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Abstract : Conformal group, which conserves causal structure only, has been derived from the displacement
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1 INTRODUCTION

It is well known that the conformal group plays a
significant role in the quantum field theory of high
energy physics, for instance, the conformal sym-
metry related to it is needed in hadronic physics
[1]. Furthermore, there have been mathematical
and physical investigations that imply the confor-
mal group. For examples, the conformal group in
multi dimensional space-time [2, 3, 4, 5], the vari-
ous connections between the conformal group and
the quantum theory or quantum gravity [6, 7, 8],
and possible connection with perfect fluid [9, 10].

Emerging from advanced investigations either
mathematically or physically as explained above,
with a novelty level that would be presented here,
there is a fundamental pedagogical need related
to how the conformal group has been derived. In
other words, how can the 15 parameters of the
group be easily obtained and become elements of
the group in a comprehensible but still representa-
tive way?

Generally, the conformal group corresponding to
the conformal transformations which preserve cer-
tain internal characters, is the 15-parameter Lie
group representing the set of operators that trans-
form objects from a flat space to an other flat space
[7]. This group consists of the space-time trans-
lations (4 parameters), the proper homogeneous
Lorentz transformations (6 parameters), the di-
latations (1 parameter), and the conformal trans-
formations (4 parameters).

Taking care of the difficulties of an explaining
pedagogically how to extract these 15 parameters,
in this paper we will carry out an exploration about
the conformal group that according to us could be
presented in a pretty simple way. It will be de-
rived from the displacement field of infinitesimal
transformations in the Minkowski space [11]. The
derivation will be done using a transformation for-
mula between two coordinate systems. To estab-
lish this, we will consider a 4-dimensional space-
time manifold which will be divided into three re-
gions spanning the collection of points in the neigh-
bourhood of a specific point x, i.e., the forward
cone V +, the backward cone V −, and the comple-
ment S of these two cones which accommodates
the space-like regions†. All events in the first two
regions have the causal relationship with x. The
last region contains all points which can have no
causal relationship with x. The boundary of V + is
formed by all possible events which can be reached
by a light signal sent from x. The problem in-
volved, therefore, deals with the locality principle
which is emphasized by Einstein causality princi-
ple that no physical effect can propagate faster than
light.

In special relativity one assumes that the causal
structure of space-time is an ápriori globally given
attribute. There is supposed to exist a preferred

†This division is based on the fundamental analysis lead-
ing to special relativity; the comparison of times at different
places is not an objectively well defined procedure if all laws
are local and speed of light is limited.
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class of coordinate systems, the ”inertial systems”,
in which the causal future of a point x = (t, x)
consists of all points x′ = (t′, x′) satisfying [11],

t′ − t ≥ |x′ − x| . (1)

The Lorentz distance squared of two space-time
points xµ and x′µ is given by

∆x2 = gµν (x′µ − xµ) (x′µ − xµ) , (2)

where gµν is the metric tensor of Minkowski real
space-time,

gµν = (−1)δµ0δµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (3)

where bars above doubly repeated subscripts
negates summation. Eq.(2) has positive values
for all time-like separations, negative for space-like
separations, and null if x and x′ can be connected
by a light signal. The 4-dimensional continuum
defined by Eq.(2) with the metric given by Eq.(3)
is called Minkowski space and will be denoted by
M.

2 ELABORATION AND DISCUSSION

Conformal group is the group that conserves only
the causal structure, but not the metric [11]. To
obtain the group elements, we will apply a formula
of the transformation between two coordinate sys-
tems in which the light cones are characterized by
∆x2 = 0

Let us consider a small neighborhood of a point
x and an infinitesimal coordinate transformation
given by,

xµ −→ xµ + εuµ(x), ε −→ 0 . (4)

The element of line segment from x to x+dx having
a ”length” squared,

ds2 = gµνdxµdxν , (5)

changes by,

δds2 = gµνδ(dxµdxν)
= gµν((δdxµ︸ ︷︷ ︸

=εduµ

)dxν + dxµ δdxν︸ ︷︷ ︸
=εduν

)

= εgµν ((∂ρu
µ)dxρdxν + (∂ρu

ν)dxρdxµ)
= εGµν(x)dxµdxν , (6)

where ∂ρ ≡ ∂/∂xρ is the covariant derivative op-
erator (the gradient) in a flat space and,

(a) Gµν(x) = ∂νuµ+∂µuν ; (b) uµ = gµνuν .
(7)

In Eqs.(5), (6), and (7b) gµν is a constant. If no
change of the light-cone equation is caused by co-
ordinate transformations, than one must have,

Gµν(x)dxµdxν = 0 whenever gµνdxµdxν = 0 .
(8)

Thus Gµν behaves as a metric tensor having like-
light direction the same as gµν , thereby Gµν can
be written as,

Gµν(x) = λ(x)gµν . (9)

Furthermore, λ(x) can be eliminated by contract-
ing Eq.(9) doubly with gµν producing,

Gµν(x)gµν = λ(x)gµνgµν

= λ(x)
(
g00g

00 + g11g
11 + g22g

22

+g33g
33

)

= 4λ(x) , (10)

or λ(x) = (1/4) Gµνgµν . From Eqs.(7), (9), and
(10) we can obtain,

Gµν(x)− 1
4
Gρσgρσgµν = 0

(∂νuµ + ∂µuν)− 1
4

(∂σuρ + ∂ρuσ) gρσ

︸ ︷︷ ︸
∂σuσ+∂ρuρ=2∂ρuρ

gµν = 0

(∂νuµ + ∂µuν)− 1
2
gµν∂ρu

ρ = 0 ,

(11)

which is a differential equation of the displacement
field u related to an infinitesimal transformation.

A general solution of Eq.(11) can be obtained by
using Maclaurin series expansion method (a Taylor
expansion around the point x = 0) in which the
displacement field u is to be written in the form,

uµ(x) = a(1)
µ + a

(2)
µλ1

xλ1 + a
(3)
µλ1λ2

xλ1xλ2 + · · ·
+a

(n)
µλ1···λn−1

xλ1 · · ·xλn−1 + · · · , (12)

with a
(n)
µλ1···λn−1

symmetrical in (λ1 · · ·λn−1). By
using Eq.(12) the first term in Eq.(11) can be ex-
pressed as,

∂νuµ = a
(2)
µλ1

∂νxλ1

+a
(3)
µλ1λ2

(
(∂νxλ1)xλ2 + xλ1∂νxλ2

)
+ · · ·

+a
(n)
µλ1···λn−1

(
(∂νxλ1)xλ2 · · ·xλn−1 + · · ·

+xλ1 · · ·xλn−2∂νxλn−1 + · · · ) . (13)

For each term in this equation, the covariant
derivatives do not vanish only if the subscript
of ∂ is the same as the superscript of x since
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∂νxλk = δλk
ν ; k = 1, ..., n − 1. Thus we can easily

obtain,

∂νuµ = a(2)
µν + a

(3)
µνλ2

xλ2 + a
(3)
µλ1νxλ1 + · · ·

+a
(n)
µνλ2λ3···λn−1

xλ2xλ3 · · ·xλn−1 + · · ·
+a

(n)
µλ1λ2···λn−2 νxλ1xλ2 · · ·xλn−2 + · · · .(14)

Since the summation rule holds for the terms con-
taining doubly repeated indices, a subscript and a
superscript, and λ1, λ2, ... = 0, 1, 2, 3, then we can
write,

a
(3)
µνλ2

xλ2 +
(3)

aµλ1ν︸ ︷︷ ︸
=a

(3)
µνλ1

xλ1 = 2a
(3)
µνλ1

xλ1 .

One has likewise expressions for the other terms.
Thus Eq.(14) can be written as,

∂νuµ = a(2)
µν + 2a

(3)
µνλ1

xλ1 + · · ·
+(n− 1)a(n)

µνλ1λ2···λn−2
xλ1xλ2 · · ·xλn−2 + · · · . (15)

Following the step producing Eqs.(12) and (15),
we can get similar expressions for ∂µxν and ∂ρx

ρ.
The last term of Eq.(11) can be found by substi-
tuting uρ with gρσuσ. Thus, in its series form, the
differential equation (11) can be written as,

{
a(2)

µν + a(2)
νµ −

1
2
gµνa(2)ρ

ρ

}

+2
{

a
(3)
µνλ1

+ a
(3)
νµλ1

− 1
2
gµνa

(3)ρ
ρλ1

}
xλ1 + · · ·

+(n− 1)
{

a
(n)
µνλ1λ2···λn−2

+ a
(n)
νµλ1λ2···λn−2

−1
2
gµνa

(n)ρ
ρλ1λ2···λn−2

}

xλ1xλ2 · · ·xλn−2 + · · · = 0 , (16)

in which we have contracted the coefficient
a
(n)
σρλ1···λn−2

with gρσ to produce a
(n)ρ
ρλ1···λn−2

with
n = 2, ...,∞.

Since xλk is arbitrary and the coefficient inside
{...} is symmetrical with respect to an interchange
of any pairs of indices among {λ1, · · · , λn−2}, then
the coefficient of Eq.(16) can be extracted trivially
by making each term with various power of x equal
to zero, of course for x not zero. This procedure
will give a set of equations which make all the co-
efficients in each term vanish. In other words, the
homogeneous polynomials having different degrees
of x give the following separate conditions for each
a(n),

a
(n)
µνλ1···λn−2

+ a
(n)
νµλ1···λn−2

=
1
2
gµνa

(n)ρ
ρλ1···λn−2

,

(17)

with a
(n)
µνλ1···λn−2

and a
(n)ρ
ρλ1···λn−2

totally symmetric
in the n−2 last indices. Since Eq.(16) does not in-
volve a

(1)
µ , these constants can be cosen arbitrarily.

For n = 2, it is more convenient to write back the
a
(2)ρ
ρ etc. to their earlier definition, i.e. as gρσaσρ,

which if expanded becomes,

gρσa(2)
σρ = g00a

(2)
00 + g11a

(2)
11 + g22a

(2)
22 + g33a

(2)
33

= −a
(2)
00 + a

(2)
11 + a

(2)
22 + a

(2)
33 = 4D ,(18)

where D is a constant which is defined by

−a
(2)
00 = a

(2)
11 = a

(2)
22 = a

(2)
33 = D .

Hence the condition (17) for n = 2 can be written
as

a(2)
µν + a(2)

νµ = 2gµνD . (19)

From this equation we can conclude that the a
(2)
µν

coeficient can be written as

a(2)
µν = ωµν +Dgµν , (20)

with ωµν anti-symmetric under the exchange of its
pair of indices, i.e. ωµν = −ωνµ. In the same way
for n = 3 we can define a

(3)ρ
ρλ1

≡ 4cλ1 which appears
in Eq.(17), so that one gets,

a
(3)
µνλ1

= gµνcλ1 + gµλ1cν − gνλ1cµ , (21)

in order to satisfy the condition (17) for n = 3. The
nontrivial solution of n > 3 cannot be found if the
dimensionality of the space-time is greater than
2. This follows from the permutation symmetry of
the last n − 1 indices of a(n). Hence for n > 3 all
a(n) = 0.

Collecting the results above, the following form
of uµ emerges,

uµ(x) = aµ + (ωµν +Dgµν)xν

+(gµνcλ1 + gµλ1cν − gνλ1cµ) xνxλ1 (22)
= aµ + ωµνxν +Dxµ + 2xµcνxν − cµxνxν ,

or since gµαuµ = uα, it can be written also as,

uα(x) = aα + ωα
ν xν +Dxα + 2xαcνxν − cαxνxν ,

(23)
where aα, D, cν , cα, and ωα

ν ≡ gµαωµν are arbi-
trary constant parameters.

Properly considered, the family of the differen-
tial operators generating the transformations (4)
with uα given by Eq.(23), uα(x)∂α, are the genera-
tors of a 15-parameter Lie group, manifested by the
conformal transformation group in a 4-dimensional
space-time preserving the causal structure given
by Eq.(1). The part with the parameters aα (4
parameters) and ωµν (6 parameters) generates the
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Poincaré transformations, the part with the one
parameter D generates dilatations. The part with
the parameters cλ (4 parameters) generates the
”proper conformal transformations” (also called
”conformal translations”), i.e. [11],

x′µ =
xµ − cµxµxµ

1− 2cµxµ + cµcµxµxµ
. (24)

The transformations given by Eq.(24) become
singular on the sub-manifold where the denomi-
nator vanishes. Therefore they do not give global
symmetries of the M manifold but can be defined
physically only as local diffeomorfisms in suitable
regions for a limited range of the parameters cλ.
One can, however, compactify M so that confor-
mal transformations act as diffeomorfisms defined
everywhere in the resulting space. Since Eq.(24) is
a nonlinear transformation, the 15-parameter con-
formal group is realized in a nonlinear manner as
the transformation group in the Minkowski space-
time even though its Poincaré subgroup represents
strictly linear transformations [12].

The problem arising from nonlinearity can
be handled by using the group representations
of linear transformations accommodated in 6-
dimensional real space. The use of this space is
based on the property of isomorfism existing be-
tween the conformal group and SO(4,2), which is
the isometry group of flat space equipped with a
metric [3],

gab = (−1)δa0+δb5δab =
{ −δab

+δab

for α= 0, 5
for α= 1, 2, 3, 4 , (25)

that leaves Minkowski space-time, with a metric
(3), conformally invariant. In other words, we can
use a 6-dimensional manifold as a scale to support
the space-time structure for describing the physical
systems, two additional coordinates is shown as the
scale representative and the scale exchange from a
point to another point. These coordinates can be
represented by ξa, a = 0, 1, ..., 5 (instead of µ, ν, ...
(greek alphabet) indices assigned as 0, 1, 2, 3, · · ·
the a, b, · · · , each spans 0, · · · , 5). The quadratic
form is given by,

ξaξa = gabξ
aξb = ξµξµ + (ξ4)2 − (ξ5)2 . (26)

Instead of the coordinates ξ4 and ξ5, we can use
new coordinates κ and η by introducing them as,

κ = ξ4 − ξ5 and η = ξ4 + ξ5 . (27)

In this way Eq.(26) can be written as,

ξaξa = ξµξµ + κη . (28)

Further, the pseudo-orthogonal transformation
group SO(4,2), with the above requirements can
be written as,

ξ′a = Ma
b ξb , (29)

with the 6× 6 M matrix satisfying,

gabM
a
c M b

d = gcd; det M = 1 . (30)

The M ∈ SO(4, 2) transforms the light-cone into
itself, i.e.,

ξaξa = 0 . (31)

Therefore, for the case governed by Eq.(31),
Eq.(28) reduces to,

ξµξµ = −κη . (32)

Further, with the definition,

ξµ = κxµ , (33)

one obtains ,
xµxµ = −η

κ
. (34)

From the steps described above, we can deter-
mine many subgroups of the conformal group, each
representing a transformation restricted to one co-
ordinate or more and keep the other coordinates
unchanged. In this way we can extract:

i) The 6-parameter subgroup obtained by rotat-
ing ξµ and leaving the coordinates ξ4 and ξ5

unchanged. It is generally well known that
these rotations will yield the homogeneous
Lorentz transformations. In another word, we
can write,

ξ′ =




Λµν 0 0
0 1 0
0 0 1




︸ ︷︷ ︸
Ma

b

ξ, Λ ∈ L . (35)

ii) The 1-parameter subgroup obtained by ro-
tating ξ4 and ξ5 and leaving the coordinates
ξµ unchanged. These transformations leave
(ξ4)2 − (ξ5)2 invariant and have the forms,

ξ′4 = ξ4 cosh θ + ξ5 sinh θ ,

ξ′5 = ξ4 sinh θ + ξ5 cosh θ , (36)

where θ is a pseudo-rotation parameter. Using
Eq.(36) we can obtain the transformation of
the coordinates appearing in Eq.(27),

κ′ = ξ′4 − ξ′5 = e−θ(ξ4 − ξ5) = D−1κ ,

η′ = Dη , (37)

where D = eθ. Both these equations are the
dilatation of κ and the inverse dilatation of η.
Since under the transformation (36), ξµ are
unchanged, then using (33),

ξ′µ = ξµ = κxµ ,
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will lead to,

ξ′µ = κ′x′µ = D−1κx′µ .

From the two equations above one gets,

x′µ = Dxµ , (38)

which is the dilatation of the xµ.

iii) In the same way, we can get the 4-parameter
subgroup that results in translations, related
to the transformation of coordinates ξ′µ where
κ is unchanged:

ξ′µ = ξµ + κaµ ,

κ′ = κ . (39)

Using Eq.(34) one can write κ′η′ = −ξ′µξ′µ,
and substitution of Eq.(39) into this relation
leads to,

η′ = η − 2ξµaµ − κaµaµ . (40)

From Eq.(33) it is clear that ξ′µ = κ′x′µ, so
that from Eq.(39) we get κx′µ = κxµ + κaµ

or,
x′µ = xµ + aµ , (41)

which is the Poincaré translation with four pa-
rameters aµ.

iv) The 4-parameter subgroup that results in a
conformal translation can be found by apply-
ing the coordinate transformation ξ′µ with η
unchanged:

ξ′µ = ξµ + ηcµ ,

η′ = η , (42)
κ′ = κ− 2ξµcµ − ηcµcµ .

The third of Eq.(43) is found in the same way
as Eq.(40). Using the same procedure as used
in step iii) one can find,

x′µ =
ξµ + ηcµ

κ− 2ξµcµ − ηcµcµ
. (43)

We can get back Eq.(24) by substituting
Eqs.(33) and (34) into Eq.(43) .

3 CONCLUSION

The 15 parameters as elements of the conformal
group can be derived readily, easily and pedagogi-
cally from the displacement field of an infinitesimal
transformation in the Minkowski space-time. This
derivation can be carried out by using the trans-
formation formulas connecting two coordinate sys-
tems which involves the light-cone characterized by

∆x = 0 and preserve the causal structure. These
15 parameters incorporate 6 parameters which are
elements of the homogeneous Lorentz group, 4 pa-
rameters of the translations, 1 parameter of the di-
latations, and 4 parameters of the conformal trans-
lations.

Although this group can be defined physically
only as local diffeomorfisms in suitable regions for
a limited range of the parameters cλ, its mani-
fold, however, can be compactified such that these
transformations act as diffeomorphisms defined ev-
erywhere in the resulting space.

The conformal group is realized in a nonlin-
ear manner as a group of transformations in the
Minkowski space. Due to the presence of iso-
morphism of the conformal group with the group
SO(4,2), it is possible to use the group represen-
tations with linear transformations accommodated
in a 6-dimensional real space.
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[6] P. Kosiński, J. Lukierski and P. Maślanka,
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