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Mechanical properties

Physical properties

Titanium alloy (Ti6AI4V) and hydroxyapatite (HA) are well-known materials applied in implants. TiGAl4Y
shows good mechanical properties and corrosion resistance, whereas HA possesses excellent biocompat-
ibility and bioactivity but weak mechanical properties. The combination of the TiGAI4V and HA properties
is expected to produce a superior material for bio-implants. This study aimed to analyze the feasibility of
fabricating HA[Ti6Al4V composites through powder injection molding (PIM) using palm stearin as base
binder. In this study, 90 wt% TiGAl4Y and 10 wit% HA were mixed with the palm stearin and polyethylene
binder system. The HA/TiGAI4V feedstock showed pseudoplastic properties, suggesting its suitability for
PIM. Flexural test revealed that the strength of the sintered composite r@s from 67.12 MPa to
112.97 MPa and its Young's modulus ranges from 39.28 GPa to 44.25 GPa. The X-ray diffraction patterns
and energy-dispersive X-ray spectra of the composite showed that the HA decomposed and formed
secondary phases. Isotropic porous structure was observed on the sintered sample because of HA
decomposition. Results showed that the palm stearin can be used as based binder in fabricating
HA([TiBAl4V composites via PIM, The mechanical properties of the sintered composites are nearly similar
to those of the human bone. In addition, the increase in weight of the sintered composite during in vitro
tests indicated the nucleation and growth of the Ca-P phase, which exhibited the biocompatibility of the

fabricated HA[Ti6GAl4V composite.

© 2014 Elsevier Ltd. All rights reserved.

gntmdul:tinn

Powder injection molding (PIM) is combination of plastic injec-
tion molding and powder metallurgy, which is suitable in fabricat-
ing small and complex parts in large quantities [1]. The PIM
process typically consists of four stages: mixing, injecting, debind-
ing, and sintering [2,3]. Hydroxyapatite (HA) shows similar proper-
ties to the human bone because of its chemical structure. However,
the low mechanical properties of pure HA make it unsuitable for
heavy loading applications. Intensive research has been conducted
to increase the mechanical properties of HA by modifying the
parameters and the routes of the process prior to combining with
other materials [4-8]. Titanium and HA are attractive materials
for medical application [9]. Titanium alloy has good mechanical
yet poor biocompatibility properties. HA is advantageous because
it possesses similar chemical structure to the human bone and
excellent biocompatibility; HA also enhances growth of natural
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tissues. Thus, HA and titanium alloy composite can be a superior
material for biomedical implant [10].

Powder metallurgy method is the main option to produce HA/f
Ti6Al4V composites [6,11]. However, results show that such com-
posites exhibit properties such as mechanical strength, Young's
modulus, and pore type that are insufficient for substitution of
human bone. The fabrication of HA/Ti6AI4V composite using PIM
is rarely reported. Thian et al. [ 12| produced HA/Ti6Al4V composite
using PIM with commercial binder. Results showed that some of
the cracks and void are observed on certain places. In the sintered
part, cracks that originate from the Ti particles are formed, which is
attributed to the varying thermal expansions, thereby inducing
residual stress on the composite.

One of the issues ofiinetal implants in terms of mechanical
properties is the large difference between the Young's modulus
of the metal implants and human bones [13]. Metal implants have
higher Young's modulus (105 GPa for titanium alloy) [14] than the
cortical bone (10-30 GPa) [15,16]. This remarkable difference in
Young's modulus is known as “stress shielding,” which is due to
the inhomogeneous distributionZfistress transfer from bone to
metal implant. The presence of porous structure in the implant
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material reduces the Young's modulus of the metal [16,17]. In the
powder metallurgy process, combining two or more powders with
different properties, such as powder size, type of powder (e.g.,
metal and ceramic), and thermal expansion coefficient, is
challenging. For example, a difference in particle size increases
critical powder loading. In a high powder loading condition, a small
quantity of binder is necessary. The binder is important in
determining the success of the injection stage in PIM. Moreover,
differences in thermal expansion coefficients induce residual stress
and crack during and after sintering [12,18].

Palm stearin is derived from palm oil. Palm stearin has been
used as component of binder systems [19-21]. As a natural binder,
it is environmentally friendly and used as lubricant and surfactant
in injection process. Other advantages of palm stearin include pro-
viding capillary pores to remove backbone binder during thermal
debinding. The main objective of this study is to analyze the feasi-
bility of fabricating HA/Ti6Al4V composite as implant material
through PIM with the use of palm stearin as the based binder.

2. Experimental details

Titanium alloy (Ti6AI4V h an average particle size 19.6 um
and non-calcined HA with an average particle size of 5 um was
used in this stuﬁﬁg, 1a and b). The size of the particles was
measured using Malvern particle size analyzer. Table 1 shows the
distribution of particle size for HA and TiGAl4V powders, which
have Dsp of 5.3 and 19.6 pm, respectively. The composition of mix-
ture consists of 90 wt#% Ti6AI4V and 10 wt% HA. A binder system
composed of a mixture of 60 wt#% palm stearin and 40 wt¥% polyeth-
ylene was used in this study.

The critical powder volume concentration of the mixture is
measured using the oil absorption technique based on ASTM: D-
281-12. Pre-mixing process of Ti6Al4V and HA powders were per-
formed for 30 min prior to primary mixing with binder system
using Brabender mixer. Powder mixture was mixed with binder
system for another 30 min using Brabender mixer at 30 rpm.
Firstly, polyethylene was melted completely in mixing machine,
then palm stearin and followed by powder mixture of TiGAI4V
and HA. Fig. 2 shows SEM image of the powder mixture of Ti6AI4V
and HA after pre-mixing process. The powder loading for this mix-
ing process is 78.21 vol&.

The injection process was performed using an injection molding
machine (DSM Xplore Injection Molding). Injection temperature
should have a higher melting point than the binder to ensure that
feedstock can be filled in e cavity completely. The mold temper-
ature should be close to the melting point of the binder to induce
the filling process. Moreover, the mold should be heated to avoid
transfer of a large gradient of heat from feedstock to the mold.
The melting points of palm stearin and polyethylene were
determined through Differential Scanning Calorimetry [19]. Some
defects such as a short shot typically occur with less pressure.

Table 1

D_iﬁ.nion of particle size for HA and TiGAl4Y powders.
Powder type Dip (pm) Dsq (um) Dog (um)
HA 23 53 223
TiGAI4V 10.3 196 32.1

Fig. 2. SEM image of the powder mixture of TiGAl4V and HA after pre-mixing.

A series of trial and error tests were conducted to determine the
optimal values of the parameters in the process. The values for melt
temperature, mold temperature, and injection pressure were set at
160 °C, 100 °C, and 10 bar, respectively, which are the optimal val-
ues to produce green part without any defect in this experiment.

The binder was removed through thermal debinding under
argon flow, and sintering is performed under vacuu ndition.
Thermal debinding wa -formed in two stages: a 3 min ramp
to 320 °Cfor 1 h; and a 5 °C/min ramp to 500 °C for 1 h. Slow heat-
ing rate was employed in the initial stage to remove palm stearin
and to avoid defect. Holding temperature for thermal debinding
was determined by the TGA curve of both binders. Palm stearin
and polyethylene decompose at temperatures above 300 and
450 °C, respectively [19]. The debound part was sintered at 1100,
1200, and 1300 °C in a high-vacuum furnace for 2 h.

The mechanical properties of the sintered HA/Ti6AI4V compos-
ite were analyzed using INSTRON 5567, an In universal test
machine based on MPIF standard 41 [22]. Scanning electron
microscopy (SEM) and X-ray diffraction (XRD) were used to study
the surface morphology and material phases, respectively. EDS
mapping was used to analyze the concentration and distribution
of ions on the sintered part.

In vitro test was conducted to analyze the biocompatibility of
the sintered part of HA/Ti6Al4V composite, The sintered parts were
immersed in the simulated body fluid (SBF) solution based on
Kokubo method [23]. The samples were immersed for 1, 2, 6, and
8 weeks and their weight was measured at each time point.

Fig. 1. SEM image of the (a) Ti6AI4V powder and (b) HA powder.
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3. Results and discussion

The viscosity-shear rate graphs for all of the feedstock derived
in rheological result are shown in Fig. 3. In general, the viscosities
of feedstock decrease with increasing shear rate, which indicates
pseudoplastic behavior. The behavior of feedstock was calculated
according to the following power law Eq. (1).

0 =Ky (1)

where 17 and K are the flow behavior indexes for viscosity and con-
stant [24].

The feedstock with pseudoplastic behavior has an n value less
than 1, whereas the feedstock with n=1 is called Newtonian
[24,25]. Based on the power law, an exponent n ranging from
0.09 to 0.21 indicates a pseudoplastic behavior of the feedstock.
The flow behavior index value for 140, 160, and 180°C are 0.21,
0.09 and 0.15, respectively. The measured viscosity and shear rate
are 100-600 Pas and 1000-6000 s, respectively; however, the
injectable range of feedstock for PIM ranged from 10%s7' to
10% 57! for shear rate and below 10° Pa s for viscosity [3]. Powder
characteristics and binder composition are important in determin-
ing feedstock behavior [25,26]. According to German and Bose [3],
the feedstock for injection molding application should be in
pseudoplastic condition; although, in another study [19], dilatant
condition is considered injectable.

Fig. 4 shows the shrinkage of the sintered part at every sintering
temperature. The shrinkage of the sintered part increases with
increasing sintering temperature. The largest shrinkage is 3.07%
compared to dimension of green part, which occurred at the high-
est sintering temperature 1300 °C, whereas the lowest shrinkage
(1.87%) occurred at the lowest sintering temperature 1100 °C.
The high sintering temperature cause diffusion rate of Ti increases
and induces densification particle [27]. At high sintering tempera-
tures, HA is unstable and decomposes to secondary phase [28,29].
At sintering temperature of 1300 °C, HA partially decomposed and
Ti ion easily diffused. Thian et al. reported that the presence of HA
blocks the diffusion of Ti atoms [12]. Utilization of high vacuum is
also a significant contributor in accelerating the decomposition of
HA and shrinkage of the sintered part. Fig. 5 shows the physical
changes of HA/Ti6AI4V composite at green, brown and sintered
part. The densification of titanium significantly reduced the size
of the sintered part. In order to clarify shrinkage in quantitative,
Table 2 shows variation of dimension in term of width, thickness
and length of green, brown and sintered part, respectively. Table 2
indicates that shrinkages of sintered part in thickness, width and
length direction.
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Fig. 3. Variation of viscosity against shear rate at various temperature.
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Fig. 4. Effect of sintering temperature on the shrinkage of HA[TIBAl4V composite.
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Fig. 5. Physical changes of the HA/TiGAl4V composite at different stages; (a) green
part, (b) brown part, and (c) sintered part, at sintering temperature of 1300 °C. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 6 shows the effects of sintering temperature on the flexural
strength and the Young's modulus of the HA[TiGAI4V composite.
The strength tends to increase with sintering temperature from
67.12 MPa to 112,97 MPa. The maximum flexural strength was
achieved at high sintering temperature 1300°C and minimum
flexural strength at sintering temperature 1100°C as shown
Fig. Ga. A reliable explanation for this trend is the increasing ion
diffusion, which encourages powder densification [30].

Young's modulus is one of the criteria for human bone implants,
which should be from 10 GPa to 30 GPa depending on the bone
position [9]. Fig. 6b shows the Young's modulus of HA[Ti6AI4V in
various sintering temperatures. The Young's modulus stabilizes
and increases at temperatures above 1300 °C, Sintering tempera-
ture is a significant parameter in increasing the flexural strength
and the Young's modulus of HA and Ti composites [12]. Fig. 7
shows the surface micrograph of the samples at different process-
ing stages in PIM. The binder system fills the gap among the parti-
cles and covers the surface of specimen (Fig. 7a). The binder system
acts as a binder and a lubricant to facilitate removal of the surfac-
tant and the specimen from the mold [3]. The binder system was
successfully removed using thermal debinding, as shown in
Fig. 7b; palm stearin and PE are removed separately in the first
and second stages. The HA decomposes and forms a secondary
phase, which tends to cover the titanium particles (Fig. 7c). The
presence of HA prevented the diffusion of titanium particles and
held the shape of the titanium particles. The precipitation of cal-
cium phosphate on the surface of the titanium particles in the early
stage is promoted by the dissolution of the secondary phase of HA
[12]. The titanium particles formed a neck for diffusion in an area
with low concentration of calcium phosphate precipitation. The
decomposition of HA left pores on the sintered part as shown on
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Table 2
Shrinkage of HA/Ti6GAI4V composite at green, brown and sintered part.
Qn part {(mm) Brown part (mm) Sintered part (mm)
Width Thickness Length Width Thickness Length Width Thickness Length
4.07 £0.03 2.11+0.05 75.13£0.06 4.04 +0.02 2.04 £0.02 7512+ 003 3.99+ 001 2.00+001 7276012
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Fig. 7. SEM micrographs of the microstructural changes during PIM stages; (a) green part, (b) brown part, (c) sintered part, and (d) magnification sintered part(c) at 2000,
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the Fig. 7d. The decomposition of HA occurred in each sintering
temperature, and the decomposition rate tend to increase at high
sintering temperature. In this case, HA behaves like a space holder.
The HA/Ti6Al4 structure (Fig. 7c and d) is fully supported by the
titanium alloy with a necking formation, whereas HA decomposed
into a secondary phase, which has small contribution to the stabil-
ity structure of the composite.

Fig. 8 shows the sintered part in various temperatures. Residual
HA particles are found in the gap between titanium particles, and
HA partially decomposed and covered the titanium particles. At
sintering temperature of 1100 °C, some groups of HA are found
on the surface, which are absent at relatively higher sintering tem-
peratures. The presence of titanium atom accelerates HA dehydr-
oxylation and titanium oxide formation [5,31]. The use of high

vacuum is believed to be a significant factor in inducing the dehy-
droxylation rate of HA. Inter-diffusion occurred on the interface of
titanium and HA, and titanium atom migrated to the HA and oxy-
gen atoms as HA moved to the titanium bulk. Oxygen as interstitial
atom diffused to Ti lattice until saturation, followed by the oxida-
tion of titanium, which decelerated the oxygen diffusion.

Fig. 9 shows the cross-section of the HA/Ti6AI4V composite
after grinding and polishing. Based on the EDS mapping results,
high concentration of titanium, aluminum, and vanadium ions
are spread completely in the composit tio Ca/P is an important
factor in determining the properties of calcium phosphate. HA
indicated a Ca/P ratio of 1.65, which is higher than that of calcium
phosphate. At high sintering temperature, HA is unstable and
decomposes to a secondary phase. Phosphorus ions are highly
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Fig. 8. Surface morphology of sintered parts at various sintering temperatures at (a) 1100 °C, (b) 1200 °C, and (c) {5
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Fig. 9. Variation EDS mapping of the HA/TIGAI4V composite at sintering temperature 1200 °C,

concentrated on the surface of the titanium particles, and then
migrate to the middle position of the titanium particles. Phospho-
rous ion has small radius and low activation energy, which facili-
tates easy diffusion in the bulk titanium alloy [9]. Homogenous
oxygen and calcium ion distributions are observed because of the
low atomic diameter of the oxygen ion.

Fig. 10 shows the XRD patterns for the feedstock powder mix-
ture and composites sintered at 1100, 1200, and 1300 °C. Raw
powder is a control powder that comprises HA and titanium

powders. The XRD patterns showed the combination of HA spec-
trum (JCPDS 00-009-0432 card) and titanium (JCPDS 00-001-
1198 Card). Some of the phases observed in the sintered part are
TiO (JCPDS 00-012-0754), TiC (JSPDS 00-032-1383 card), and j3-
TCP (JSPDS 00-009-0169 card). In all of the sintering temperature,
the XRD patterns of the HAJTi6Al4V samples did not show the
main peak of HA, which suggests that HA was decomposed. More-
over, in each sintering temperature, titanium oxide phases are
observed, resulting from the interaction of Ti with O ions from
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Fig. 10. XRD patterns of feedstock powder mixture and HA/TiGAl4V composites sintered at 1100, 1200, and 1300 °C.
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Fig. 11. Weight changes of the sintered HA/Ti6Al4V composites during eight weeks.

the bulk HA. These phase formations is a common phase of inter-
action between HA and Ti, as reported [11,12]. HA underwent
gradual decomposition especially at sintering temperature of

1300 °C. The mechanical properties of the HA/Ti6GAl4V composite
improve with increasing sintering temperature, however, bioactiv-
ity and biocompatibility should still be consi 4

Fig. 11 shows the weight changes of the samples sintered at
1100, 1200, and 1300 © er immersion in SBF for eight weeks.
The decomposition rate of HA at high temperature increase; that
is, the amount of HA phase vf@lles in every sintering temperature.
Ning and Zhou [32] reported that the composition of HA in HA[Ti
composite determines the bioactivity level of the material. As
shown in Fig. 11, the weight of the sintered part at 1100 and
1200 °C is higher than that at 1300 °C, which illustrates the vital
role of HA in increasing the bioactivity of titanium. Moreover, all
of the sintered parts lost weight (0.27-0.37%) durin| first week.
The sintered part at 1100 °C lost the most weight compared with
the other samples. The weight loss of the samples in the early stage
is attributed to the dissolution of calcium ions from secondary
phase after the sintering process [33]. After the gradual decrease
in weight of the samples during the first week, the weights of

Fig. 12. Morphological changes of the sintered part of HA[Ti6Al4V after immersion in SBF solution after (a) 1, (b) 3, (c) 6 and (d) 8 weeks.
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the samples increase significantly, indicating the start of the Ca-P
precipitation. This trend is supported by Thian et al., who per-
formed in vitro test for Ti6GAI4V/HA part using PIM via a ceramic
slurry approach with 50 vol% HA [33].

Fig. 12 shows the morphological changes in the sintered HA/
Ti6AI4V after immersion in SBF solution after (a) 1, (b) 3, (c) 6,
and (d) 8 weeks. Fig. 12(a) shows the condition of the microstruc-
ture after one week, as well as the nucleation and growth of Ca-P
phase on the Ti particle surface. After three weeks, the size of the Ti
particles enlarged because of the growth of the Ca-P phase. After
six and eight weeks, the morphology of the sintered part displayed
a Ca-P phase layer with plate-like crystal. The precipitation pro-
cess started with the formation of calcium titanate on the surface
of the titanium particle. Precipitation continued with the forma-
tion of calcium and phosphate on the calcium titanate, facilitated
the formation of an amorphous calcium phosphate layer [11,34].
The morphology of the Ca-P phase during the in vitro test using
SBF solution is described by Gemelli et al. as a plate-like crystal
[34]. Other references reported the titanium oxide phase as a
secondary result of the HA-Ti interaction, which is important in
the formation of apatite in vitro [32]. Although the amount of HA
partially decomposed, the HA/Ti6Al4V composite can still be bioac-
tive because of the formation of the titanium oxide induced by the
HA-Ti interaction and other secondary phases.

4. Conclusions

In summary, HA/Ti6AI4Y composite with a composition of
90 wt¥% TiGAI4V and 10 wt% HA was successfully fabricated via
PIM. Palm stearin was used as binder for the HA/Ti6Al4V compos-
ite. Moreover, rheological results revealed that the HA/TiGAI4V
powder with binder system (PE and palm stearin) showed pseudo-
plastic behavior within the viscosity of 100-600 Pa s and shear rate
of 1000-6000 s~ ', thereby indicating affirms the suitability of PIM
for fabricating the HA/Ti6Al4V composite. Isotropic micro porous
was clearly observed on the sintered composites because of the
HA decomposition. The composite sintered at 1300 °C showed
the maximum shrinkage of 3.16% with respect to the mold, as well
as the best mechanical properties (flexural strength of 112.9 a
and Young's modulus of 44.26 GPa). The decomposition rates of HA
increase with the increasing in sintering temperature. Moreover,
the dissolution of HA was observed on the surface of the titanium
particles. Based on in vitro test using SBF, the sintered HA/TiGAl4V

posite showed induces nucleation and growth of Ca-P phase

he surface of the Ti particles. In addition, even though the HA
phases decomposed and formed a secondary phase, which still
endowed for increasing the biocompatibility of the TiBAI4V.
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