JOURNAL OF FOOD, #GRICULTURE & ENVIRONMENT

WFL Publisher Science and Technology

www.world-food.net

Vol.4, No.2		ISSN: 14	59-0255	April 2006
18. 95			J. O. Ogvnji (Nigeria)). M. Kigalu (Tanzania)
G i',ims and Scope: The Jou publishes peer-reviewed communications on food science, human nutrition of interdisciplinary studies th and the environment. The relevant scholarly manuscr related to modem agricult offers advertisement space	eneral Information urnal of Food. Agricultu original research, critic science and technolog or human health, with p at explore the intersection or journal also considers tipts addressing ethical or tural and environmental e for special announcer	tre & Environment cal reviews and short cy, agriculture, animal particular emphasis on on of food, agriculture, a a limited number of r socioeconomic issues I sciences. The journal hents.	 K. Y. Kantoglu (Turkey) M. A.KM. £l-Sawi (Egypt) M. Gutierrez-Correa (Peru) R.M.deAlmeidaMachado (Portugal) J. Boaventura Cunha (Portuga S.S. Baba (Nigeria) J. Wang (China) S. Antonino Raccuia (Italy) S. Nicola (Italy) S. Kintzios (Greece) S. Pflugmacher (Germany) V. Gokrnen (Turkey) 	 J. M. Right (Talzana) L. U. Opara (Oman) M. M. Khan (Pakistan) N. Nassar (Brasil) R. Baciocchi '(Ilaly) S. M. Sapuan (Malaysia) S. Ur-Rehman (Pakistan) O. Tzakou (Greece) N. H. Samarah (Jordan) S. Mitra (India) S. De Pascale (Italy) V. Enujiugha (Nigeria) V. Gao (Chinci)
	Editorial office		Y. Yitmaz (Turkey)	A Y A Rawashdeh (Jordan)
Director Editor in Chief Associate Editor Assistant Editor Technical Assistant Address E-mail Tel/fax	 Rarndane Oris Ph Raina ĝiskanen Jorg R. Aschenba PG Rajendran Pl Gary Hausman P Andrew Reynold Pirina Halnu Marja Rauta la, N JFAE-Editorial O Meri-Rastilaruie FN-009S0 Helsin info@world-foo 00 35S 9 759 277 	D. PhD. ach PhD. hD. Ph.D. Vora Dietrich office, 3 C, hki.Finland d.net	 Z. Li (China) A.L. Acedo Jr (Philippines) A.S. Amr (Jordan) M. lhl (Chile) N. H. Samarah (Jordan) A. Ali (Saudi Arabia) A. Myrta (Italy) A. Bhunia (India) C. Turgut (Turkey) Chan Lai Keng (Malysia) Chuong Pham-Huy (France) D. Saxena (India) E. Otoe (Ghana) O.A. Adcrula (Nigeria) P. A. Azeez (India) P. K. Bhowrnik (Japan) K. Miyashita (Japan) 	 X. He (China) M. Erdern (Turkey) M. Murkovic (Austria) N. Murtaza (Pakistan) R. Radhak:ishna (India) A.O.K. Adesehinwa (Nigeria) A. Vicente (Argentina) A. Balliu (Albania) C. Bang-xiao (China) C. Bang-xiao (China) C. Garcia-Viguera (Spain) M. Edelstein (Israel) K. A. Borsoglou (Greece) O. B. Olorunfemi (Nigeria) P. Riga (Spain) P. Galeffi (Italy) U. Serdar (Turkey)
Website	www,world-food	l.net	Q. fu Chen (China)	M.A. Hussaini (Nigeria)
	Editorial Board		M. Morsi M. Ahmed (Egypt) O. Lamikanra (USA)	P. Plorou-Paneri (Greece) E. f. Gueye (Senegal)
F. Anes Calero (Spain) C. Vii;neauh (Canada) A. Andren (Sweden) ILK.Pant (USA)		M. Pessarakli (USA) L. A. Lacey (USA) Z. Singh (Australia) A. Jaradate (USA)	Z.Dabkevicius (Lithuania) Subscription: Orders are accept	A. Mathe (Romania) ed on a prepaid and calendar-
 O. S. M.Mahmoud (Egypt) Chemg-Yuan Lin (Taiwan) C. Ancin Azpilicueta (Spain G. O. Adegoke (Nigeri3) 	n]	A. Javansbah (Iran)D. Bergero (Italy)E. Nawata (Japan)1.B. Hashim (UAE)	air delivery outside Europe). Pr request. Please find subscription	iority rates are available upon rates and ordering details in

H. Hu (China)

N. A. Khan (India)

A. Lapa /(.;kraine)

A. Asan <Turkey)

Important Note: If you are not a member of ISFAE yet, please visit our homepage: http://www.isfae.org and register to benefit from special rates when purchasing scientific journal, plus access to on line journals or to benefit of some free services. Kindly contact ISFAE Secretariat at; isfae@isfae.org

detachable form included in this issue of the Journal, or request

from the office:(info@world-food.net).

Abstracting: JFAE is abstracted in Chemical Abstracts - CAS, Scirus Elsiever, Med Bioworld, Index Copernicus, Apic abstract, IFIS, FSTA, CABI, FAO-Agris-Caris and under process with ISi, Pascal Database and CSA.

Advertising: Inquiries and correspondence regarding advertisements or announcements should be sent to WorlJ Food RD Ltd. Meri-R.astilantie 3 C, FI-00980, Helsinki, Finland. Tel:+358 9 75 92 775 or+358 50 505 I 135, e-mail: info@world-food.net

	Editorial office
Director Editor in Chief	: Rarndane Oris PhD. Raina Øiskanen PhD.
Associate Editor	Jorg R. Aschenbach PhD.
	P.G Rajendran PhD.
	Gary Hausman PhD.
	Andrew Reynold Ph.D.
Assistant Editor	Pirina Halnu
Technical Assistant	Marja Rauta la, Nora Dietrich
Address	JFAE-Editorial Office,
	Meri-Rastilaruie 3 C,
	FN-009S0 Helsinki.Finland
E-mail	info@world-food.net
Tel/fax	00 35S 9 759 2775
Website	www,world-food.net

F. C. A. IL 0. Cł С. G. O. Adegoke (Nigeri3) G. S.H. Baccus-Taylor (Trinidad) Hons-Wen Gao (China) I. Linko, (UK) J. Prohens (Sp:sin) J. Kim (Korea) K. Sahin (Turkey) K..lzuhara (Japan) M.T. Lao Are=s (Spain) P. Martinez-Gomez (Spain) N. Daneshvar (Iran) T. W. Kiriti-Nganga (Kenya) Tai-Hua :-!. (China) W. Oleszek (Poland) A.R.AJ·T2wzlu (UAE) Yulong Y. (China) Visnja Or=in [Croatia] E. Acikgoz (Turkey) A. Arunachalam (India) A.Mohamed (USA) A.J. Al·Shamnwi (Jordan) A.R.Nasser AI-A.zri (Oman) F. 8. Okokon (Nigeria) F. Hassan Abdcbziz (Egypl) G. Saker fEgypl) F. Abdull=v (Mexico) G. S. Carrasco (Chile) F. Lefon (Switlcrb:>d) .' ti.Rahman (Pakistan) H.Al-bakier (l'>lcstine) G. Pickering (Canada) I. Mucller-H31Vry !UK) G. Pelc:I **If**ranee) H. Varan<b 📀 (Ponug3I) H. Pal Singh (India) M.A. A.C. G lvcs (Portugal) P. Yu (China) L. R. Si.-cl1a-Vel.isqucz (Messico) l. Siddiqui (Pakistan)

Journal cffood. Agricutrure & Environment, Vol.4(2), April 2006

jS of optimum setting point matrix on shelflift and quality)toutes or tamarind cheese f(ayn), M Mohammed and D . Wickham	Morphological diversity among Indian jujube (Zi-ziplills mauritiana Larnk.) genotypes collected at Hisar, India PL Saran A.K. Godara LS. Yaday, S.K. Sehrawat and G. Jal. 172
Jush V. M. Monaninea and T.D. Hernam	T.L. Saran. A.K. Gouara, LS. Tudav. S.K. Senrawatana G. Lat 1/2
structure and performance evaluation of coco a m:.rke!i,,g institutions in South-Western Nigeria: An economic analysis	Application of molecular markers for hybrid maize (Zea mays L) identification
J.A. Folayan, GA. Daramola and A.E. Oguntade 125	A. L Abdel-Mawgood, M. M. M. Ahmedand 8. A. Ali 176
Comparative quality characterization and molecular profiling of Indian, Sri Lankan and Guatemalan cardamoms <i>tli:abeth Thomas. Jaleel Kizliakkayil, T. John 'Zachariah. S. Syamkumar</i> <i>and B. Sasikumar</i> 129	Correlation of PCR and IFAS with eggplant bioassays for identification of <i>Clavibactcr michiganensis</i> su bsp. <i>sepedonicus Ahmed L. Abdel-Mawgood and Thomas I. German</i> 179
Gel permeation chromatography clean-up prior to liquid chromatography for determination of aflatoxins in spices £mad R. Attallah, Sohair A. Gad. Salwa M. Dogheim. Ahmed Ismail Hashem. and Emtithal. A. El-Sawi 134	Comparison of yield performance and profitability in hybrid yam varieties cultivated under staked and unslaked production systems <i>GO. Agbaje and A.A. Adegbite</i>
Relative susceptiptibility of Najdi, Neimi and Hari	Relative drought tolerance of important herbaceous legumes and
lambs indigenous to Saudi Arabia to experimental	cereals in the moist and semi-arid regions of\VestAfrica
infection with <i>Haemonchus contortus</i>	S. U. Ewansiha and B. 8. Singh
Ahmed E. Fatani, E. A. Elamin, S. A. Atiya and Hamdan I. Al-Mohammed	Screening for tolerance of stress temperature during
157	germination of twenty five cowpea (Vigna unguiculata L. Walp)
Staple Food Policy and Supply Response in Nigeria: A case of	cultivars
Cassava Nkang M. Nkang, Daniel S. Udom, and Sympsons O. A. hang, 1/3	Shahidul Islam. Rafiela C. Carmen cyld James O. Garner; Jr. J91
intung w, intung, Danier 5. Ouom and Syrvanus O. Adang 145	Cryopreservation of notato (Solallilli tuberosutn $ $) shoot tips
	"ISing vitrification and droplet method
Agriculture	Artur Kryszczuk, Joachim Keller, Marion Grube and Ewa Zimnocli-
	Guzowska J96
Or station of the formation of the lation of the	Influence of photoperiod and gibberclllc acid (GA.Jon the growth
and endosperm effects in multiple environments	and flowering of cowpea (<i>Vigna unguiculata</i> (L) WALPJ
Abderrahmane Achouch, Mebrouk Benmoussa and	Fatimah B. Mukhtar and B. B. Singh10 J
Sid Ahmed Snoussi 147	Minarel status offerences and graving costs in West Sumstra
	Indonesia: 2. Micro minerals
The effect of a combined treatment with retardant and auxin on	Lili Warly, A. Fariani, Evitayani, M. Hayashida and T. Fujihara 104
mineral composition of fruits, seeds and leaves of apple trees Alina Basak 150	Jultivariate Phenotypic Structures in the Batini barley land race
Many mineral distribution of famons in Couth Sumstand during	A. Y. Al-Maskri, M. Shahid and A. A. Jaradat 208
rainy and dry seasons	200
Evitayani, Lili Warly, Armina Fariani, Ioshiyoshi Ichinohe, Maki Hayashida, Saukat, A Abdul Razak and Tsutomu Fujihara 155	Micro mineral solubility of forages in South Sumatra, Indonesi a <i>Evitayawi, L. Warly A. Fariani, M. Hayashida and T. Fujihara</i> 11 J
An economic analysis of split application of organo-mineral	Seasonal influence on mineral content of forages used
fertiliser on okra in humid forest zone of Nigeria.	District, Morogoro, Tanzania
WB.Akanbi. J.A. Adeatran, A.B. Otantyan and A.O. Togun 701	Dorah J Mtui, Faustin P. Lekule, Martin N. Shem, Chrispinus DX.
Effectof pre-emergence herbicides on yield and yield components of rice	Rubanza, Tosbiyoshi Ichinohe, Maki Hayashida and Tsutomu Fujihara 116
M. A. Mahadi. S. A. Dadari, M. Mahmud and B. A. Babaji 164	Effect of planting date on seed yield and quality of barley growp
	under semi-arid Mediterranean conditions
Numeral nutrient and protein contents in tissues, and yield of navy bean, in response to nitrogen fertilization and row spacing	Nezar H. Samarah and Taha A. Al-Issa 122

168

V. M. Russo

Journal of Food. Agriculture & Environment, Vol.4 (2). April 2006

Journal of Food, Agriculture Org Daris 10 10, 0160 000 1 10 9000000000

Mineral status of forages and grazing goats in West Sumatera Indonesia : 2. Micro minerals

Received 29 November 21105. occeined 12 Murch 21JIJ6.

Abstract

This study is a second pan of a scnes experiments conducted to evaluate mineral status of forages and grazing goats in West Sumatra. Indonesia. Forages species, harvesuig locauons and animals used were the same as reported in the previous study. The results showed that concentration of micro minerals in forages were significantly affected by species and season. Concentration of iron (Fe) and selenium (Sc) in dry and rainy seasons was higher than the critical level suggested for deficiency of goats. Deficiency of forages copper (Cu) was found in both seasons; of which in dry season the deficiency was \$4.6% for grass and 71 4% for legume, while in rainy season the deficiency was \$4.6% for grass and 85.7% for legume. In overall, deficiency of zinc (Zn), molybdenum (Mo), and cobatt (Co) for grass was 15.4, 11.5 and 42.5%; while the deficiency in legume was 42.9, 42.9 and 50%, respectively. 0Jt3 on micro mineral status of grazing goats showed that n overall the incidence of Cu. Mo and Sc deficiencies were l6.5, 17.0 and 33.0%, respectively. This finding suggested that supplementation of these elements are required for ruminants grazing in nauve pasture of West

Key words: Micro mineral stares. forages. gears. dry and r?iny season.

Introduction

In animal industry, mineral deficiency or toxicity is one of the limiting factors to support production. Minerc! status of the animals closely related wuh the amount of forage mineral consumed. Results of the experiments conducted m tropical countries showed that incident of mineral deficiency or toxicity commonly occurred in grazing ruminants with forage as a main feed. Study of Mc Dowell *ct al.*¹ on grazing canle in South America showed that Na, K, Ca. P. Mg. Zn. Cu, Co and I are minerals frequently deficient, while Fe and Se arc minerals frequently toxic. Deficiencies of Cu, Co and Se have been also reported for grazing sheeps in Australia and New Zealand 2.¹. Espinoza *et al* 'reported that the forages grown in warm areas of Florida are deficient in minerals Co, Cu, Fe, Zn and Se: while studyof Fujihara *et al.* J showed goats grazed in Central Luzon, Philippines were deficient in Cu and Se.

Results of the study in Indonesia showed that concentrations of Cu and Zn in forages and grazing cattle in Java Island were lower than the critical levels", Deficiencies of Ca, P, Cu, Zn and Se in forages and grazing can le also have been reported by Prabowo *et al.*⁷·1 in South Sulawesi. In orth Sumatra. Hayashi *et al.*⁹ reported that Ca, P, Mg and K "ere deficient minerals in the forages. According to Underwood and Suttle ¹⁰ several factors affect mineral contents of forages including species, soil fertility, climates and plant maturity. In dry season, mineral concentrations of tropical forages generally decrease which associated by mineral deficiency in animals grazed in the area. A high fiber and lignin *content* of tropical forages could reduce minerals availability for ruminants. Objective of the present study was 10 evaluate micro mineral concentration of scveral commonly forages and micro mineral status of grazing goats in West Sumatra during dry and rainy seasons

l\l:itcri:ils and ,\lethods

Investigation area: This study was conducted in five regions of West Sumatra province, namely Padang, Solok, Tarrah Datar, Pariarnan and Sawahlunto Sijunjung. The province is located in tropical and monsoon region, lies between 0"54 N 10 3°30'\$ and 98°36' to 101°53 'E. There are two seasons during the year, dry season from February to September and rainy season from November to March. The temperature is nearly constant, differing only a few degrees among the dry and rainy seasons with daily temperature ranges from 23 to 3 1"C. The mean of monthly rainfall in dry and wet seasons is 195 and 233 mm respectively, with the annual rainfall being 2570 mm.

Collection offorage and blood samples: The forage evaluated consisted 13 species of grass (Axonopus compressus, Pennisetum purpuphoides, Pennisetum purpureum, Setaria sphace(ata. Cynodon plectotachyus, Paniciliii maximum. Paspalum notatum. Pasp alum dilatatum, Bracluaria dec umbens, Euchla ena mexicana, Andropogon gayanus. Havea hexandra and Cynodoli dacrylon) and 7 species of legumes iLeucaena leucocephala. Gliricidia maculata, Calopogonium mucunoides, Centrosellia pubescens and Mimosa pudica). The forage samples were collected during dry and rainy seasons. Immediately after harvesting. representative samples were oven-dried at 60°C for 24 hours. ground in a Wiley mill through I-mm screen and kept for further analyses, Blood samples were collected through iugular

Journal of Food. Agriculture & Environment, Vol J (2). April :?006

(Om about 30 goats at each season and region. Micro oncelltrations (Cu, Zn, Mn, Fe, Mo, Co and Se) in the nd blood plasma were analyzed by Inductively Coupled mission Sp.::el,omc!cr(!CPS-21)()(), Shimadzu, Japan). The (ferences of mineral concentration in forages and blood between the dry and rainy season were determined using 3 i-tcst¹¹.

Results and Discussion

wn in Table I, concentration of micro minerals of grass mong species and season. The concentration of Cu, Zn. Co were lower than requirement of sheep and goat (critical vhile concentration of Mn, Fe and Se were above the critical

suggested by McDowell ¹. In rainy season, concentration varied from 2.3 to 11.9 mg/kg, while in dry season the entration ranged from 3.3 to 14.4 mg/kg The lowest entration of Cu was obtained in *If. hcxandra* and the higl.cs: found for *P. mwinimu* both in dry and rainy seasons. Grass iency of Cu in both dry and rainy seasons was 84.6%. Though oncentration did not differ among the season, deficiency of element in dry season was significantly higher (p<0.05) pared to rainy season (23.1 vs 7.7%). The concentration of Cu ie present study was similar with the result of Hayashi *et al.* ⁹

ble 1. Micro mineral concentration of grass in rainy and dry seasons (mg/kg DM).

fpcsics	Season	Cu	Zn	Mn	Fe	Mo	Co	3
)Illcal level#		11	33	-40	50	0.5	0.2	- 02
'oxic level	5	25	750	1000	500	JO	0	1
l compressus	Rainy	11.3	45.6	77.3	417.0	0.78	0.16	0.73
And And And	Dry	7.9	30.3	92.4	411.2	1.19	0. S 4	0.42
' purpuphoides	Rainy	IO.8	40.6	48.5	203.3	0.0S	0.23	0.94
1 1 1	Dry	87	29.0	83.2	331 8	0.67	0.02	0 51
: sphacelata	Rainy	99	52.7	150.5	338 7	1.62	0 12	0.64
1.1.2	Dry	10.5	37.2	96.2	125.5	0.91	0.32	0.57
	Rainy	8.2	SO. /	49.0	267.3	1.25	0.S3	1.04
lcctostachvus	Dry	9.1	34.5	40.9	223.2	1.97	1.54	0.42
fpCSICS)ITICAI level# 'oxic level 1 compressus ' purpuphoides : sphacelata ·Icctostachyus ' purpureum ' notatum ' maximum 1 decumbens : mexlcana I gayallus I hexandra · dilatatum · dactvIon ICAN	Rainy	94	38.5	45.1	243.7	1.30	0.17	0.50
' purpureurn	Dry	7.4	42 1	105.5	IOI I.I	1.76	0.33	0 3C
purpurchin	Rainy	1O.0	58.9	96.9	1591.7	0.60	0.42	0.46
' notatum	Dry	11.S	.66.3	135.3	239.3	2.10	0.43	0.26
	R.:iiny	11.9	38.6	132.0	453.4	0.16	0.05	0.70
' maximum	Dry	14.4	·G.2	125.7	397.5	0.70	0.53	0.21
meann	Rainy	5.0	3-U	119.7	241 7	0.85	0.28	0.58
decumbens	Dry	6.3	36. t	119.6	211.9	1.74	0.73	0.27
l decumbens	Rainy	6.8	36.5	41.2	373.2	0.54	0.14	0.60
: mexicana	Dry	7.5	32.8	145.3	1438	0.60	nd	0.42
	Rainy	6.5	32.2	33 40 50 0.5 0.2 750 1000 500 $J0$ $I0$ 5.6 77.3 417.0 0.78 0.16 0.3 92.4 411.2 1.19 0.54 0.6 48.5 203.3 0.05 0.23 9.0 83.2 331.8 0.67 0.02 27.1 150.5 338.7 1.62 0.12 7.2 96.2 125.5 0.91 0.32 0.1 49.0 267.3 1.25 0.53 44.5 40.9 223.2 1.97 1.54 85.5 45.1 243.7 1.30 0.17 21 105.5 101.1 1.76 0.33 8.9 96.9 591.7 0.60 0.42 6.3 135.3 239.3 2.10 0.43 8.6 132.0 453.4 0.16	0.56			
gavallus	Dry	6.9	II LI	67.4	214.4	0.50	0.12	0-30
Chical level# Onical level oxic level compressus purpuphoides sphacelata lectostachyus purpureum notatum maximum decumbens mexicana gayallus i hexandra dilatatum dactvion tcan	Rainy	2.3	100.0	80.6	284 0	3.58	0.11	0.71
I herandra	Dry	3.3	113.0	70.2	307.8	1.10	0.46	0.63
I. hexandra	Rainy	9.2	47.0	55.6	34-14	1.07	0.32	0.51
• dtlatatum	Dry	4.2	62.7	-1-1.4	103-2	2.35	0.19	0.53
· anananan	Rainv	93	156.4	90.3	160.0	1.42	0.26	0.90
daotulon	Drv	7.8	113.2	83.7	118.4	0.48	0.46	9.30
· aucivion	R:tiny	8.9	_ 56.3 _	83.7'	389.2°	1.03'	0.25•	0.68
tcan	Dry	82	57.8	93.1 b	295 3*	1.2-lb	0.51b	0.4%
	Overall	8.6	57.1	ss.e	3.!2 3	1.14	0.38	0.58
	D Linu	-81.6-	771	00	00	23.1 6	53.8°	0.0
>Cfleiency (°1.)	Dry	8-16	≬3.t*	00	00		30.8	0.0
	Overell	8-16	15.4	00	00		42.3	0.0
	overen	0-1.0				11-5		0.0

• "J "S 0,.C

lh.: ...) ♦ * ◆ • " fe.cl NC .k-(06W"f/1*:

-umal of Food, Agriculture & Environment, Vol .! (\$1. April 2006

who obtained Cu content of grass in North Sumatra being $8.99 \pm 4.6 \text{ mg/kg}$, but it was relatively lower than result of Kumagai *et al.* ' and Prabowo *et al.* '. According to Kumagai *et al.* '. Cu concentration of forages in Java Island during rainy season varied from 3.9 to 36.1 mg/kg and from 4.3 to 8.2 n: ; 'kg c!!:Jinz dry 5C350n. Study of Prabowo *et al.* ' in South Sulawesi, Indonesia, found that Cu concentration of grass was 8.7–15.9 mg/kg in dry season and 9.9–22.9 mg/kg in rainy season; while deficiency of Cu was 33.3%

in dry season and 30% in rainy season.

There was a great variation of Zn concentration of grass, tanging from 32.2 to 100.0 mg/kg in rainy season and from 29.0 to 113.0 mg/ kg in dry season. The wide variation of Zn content in grass has been repond by Hayashi *ctal.*" in North Sumatra (9.5-462.5 mg.' kg) and in Jan Island by Kumagai *ct al.*" who found that Zn concentration varied from 10.9 to 56.5 mg/kg in dry season and from 20.6 to 69.5 mg/kg in rainy season. Study of Prabowo *et al.*" showed that mean Zn concentration of forages in three regions of South Sulawesi during dry season was 30-48 mg/kg, decreased during rainy season to 25–38 mg/kg with percentage deficiency being 31.7% in dry season and 51.7% in rainy season. The other experiment of the tropical forages showed that Zn concentration in Thailand during dry and rainy season was 34.5–55.7 mg/kg and 40.2–51.8 mgkg. respectively ¹¹. In Phihppine Fujihara *et al.*"

reported that Zn concentration of forages w'ls 2SA:::: $I \mid mg \ kg$.

Conceruration of Mo. Co and Se were greatly affected by season and forage species. In rainy season, mean concentration of 0 and Co were 1.03 and 0.25 mg kg. respectively. These values were significantly k)\\er (p<0.05) ihan concentration of:-lo and Co III Jry season (1.2.J and 0.51 mg/kg). If was noted that 30.0% of grass "ere deficient in Mo during drseason, while kring rainv season 23 1% of grass was deficient in Co and 53 8% deficient III Mo. However, the result was in the range of the data reported by Prabowo *ct al.*" that Co concemration of the forages grown in South Sulawesi at dry season.

varied from 0.34 to 0.42 mg/kg. while in rainy season the Co concentration ranged from 0.3 -0 44 mg/kg. Furthermore. they reported ihat concentration of Mo in dry season ranged from 0.26 to 1.25 mg/kg and from 0.42 to 1.75 mg/kg in rainy season. The Mo concentration found in the present study was also comparable with the result of Kumagai ct al." in Thailand that grass contained higher Mo in dry season compared 10 rainy season (2.09-3.39 mg/kg vs 0.89-1.66 mg/kg). Data on Java Island ofIndonesia showed that concentration of Mo in dry season varied from 0.33-2.03 mg/kg and in rainy season ranged from 0.27–3.06 mgikg ¹ In rainy season, concentration of Se was significantly higher (p<0.05) than in dry season $(0.68 \text{ vs } 0.47 \text{ }\mu\text{g/kg})$. the values were above the requirement of Se for sheep and goats. The average Se concentration in the present study was relatively higher compared to the results of previous studies s ".

Table 2 shows concentration of micro minerals in legume forages. It is clear that except for Se. concentration of nucro minerals was lower in legumes

faompared with grass. The changes of season significantly affected concentration of Zn, Fe, Co and Se and percentage deficiency of Cu, Zn, Mn, Mo and Co (p<0.05). In the rainy season, the average concentration of Zn, Fe, Co and Se was 37.2, 255.2, 0.17 mg/kg and 1.0 µg/lig, while in dry season the concentration was 27.3, 191.6, 0.27 mg/kg and 0.52 $\mu g/kg$ respectively. There was no significant difference among the seasons for concentration of Cu, Mn and Mo, the average values being 7.4, 49.5 and 0.77 mg/kg. However, the deficiency of Cu, Zn. Mn. Mo and Co significantly differed among rarny and dry season. In dry season, percentage deficiency of Zn, Mn and Mo of legumes was 71.4, 28.6 and 57.1%; these values were higher compared to rainy season (42.9, 14.3 and 28.6%). Conversely, deficiency of Cu and Co in rainy season was higher compared to dry season (S5.4 and 71.4% Vs 71.4 and 28.6%).

Table 3 shows micro mineral concentration of blood plasma goats grazed in several regions of West Sumatra. It can be set that plasma concentrations of Cu, Mo and Se of several goa were lower than the normal fevel of these elements in blood plasm of goers. Concentration of plasma Cu i,1 d,) season i. ariedefro, "cin' 'or """ " " " " " " an area" wort " a compress on fires 0.70 mg (Solok) to 0.997 mg/1 (Pariannan) with the average valuer 0.829 mg/l, this level was lower compared to plasma C concentration in rainy season that varied from 0.798 mg/l (Tana Datar) to-1.329 mg/I (Solok) which the average of 0.996 mg/I. In dr season, the range of plasma Mo concentration was 0 084 mg (Sawahlumo) - 0.154 mg/l (Padang), the average value being 0.12 mg/I. These values were similar to those of rainy season which a first a minimum paper worked from 10 for 10 to the ranged from 0.076 mg/l (Padang) to 0.147 mg/l (Pariaman) Concentration of Se in rainy season varied from |6.9 µg/l (Tanal

.,11

Table 2.	Micro	mineral	conce	ntration	of legume	s in rainy	and dry	seasons	5
Carrier .	(ma/ka	DM)r	-24	1000	**-	10 a	16.3 m	C+	1

(ma/kg	a DMD	44	10 m	-	-		1.4	
S[!<:cics	Season	Cu	Zn	Mn	Fe	Mo	Co	Se•
Critical levels		+1	-33-	-40-	50	0.5	0.2	0.2
Maximum level	Talat	25-	750	1000	-500	-10-	10	2.0
L lcucocephala	Rainy	10.2	34.5	42.4	239.9	0.18	0.13	1.33
C. manufata	Đry	10.3	31.5	50.4	131.2	0.43	0.41	0.41
G. /1/U(/1/0111	Rainy	3.4	19.6	32.9	121.3	0.53	0.08	1.29
······································	Dry	11-2	20.4	48.9	330.3	0.42	0.26	0.52
C. mucunoides	Rainy	4.7	27.7	40 6	569.2	0.7Θ	0.16	0.73
and and the second	Dry	7.1	25.3	49.0	405.8	1.12	0.32	0.80
M pudica	Rainy	7.7	44.4	42.1	295.1	1.)5	0.33	0.87
- in Francisco	Dry	S.5-	35.9	73 5	139.1	0.32	0.26	0.46
C. pubesrcns	Rainy	14 5	39.7	49 0	282.8	0.36	0.21	0.75
10.02002	Dry	10.5	34.1	78 9	103.S	1.20	0.51	0.27
M. invisa	R:iiny	9.0	67.4	60.1	107.2	0.51	0 16	1.14
- when the and	Dry	5.7	22.3	38.4	96.3	1.64	0.01	0.20
S glandtjlora	Rainy	3.S	27.0	48 0	171.2	1.67	0.15	0.88
	D!)'	3.1	21.5	38.1	135.0	0.27	0.12	0.95
}.lean	Rainy	7.6	37.2 \	45.0	255.2 •	0.76	0.17°	1.00 .
	Dry	8. I	27-3*	53.9	191 6b	0.77	0.27 ¹).52 ь
m - malaness	Overall	-7.4-	32.3	49.5	223.4	0.77	0.22	0.76
Deficiency (%)	Rainy	85.7'	42.9°	14.3 ⁶	0.0	28.6 ⁶	71.4*	0.0
	Dry	71.4 ь	71.4 •	28 6 •	0.0	57.1 °	28.6 ь	0.0
· *	Overall	78.6	57.1	21.4	- 00	42.9	50.0	0.0

Sc •...lit DØL The "Jues beto... ,hi, It, cl >re J.-r.ci-cul•:.

•. b. f?< n.OS).

Table 3. Concentration of micro mineral in blood plasma of goats at several regions in West Sumatra during rainy and dry seasons (mg/I).

Location	Season	- Cu-	Zn	Mn	Fe	Мо	Co	Se•
Critical level	+	0.65	0.4	0.002	1.6	0.05	1	0.02
Padang	Rainy (30)	0.885	2.05	0.048	6.72	0.076	0.030	111.2
No Second	Dry (41)	0.820	1.27	0.056	7.08	0.154	0.063	159.8
Pariarnan	Rainy (15)	1.031	1.)2	0.072	9.71	0.147	0.036	21.2
+1.1.1	Dry (12)	0.997	1.24	0.065	S.12	0.135	0.027	20.1
Solok	Rainy (14)	1.329	1.78	0.049	8.20	0.085	0.068	78.7
*****	Dry (12)	0.700	2.05	0.107	14.20	nd	0.027	63.4
Sawahlunto	Rainy (28)	0.936	1.06	0.036	4.64	0.093	0.039	35 7
Tank Pares	Dry (24)	0 897	0.95	0.027	5.01	0.084	0.035	30.2
Tarrah Darar	Rainy (35)	0.798	0.98	0.052	6 21	0.124	0.062	16.9
	-D!)'. (36)-	0.730	0.93	0.041	6.06	0.137	0.053	-16.7-
Average	Rainy	0.996°	1.44	0.051	7.10 ⁵	0.105	0.047	52.7°
	Dry	0.829'	1.29	0.059	8.09*	0.127	0.041	58.0'
	Overall	0 912	1.36	0.055	7.59	0.116	0.044	55.3
Deficiency	Rainy	16.0	0	0	0	20.0*	44	26.0 •
(%)	Dry	17.0	0	0	0	14.0b		40.0*
	Overall	-165	0	0	0	7.0		33.0

206

Journal offcod.Agnculrure &: Environment. Vol.4 (2). April 2006

r) to I : 1.2 μ g/l (Padang), significantly lower compared 10 les in dry season from 16.7 μ g/l (Pariaman) to 159.8 μ g/l dang).

n overall, the amount of goals deficiency in Cu, Mo and Se affiring dry season was 17, 'i: and '10%, while in raimy s-ason the recentage deficiency was 16, 20 and 26 %, respectively. Study of rabowo *ct al.* - found that the ranges of Cu, Zn and Se concentn:ti.::i of cattle blood in dry season was 0 61-0.76, 167-0.84 and 0.05-0.11 μ g/ml; while in dry season the concentration was 0.61-0.80 pg/ml for Cu, 0.90-1.15 μ g/ml for Zn and 0.11- 0.11 μ g/ml for Se, respectively. They also reported that percentage: of !!.c animals deficiency in Cu, Zn and Se during dry season was 4 *l*, 20 and 3%, while in rainy season the percentage deficiency of Cu and Zn was 30 and 5%, respectively.

It can be seen that although Cu, Zn, Mo and Co concentrations of the forages were lower than the critical level, only Cu, Mo and Se were deficient in the experimental goats. This suggested that utilization of minerals by animal was affected by both concentration and bioavailability of the minerals.

Conclusions

Based on the above results, it could be concluded that the availability of copper [Cu). zinc (Zn), molybdenum [Mo) and cobalt (Co) was deficient in the forages; while Cu. Mo and selenium [Se) were the elements deficient in goats grazed in West Sumatra, Indonesia.

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research. (B-2. 11695076) from the Japan Society for the Promotion Science. The authors are very grateful to Dr. T. Ichinohe, M. Gothoh and S. Hamada for their helpful assistance during the course of experiment.

References

- McDowell, L.R., Conrad, J.H. and Hembry, F.G. 1993. Minerals for Grazing Ruminants in Tropical Regions. Univ. Florida, Gainesville.
- ISmith, R.M. 1987, Cobalt. In Mertz., W. (ed.), Trace Elements in Human and Animal Nutrition. Volume 2. Fifth revised edition. Academic Press, San Diego, California, pp. 153.
- ILe, ander, O.A. 1987. Selenium. In Menz, W. (ed.). Trace Elements in Human and Animal Nutrition, Volume 2. Fifih revised edition. Academic Press, San Diego, California, pp. 229.
- 'Espinoza, J.E., McDowell, L.R., Wilkinson, N.S., Conrad, J.H. and Martin, FG. 1991. Forage and soil mineral concentrations over a threeyear period in warm region of central Florida. II. Trace minerals. Livestock Research for Rural Development 3(1): 1–6.
- 'Fujihara, T. Matsui, T., Hayashi, S., Robles, A.Y., Serra, A.8., Cruz, I-C. and Shimizu, H. 1991. Mineral status of grazing Philippine goats.
 II. The nutrition of selenium, copper and zinc of goats in Luzon island. AIAS 5(2):)89-395.
- •Kumagai, H., Ishida, N., Katsurnata, M., Yano, H., Kawashima, R. and Jachja, J. 1990. A study on nutritional status of trace mineral of cattle in Java, Indonesia. AJAS J(1): 15-20.
- Prabowo A. McDowell. LR.. Wilkinson, N.S.. Wilcox, C.J. and Conrad, J.H.1991. Mioeral status of grazing cattle in South Sulawesi, Iodonesia.
 I. Macro minerals. AJAS .i(2): 11–120.
- 'Prabowo, A., McDowell, LR., Wilkinson, N.S., Wilcox, CJ. and Conrad, J.H. 1991. Mineral status of grazing cattle in South Sulawesi. Indonesia. 2. Micro minerals. AJAS 4{2}:121–130.
- 'Hayashi, M.• Ogura, Y., Koike, I., Yabe, N., Mudigdo. R. and Parangin Angin. A. 1985. Minerals concentrations in serum of canle and buITalo

and some herbages collected from pasture around Medan, Indon ia Bulletin of National Institute of Animal Health 88:35 4 I.

- Underwood, E.J. and Suttle, N.F. 1999. The Mineral Nutrition of Livestock. CABI Publishing.
- "Steel, R. G. D. and Torrie, J. H. 1980. Principles and Procedures of Staristics. A Brometricai Approach. 2., Ed., McCrJw-H(II Inc., New York
- McDowell, L.R. 1985. Nutrition of Grazing Ruminants in Wann Climates. Academic Press, Orlando.
- "Kumagai, H., Swadiphanich, S., Prucsasri, P. Yimmongkol, S. Rengsirikul, B. and Thammagcerauwong, P. 1996. A study on the mineral status of beef and dairy callie and buffalo in Central Thailand. AJAS 9(5).525-531.

LEMBAR HASIL PENILAIAN SEJAWAT SEBIDANG ATAU PEER REVIEW KARYA ILMIAH : JURNAL ILMIAH

Judul Jurnal Ilmiah (Artikel)
Mineral Status of Forages and Grazing Goats in West Sumatra, Indonesia: 2. Micro minerals
Penulis Jurnal Ilmiah
Lili Warli, Armina Fariani, Evitayani, M. Hayashida and T. Fujihara
Identitas Jurnal Ilmiah
a. Nama Jurnal : JFEA
b. Nomor/Volume : 4/2
c. Edisi (bulan/tahun) : April 2006
d. Penerbit : WFL Publisher
e. Jumlah halaman : 4 halaman

Kategori Publikasi Jurnal Ilmiah: Jurnal Ilmiah Internasional (beri V pada kategori yang tepat) Jurnal Ilmiah Nasional Terakreditasi Jurnal Ilmiah Nasional Tidak Terakreditasi

Hasil Penilaian Peer Review :

-

	Nilai	Ilmiah		
Komponen Yang Dinilai	Internasional	Nasional Terakreditasi	Nasional Tidak Terakreditasi	Nilai Akhir Yang Diperoleh
	V			
a. Kelengkapan unsur isi buku (10 %)	4,0			
b. Ruang lingkup dan kedalaman pembahasan (30 %)	11,4			
 c. Kecukupan dan kemutahiran data/ informasi dan metodologi (30 %) 	11,7			
d. Kelengkapan unsur dan kualitas penerbit (30 %)	12,0			\bigcirc
Total = (100 %)	34,1)			(391)
		, NID	206.	

eviewer 1., Reviewer 1.,

1

Prof.Dr.Ir. Lukeman Hakim NIP & SOICH GBODLON Unit Kerja : F.PETERNK.UNIV.BRAWIJAYA

LEMBAR HASIL PENILAIAN SEJAWAT SEBIDANG ATAU PEER REVIEW KARYA ILMIAH : JURNAL ILMIAH

Judul Jurnal Ilmiah (Artikel)	: Mineral Status of Forages and Grazing Goats in West Sumatra, Indonesia: 2. Micro minerals					
Penulis Jurnal Ilmiah	: Lili Warli, Armina Fariani, Evitayani, M. Hayashida and T. Fujihara					
Identitas Jurnal Ilmiah	: a. Nama Jurnal : JFEA					
	b. Nomor/Volume : 4/2 c. Edisi (bulan/tahun) : April 2006 d. Penerbit : WFL Publisher e. Jumlah halaman : 4 halaman					
Kategori Publikasi Jurnal Ilmia	h. 🗖 Jurnal Ilmiah Internasional					

Kategori Publikasi Jurnal Ilmiah: ____ Jurnal Ilmiah Internasional (beri V pada kategori yang tepat) ____ Jurnal Ilmiah Nasional Terakreditasi _____ Jurnal Ilmiah Nasional Tidak Terakreditasi

Hasil Penilaian Peer Review :

	Nilai			
Komponen Yang Dinilai	Internasional	Nasional Terakreditasi	Nasional Tidak Terakreditasi	Nilai Akhir Yang Diperoleh
a. Kelengkapan unsur isi buku (10 %)	40		n	4
b. Ruang lingkup dan kedalaman pembahasan (30 %)	40			12
c. Kecukupan dan kemutahiran data/ informasi dan metodologi (30 %)	40			12
d. Kelengkapan unsur dan kualitas penerbit (30 %)	40			12
Total = (100 %)				40.

Reviewer 2., 1 - 10 - 2012

Prof.Dr.Ir. R.A. Muthalib NIP Unit kerja : F.PETERNK.UNIV.JAMBI

1