT) and one response
variable (either fuel use or emission rate of NO,, HC, CO, CO,, and PM).

The MLR equations for fuel use and emission rates for each pollutant take the
form of:

Yis =PBo+ BiXi + B:Xot B3Xs 2
where:

Yis = Fuel use or emission rate of NO,, HC, CO, CO,, or PM (g/s)

X = MAP (kilopascal)

X, = Revolutions Per Minute (RPM)

X3 = Intake Air Temperature (Celsius degrees)

Bo, B1, B2, B3 = Coefficients of linear relationship
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5. Results

This section presents the results for-two predictive modeling methodologies — SLR and
MLR- for excavators, as well as variable correlations and model comparisons for those
models. The validation results for the models for all three excavators are presented in
Table 5.

Table 2 shows the summary of the Pearson correlation coefficients for all three
excavators, indicating the relationship between engine data, fuel use, and emission
rates. MAP has a strong positive relationship with fuel use and emission rates of NO,,
CO,, and PM, but a moderate positive relationship with HC and CO. RPM has the
second strongest relationship with fuel use and emission rates. Meanwhile, IAT has the
weakest relationship with fuel use and emission rates as indicated by the lower (and
sometimes negative) values of correlation to the specified response variables.

Table 2. Summary of Pearson correlations coefficients

Engine

Equipment Data Fuel Use NO, HC CcO CO; PM
MAP 0.99 0.97 0.59 0.74 0.99 0.94

EX1 RPM 0.80 0.74 0.63 0.85 0.79 0.74
IAT 0.56 0.59 0.07 037 057 051

MAP 0.98 0.92 0.62 047 0.98 0.94

EX 2 RPM 0.85 0.85 0.62 0.57 0.85 0.69
IAT 0.55 0.56 0.33 0.30 055 044

MAP 0.96 0.94 0.44 0.14 0.96 0.57

EX 3 RPM 0.84 0.79 0.42 0.23 0.84 0.47
IAT 0.32 0.40 0.36 -0.12 032 044

5.1 Simple linear regression models

Based on their high correlation values, SLR models were developed using MAP as a
predictor variable to predict fuel use and emission rates of each pollutant. Table 3
presents the results of the SLR models for all three excavators. These models are based
on more than 19,000 observations of second-by-second, real-world fuel use and
emissions data for excavator 2 and 3, and around 7,000 observations for excavator 1.
Based on the coefficient of determination (R?), these models accounted for a high
percentage of the variability in the data for fuel use, NO,, CO,; and PM. HC and CO
had the lowest R? value, indicating much variability in the data, and therefore were
more difficult to predict.
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Table 3. Summary of SLR models for all excavators

Equipment Response Equations R®

Excavator 1 Fuel Use Y:=9.9429 X, + 0.4704 0.982
NO, Y>=10.3545 X, +0.0242 0.948
HC Y;=0.0054 X, + 0.0024 0.351
cO Y,=0.0175 X; + 0.0066 0.543
CO; Ys=31.431 X;+1.4720 0.982
PM Y:.=3.8619 X, +0.1076 0.881

Excavator 2 Fuel Use Y, =6.4485X, +0.5302 0.963
NO, Y, =0.1202 X; +0.0209 0.850
HC Y;=0.0083 X, +0.0031 0.390
CO Y. =0.0239X, +0.0142 0.219
CO, Ys=20.358X, + 1.6475 0.963
PM Ye=1.8463X; +0.0354 0.888

Excavator 3 Fuel Use Y, =3.9492 X, +0.1231 0.930
NOx Y, =0.1231 X;+ 0.0098 0.876
HC Y;=0.0084X; + 0.0021 0.194
CcO Y, =0.0051X; +0.0055 0.018
CO, Ys=12.468 X,+0.3748 0.929
PM Yo =1.0842 X, - 0.0099 0.333

X, =MAP

5.2 Multiple linear regression models

1449

Based on the correlation matrix in Table 2, MAP and RPM are highly correlated to fuel
use and emissions rate for most of pollutants. Even though IAT has a lower correlation
to fuel use and emissions rate, IAT was still used as an input variable for the MLR
models because it may still have some predictive power.

Table 4 summarizes the models for fuel use and emissions rates for all three
excavators. Overall, the MLR models yielded higher R” values than the SLR models
for their respective response variables. The MLR R” values for fuel use and emission
rates for NO,, HC, CO, and PM indicate that the models perform well. The model for
CO, however, accounted for less than 50% of the variability in the data; thus, the MLR
models also indicate that emission rates of CO are more difficult to predict compared to
fuel use and the other pollutants.
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Table 4. Summary of MLR models for all excavators

Equipment Response Equations R?
Excavator 1 Fuel Use Y, =-5.748 + 0.0728 X, + 0.000301X; - 0.0296X; 0.985
NO« Y. =-0.2093 + 0.00247X, - 0.00002 X, + 0.000176X; 0.954
HC Y; = 0.0056 + 0.000034 X, + 2.64E-6 X, - 0.00021X; 0.582
CO Y4 =-0.00003 + 0.000041 X, +0.000011X; - 0.00018X; 0.801
CO, Ys=-18.21 +0.230X,+ 0.00093 X; - 0.093X; 0.985
PM Yo =-2.21 + 0.0293X, - 0.0136X; 0.880
Excavator 2 Fuel Use Y, =-5.07 + 0.0524 X, + 0.00069 X,- 0.0085 X; 0.972
NO« Y2 =-0.089 +0.00082 X; +0.000024 X, +0.000134X; 0.884
HC Y; = -0.0024+ 0.000048X, +3.14E-6X; - 0.00008X; 0.402
(6¢] Y4=-0.0004 + 0.000013 X; + 0.000019 X5- 0.00024 X3 0.340
CO; Ys=-16.05+0.166X, + 0.00213 X, - 0.0262 X; 0.972
PM Ys=-1.53 + 0.021X, - 0.00026X; — 0.0064X;3 0.913
Excavator 3 Fuel Use Y: =-2.343 + 0.0295X,; + 0.00006X; - 0.007X; 0.935
NO, Y, =-0.079 + 0.00096X,; — 5.33E-6X; + 0.000096X5 0.880
HC Y3 =-0.0071 +0.000034X, +1.57E-6X, + 0.000094X; 0.250
co Y4 = 0.0094 - 0.00005X, +9.92E-6X; - 0.00018X; 0.096
CO; Y5 =-7.409 +0.0932X, + 0.00017X; - 0.022X3 0.934
PM Yo =-1.142 +0.0081X - 0.00013X, +0.0104X; 0.390

Table 5. Comparison of validation results for SLR and MLR

SLR MLR
o " Pollutant
o m b R’ m b R’

Excavator 1 Fuel Use 0.982 0.045 0.982 0.983 0.044 0.985
NO, 0.948 0.005 0.948 0.944 0.004 0.951
HC 0352 0.002 0.351 0.573 0.002 0.575
CcOo 0.542 0.005 0.543 0.773 0.003 0.759
CO, 0.982 0.143 0.982 0.981 0.107 0.985
PM 0.881 0.107 0.881 0.873 0.099 0.886

Excavator 2 Fuel Use 0.963 0.074 0.963 0.974 0.063 0.971
NO, 0.850 0.007 0.850 0.887 0.006 0.879
HC 0.392 0.003 0.390 0.441 0.003 0434
(¢[0] 0.220 0.015 0219 0.322 0.013 0.327
CO, 0.963 0.234 0.963 0.974 0.206 0.971
PM 0.889 0.052 0.888 0917 0.053 0.909

Excavator 3 Fuel Use 0.930 0.120 0.930 0.936 0.113 0.935
NO, 0.875 0.007 0.876 0.878 0.007 0.878
HC 0.193 0.004 0.194 0.243 0.004 0.239
(00) 0.018 0.008 0.018 0.105 0.007 0.100
CO, 0.930 0.381 0.929 0.933 0.354 0.934
PM 0.333 0.284 0.333 0.384 0.252 0.387

5.3 Model comparison

Model validations for the three excavators were developed in order to compare and
evaluate the performance of SLR and MLR methodologies. The models were validated
by plotting the predicted versus actual results for each model and fitting a trend line to
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the data. For each trend line, the values of accuracy (m), bias (b), and precision (R?)
were determined. As shown in Table 5, MLR produces higher R” values compared to
SLR for fuel use and all emissions rates. SLR has the lowest R” value for fuel use and
emissions rates. Overall, MLR outperformed SLR with respect to precision, accuracy,
and bias. In most cases, the MLR approach produced highly precise models for NO,,
CO,, and PM; while the models for HC and CO were likely to be moderately precise
with R? values ranging from 0.50 — 0.87.

5.4 Variable impact analysis

Using the MLR models, a variable impact analysis was conducted to determine the
percentage of contribution of the input variables (MAP, RPM, and IAT) to the
prediction of fuel use and emission rates of each pollutant. Table 6 presents the
summary of the variable impact analysis for all three excavators. MAP is the most
significant variable for fuel use, CO, CO,, and PM which are 63.96%, 53.71%, 70.48%
and 59.50%, respectively. RPM, however, has the most contribution for NO,. IAT had
the highest impact for HC.

Table 6. Variable impact analysis for average excavators

Engine Data Fuel Use NOx HC CcO CcO, PM
MAP 63.96% 40.13% 24.39% 53.72% 70.48% 59.50%
RPM 2721% 43.20% 2591% 35.02% 23.56% 19.67%
IAT 8.83% 16.57% 49.70% 11.26% 5.96% 20.83%

6. Conclusions and recommendations

The purpose of this paper was to demonstrate two different predictive modeling
methodologies for estimating fuel use and emission rates of pollutants using real-world
data. Based on the summary of Pearson correlation coefficients, MAP had a high
positive correlation to fuel use and emission rates of NO,, CO,, and PM, but had a
moderate positive relationship with HC and CO. Although not as highly correlated,
RPM had a strong positive relationship with fuel use and emissions. IAT was shown to
have the least impact of the three engine performance variables on predicting fuel use
and emission rates. It is recommended that other engine performance data, such as
engine load or throttle position, be considered for future studies. For two modeling
approaches, CO proved to be the most difficult pollutant emission rate to predict, as
evidenced by its low R” values. Typically, there is high variability in CO data which
confounds the prediction effort, as well as the fact that CO did not have a strong
correlation with any of the engine data predictor variables. It is recommended that
strong relationships between CO and other variables be considered. For example, it
there exists a strong relationship between CO and fuel use (which is accurately and
precisely predicted by each of the three modeling approaches), then fuel use may be
used as a predictor variable for CO.

With regard to variable impact analysis, it can be concluded that MAP has the
highest percentage of contribution in the prediction of fuel use and emission rates,
accounting for approximately 60% of total impact, although for HC and CO it had the
second highest impact. For these two pollutants, RPM had the highest impact but it was
second for fuel use, CO, CO,, and PM. Although IAT had the lowest ranking impact
among the three engine performance variables, it still may have some predictive power,
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especially for CO. For strictly prediction purposes, it is recommended that all three
engine performance variables be used to estimate fuel use and emission rates.  Based
on the model comparisons, MLR models generally performed better with respect to
precision, accuracy, and bias. In most cases, the MLR approach produced highly
precise models for NO,, CO,, and PM; while the models for HC and CO were
moderately precise. These models are still useful. The simplicity of the one variable
SLR models may be appealing to some users, such as fleet managers, that want to
estimate the fuel use and emissions footprints of their equipment. Other users, such as
engine manufacturers, may like the MLR approach because they would be able to
reasonably estimate each of the engine performance variables.

Overall, the results of this study help to quantify and characterize the air pollution
problem from HDD equipment used in construction. Although only excavators were
addressed in this paper, the methodologies presented may certainly be used to develop
fuel use and emissions models for other types of equipment. In order to further
characterize this emissions problem, it is recommended that other types of equipment,
such as backhoes, bulldozers, motor graders, track loaders, wheel loaders, and off road
trucks, be targeted for future modeling efforts.
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