PROSIDING

SEMINAR NASIONAL PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT

"PENGUATAN INOVASI DALAM SAINS DAN TEKNOLOGI"

HOTEL 101 PALEMBANG, 29 NOVEMBER 2017 ISBN : 978-979-19072-1-7

Seminar Nasional Penelitian dan Pengabdian Masyarakat AVoER 9

Palembang, 29 November 2017

Penulis :

Tim AVoER-9

ISBN: 978-979-19072-1-7

Editor :

Prof. Ir. Subriyer Nasir, MS, Ph.D Dr. Saloma, ST., MT Ir. Ari Siswanto, MCRP, Ph.D

Reviewer :

Dr. Saloma Hasyim, ST. Dr. Imroatul C Juliana. § Dr. Melawati Agustin, S Dr. Betti Susanti, ST. MT. Dr. Iwan Pahendra A. ST. MT Dr. Restu Juniah, MT. Dr. Restu Juniah, MT. Dr. Rr. Harminuke Eko H. ST. MT. Gunawan, ST. MT. Ph.D Amir, ST. MT. Ph.D Dr. Leily NK, ST. MT. Ir. Ari Siswanto, MCRP. Ph.D Dr. Ir. Setyo Nugroho, M.Arch. Husnul Hidayat, ST. MSc. Dr. Ir. EndangWiwiek DH, MSc.

Desain Sampul dan Tata letak :

Rachmad Karoni Humam Abdulloh Andre Rachmana M. Fahri M. Malik Abdul Azis

Penerbit:

Fakultas Teknik Universitas Sriwijaya

Redaksi :

Panitia Seminar Nasional Penelitian dan Pengabdian Masyarakat AVoER9 FT UNSRI Jalan Raya Prabumulih Km.32 Indralaya Ogan ilir Sumatera Selatan Tel. 0711 580738 Fax. 0711 580741 E-mail. <u>avoer@unsri.ac.id</u>

Cetakan Pertama, November 2017

Hak cipta dilindungi Undang-undang Dilarang memperbanyak karya tulis ini dalam bentuk dan dengan cara apapun tanpa izin penulis dan penerbit.

ISBN: 978-979-19072-1-7

ISBN 978-979-19072-1-7

ABSTRACT BOOK

SEMINAR NASIONAL FAKULTAS TEKNIK UNIVERSITAS SRIWIJAYA

HOTEL 101 PALEMBANG 29 NOVEMBER 2017

Seminar Nasional Penelitian dan Pengabdian Masyarakat AVoER 9 Palembang, 29 November 2017 **ABSTRACT BOOK AVoER-9**

Tim AVoER-9

Reviewer

SAINS Dr. Yoyok Hendarso. Drs. MA Drs. Isnurhadi H, MBA. Ph.D. Dr. Abdullah Gofar, SH. MH. Prof. Dr. dr. MT. Kamaluddin, MSc. SpFK. Dr. Ir. Edward Saleh, MS. Ir. Nura Malahayati, MSc. Ph.D. Prof. Dr. Nurhayati, MPd.

Teknologi Dr. Saloma Hasyim, ST. MT Dr. Imroatul C Juliana. ST. MT. Dr. Mclawati Agustin, SSi. MT. Dr. Betti Susanti, ST. MT. Abu Bakar Sidik, ST. M.Eng. Ph.D Dr. Iwan Pahendra A. ST. MT Dr. Restu Juniah, MT. Dr. Rr. Harminuke Eko H. ST. MT. Dr. Diah Kusuma Pratiwi, ST. MT. Gunawan, ST. MT. Ph.D Amir, ST. MT. Ph.D Fitri Hadiah, ST. MT. Dr. Leily NK, ST. MT. Tuti Indahsari, ST. MT. Ir. Ari Siswanto, MCRP. Ph.D Dr. Ir. Setyo Nugroho, M.Arch. Husnul Hidayat, ST. MSc. Dr. Ir. EndangWiwick DH, MSc. Dr. Budhi Kuswan S. ST. MT. Tuty Emilia, ST.MT. Ph.D Ir. Tutur Lussetyowati, MT.

Penerbit : Fakultas Teknik Universitas Sriwijaya

Buku Abstrak Seminar Nasional AVoER 9 Applicable Innovation of Engineering and Science Researches 29November 2017 Palembang, Indonesia

Seminar Nasional Penelitian dan Pengabdian Masyarakat AVoHR 9 Palembang, 29 November 2017 ABSTRACT BOOK AVOER-9

Tim AVoER-9

ISBN : 978-979-19072-1-7

Editor : Prof. Ir. Subriyer Nasir, MS, Ph.D. Dr. Saloma, ST., MT Ir. Ari Siswanto, MCRP, Ph.D

Reviewer :

Penulis :

SAINS Dr. Yoyok Hendarso, Drs. MA Drs. Isnurhadi H, MBA. Ph.D. Dr. Abdullah Gofar, SH. MH. Prof. Dr. dr. MT. Kamaluddin, MSc. SpFK. Dr. Ir. Edward Saleh, MS. Ir. Nura Malahayati, MSc. Ph.D. Prof. Dr. Nurhsyati, MPd.

Teknologi Dr. Saloma Hasyim, ST. MT Dr. Imroatul C Juliana, ST. MT. Dr. Melawati Agustin, SSi. MT. Dr. Betti Susanti, ST. MT. Abu Bakar Sidik, ST. M.Eng. Ph.D Dr. Iwan Pabendra A. ST. MT Dr. Restu Juniah, MT. Dr. Rr. Harminuke Eko H. ST. MT. Dr. Diah Kusuma Pratiwi, ST. MT. Gunawan, ST. MT. Ph.D Amir, ST. MT. Ph.D. Fitri Hadiah, ST. MT. Dr. Leily NK, ST. MT. Tuti Indahsari, ST. MT. Ir. Ari Siswanto, MCRP. Ph.D Dr. Ir. Setyo Nugroho, M.Arch. Husnul Hidavat, ST. MSc. Dr. Ir, EndangWiwiek DH, MSc. Dr. Budhi Kuswan S. ST. MT. Tuty Emilia, ST.MT. Ph.D Ir. Tutur Lussetyowati, MT.

Desain Sampul dan Tata letak : Rachmad Karoni Humam Abdulloh Andre Rachmana M. Fahri M. Malik Abdul Azis

Penerbit: Fakultas Teknik Universitas Sriwijaya

Redakzi :

Panitia Semnas Penelitian dan Pengabdian Masyarakat AVoER9 FT Unari Jalan Raya Prabumulih Km.32 Indralaya Ogan ilir Sumatera Selatan Tel. 0711 580738 Fax. 0711 580741 E-mail. avoer@unari.ac.id

Cetakan Pertama, November 2017

Hak cipta dilindungi Undang-undang Dilarang memperbanyak karya tulis ini dalam bentuk dan dengan cara apapun tanpa izin penulis dan penerbit

AN 257 Western Line

KATA PENGANTAR

Puji syukur kami panjatkan kepada Tuhan Yang Maha Esa atas berkah dan petunjuk-Nya sehingga "Seminar Nasional Penelitian dan Pengabdian pada Masyarakat AVoER 9, Penguatan Inovasi Dalam Sains dan Teknologi" dapat terlaksana dengan baik.

Seminar ini merupakan rangkaian kegiatan tahunan Fakultas Teknik Sriwijava vang mendapatkan kepercayaan untuk Universitas diselenggarakannya kegiatan ini setiap tahun.

Dari terlaksananya seminar ini diharapkan adanya kerjasama yang baik antar Pembicara Kunci, dan Pemakalah dalam rangka Penelitian dan Pengabdian pada Masyarakat serta segenap panitia yang mempersiapkan sebelum seminar ini dilaksanakan.

Pada kesempatan kali ini kami ingin menyampaikan penghargaan setinggitingginya kepada Pimpinan Universitas dan Fakultas Teknik Universitas Sriwijaya, keynote speaker, tim reviewer, sponsor, pemakalah, serta segenap panitia yang telah berpartisipasi atas terselenggaranya acara ini.

Tidak lupa kami selaku panitia pelaksana memohon maaf seandainya dalam penyelenggaraan acara ini ada kekurangan dan ketidaksempurnaan.

Akhir kata kami ucapkan selamat seminar, semoga kegiatan kita ini bermanfaat bagi kita semua.

v

Palembang, 29 November 2017

iv

Buku Abstrak Seminar Nasional AVoER 9 Applicable Innovation of Engineering and Science Researches

29 November 2017 Palembang, Indonesia

UNIVERSITAS SRIWLIAY

PENGARUH KETEBALAN SKIN TERHADAP KEKUATAN BENDING DAN TARIK KOMPOSIT SANDWICH DENGAN hONEYCOMB POLYPROPYLENE ANALISIS PERFORMANSI SOLAR WATER HEATER TIPE PARABOLIC TROUGH COLLECTOR DENGAN MENGGUNAKAN GLASS TUBE DAN TANPA PELATIHAN DAN PENGGUNAAN OS-LINUX SEBAGAI PENGGANTI OS-PENGARUH TEMPERATUR DAN WAKTU TAHAN PADA PROSES ARTIFICIAL AGING ALUMINIUM DAUR ULANG TERHADAP KEKERASAN DAN STRUKTUR MIKRO......115 PENGARUH PENGADUKAN DENGAN VARIASI SIMPLE PADLLE BLADE TERHADAP KEHOMOGENAN DAN SIFAT MEKANIK KOMPOSIT AI-FLY - ASH PENGGUNAAN XCOS SEBAGAI ALTERNATIF PERANGKAT LUNAK EVALUASI KINERJA SIKLUS TURBIN GAS PADA PEMBANGKIT LISTRIK EVALUASI KINERJA TURBIN ANGIN DARRIEUS NACA 0014 DENGAN SUDU PENGARAH119 EFEK KONSENTRASI PARTIKEL CUO DAN TIO2 TERHADAP FAKTOR GESEKAN DAN KERUGIAN JATUH TEKANANALIRAN FLUIDA DALAM PIPA DESAIN DAN KALIBRASI SENSOR TORSI SUMBU TUNGGAL UNTUK PEMODELAN DISTRIBUSI TEMPERATUR MATA PAHAT PADA PROSES PEMESINAN BUBUT DENGAN VARIASI SUDUT POTONG MENGGUNAKAN PEMBUATAN ALAT SEDERHANA UNTUK PENGERING PISANG SALAI DENGAN MENGGUNAKAN BRIKET TEMPURUNG KELAPA SEBAGAI SUMBER PEMANAS KEPADA MASYARAKAT SEKITAR KAMPUS UNIVERSITAS SRIWIJAYA DI KELURAHAN TIMBANGAN KEC. ANALISIS PERPINDAHAN KALOR KONVEKSI PADA ROTARY KILN DI PT. ANALISIS ENERGI PADA SISTEM ROTARY KILN DI PT. SEMEN BATURAJA ANALISIS BAHAYA DENGAN METODE FAULT TREE ANALISIS UNTUK MENGURANGI DAMPAK GETARAN DAN FLYROCK DARI KEGIATAN

Buku Abstrak Seminar Nasional AVoER 9 Applicable Innovation of Engineering and Science Researches Buku Abstrak Seminar Nasional AVoER 9 29 November 2017 Palembang, Indonesia GAIDS TAS TEXNS UNIVERSITAS SEINUAY KAJIAN PERAN PERTAMBANGAN BATUBARA TERHADAP PEMBANGUNAN PENYELIDIKAN PENDAHULUAN MINERALISASI DESA BEMBANG ANALISIS DAMPAK LINGKUNGAN AKIBAT DARI AKTIVITAS PENAMBANGAN PASIR DI SUNGAI MUSI KABUPATEN MUSI BANYUASIN 129 KAJIAN EKONOMI INVESTASI PENAMBANGAN PASIR DI KOTA ANALISIS MODEL MATEMATIKA KUALITAS BATUBARA UNTUK OPTIMASI NILAI KALORI BATUBARA BA 55 DI PT.BUKIT ASAM (Persero) Tbk TANJUNG PEMETAAN POTENSI TANAH LONGSOR DI JALAN UTAMA KECAMATAN PENGEMBANGAN WILAYAH SEKTOR PERTAMBANGAN PROVINSI SUMATERA SELATAN MELALUI PENGGUNAAN MULTIDIMENSIONAL IMPLEMENTASI PEMBELAJARAN ARSITEKTUR TERHADAP ILMU-ILMU PENERAPAN KONSEP BIOPHILIC DESIGN PADA ASRAMA MAHASISWA DI STUDI TATA SPASIAL CANDI MUARO TAKUS, MUARO JAMBI DAN CANDI PENDAMPINGAN MASYARAKAT DI PERKAMPUNGAN TRADISIONAL 3/4 PENINGKATAN PRODUK WISATA ARSITEKTUR PADA KAWASAN WISATA PERANCANGAN PUSAT PERAGAAN IPTEK KHUSUS PEMBANGKIT LISTRIK PERANCANGAN BALAI PENELITIAN DAN KONSERVASI TUMBUHAN (ARBORETUM) DI KAWASAN GANDUS PALEMBANG DENGAN METODE KONSEP SITE PLAN PERANCANGAN PERPUSTAKAAN BIOKLIMATIK DI IDENTIFIKASI KERUSAKAN PADA BANGUNAN RUMAH ABU KAMPUNG

xviii

Buku Abstrak Seminar Nasional AVoER 9 Applicable Innovation of Engineering and Science Researches 29 November 2017 Palembang, Indonesia

³Teknik Pertambangan,

Universitas Bangka

Belitung, Bangka

	energia de la companya de la			3. W. L. H. M	
18	TM-021	DESAIN DAN KALIBRASI SENSOR TORSI SUMBU TUNGGAL UNTUK APLIKASI PENGUJIAN SOFT MATERIAL SECARA STATIS	, J. D. Nasution ^{1,*} , Zainal Abidin ¹ , M. I. Ammarullah ²	¹ Jurusan Teknik Mesin, Fakultas Teknik, Universitas Sriwijaya, ² Program Sarjana Teknik Mesin, Universitas Sriwijaya	
19	TM-022	PEMODELAN DISTRIBUSI TEMPERATUR MATA PAHAT PADA PROSES PEMESINAN BUBUT DENGAN VARIASI SUDUT POTONG MENGGUNAKAN AUTODESK INVENTOR 2016	-Ismail Thamrin. ¹ , Astuti. ² ,Ellyanie. ³ , Meizan Twista. ⁴ ,Al Fiqhi. ⁵	^{1,2,3} Dosen Tetap Jurusan Teknik Mesin Fakultas Teknik Universitas Sriwijaya, ^{4,5} Mahasiswa Jurusan Teknik Mesin Fakultas Teknik Universitas Sriwijaya	
20	TM-023	PEMBUATAN ALAT SEDERIHANA UNTUK PENGERING PISANG SALAI DENGAN MENGGUNAKAN BRIKET TEMPURUNG KELAPA SEBAGAI SUMBER PEMANAS KEPADA mASYARAKAT SEKITAR KAMPUS UNIVERSITAS SRIWIJAYA DI KELURAHAN TIMBANGAN Kec. Inderalaya, kabu JPATEN ogan ilir	Ismail Thamrin, dkk	Jurusan Teknik Mesin Fakultas Teknik Universitas Sriwijaya	
21	TM-024	ANALISIS PERPINDAHAN KALOR KONVEKSI PADA ROTARY KILN DI PT. SEMEN BATURAJA (PERSERO) Tbk	M, I. Ammarullah ¹ , A. T. Prakoso ¹ , D. Wicaksono ¹ , I. G. Fadhlurrahman ¹ , I. Yani ¹ , Hasan Basri ^{1*}	¹ Jurusan Teknik Mesin, Fakultas Teknik, Universitas Sriwijaya	
22	TM-025	ANALISIS ENERGI PADA SISTEM ROTARY KILN DI PT. SEMEN BATURAJA (PERSERO)	O.D. Putra ¹ , R.U. Putra ¹ , Ruben ¹ , F. Rusydi ¹ , Hasan Basri ^{1*}	¹ Jurusan Teknik Mesin, Fakultas Teknik, Universitas Sriwijaya	
TEKN	OLOGI PERTA	MBANGAN (TP)		4.122	
No	ID Makalah	Judul Makalah	Penulis	Afliasi	
1	TP-001	ANALISIS BAHAYA DENGAN METODE FAULT TREE ANALISIS UNTUK MENGURANGI DAMPAK GETARAN DAN FLYROCK DARI KEGIATAN PELEDAKAN DI PT. SEMEN BATURAJA PERSERO, TBK.	J.F.Lubis ³ , M.T.Toha ² , Ngudiantoro ³	³ Teknik Pertambangan Batubara, Politeknik Akamigas Palembang, ³ Teknik Pertambangan, Universitas Sriwijaya, Palembang, ³ Matematika, Universitas Sriwijaya, Palembang	
2	TP-002	KAJIAN PERAN PERTAMBANGAN BATUBARA TERHADAP PEMBANGUNAN DI KABUPATEN LAHAT PROVINSI SUMATERA SELATAN	Eva Oktarinasari ^{3*} , Onggy A.S ² dan Dicky ³	³ Teknik Pertambangan, Universitas Sriwijaya, Palembang, ² Teknik Pertambangan, Universitas Sriwijaya, Palembang	

Buku Abstrak Seminar Nasional AVoER 9

Applicable Innovation of Engineering and Science Researches 29 November 2017 Palembang, Indonesia

4	TP-004	ANALISIS DAMPAK LINGKUNGAN AKIBAT DARI AKTIVITAS PENAMBANGAN PASIR DI SUNGAI MUSI KABUPATEN MUSI BANYUASIN	Rosihan Pebrianto ^{1,*} , M. Agung Dwisusilo Samin ³ , M. Rifqi Rafif Asidiqi ³	¹⁵ Jurusan Teknik Pertambangan, Universitas Sriwijaya, Indonesia, ^{3,3} Mahasiswa Teknik Pertambangan, Universitas Sriwijaya, Indonesia	
5	TP-005 KAJIAN EKONOMI INVESTASI PENAMBANGAN PASIR DI KOTA PALEMBANG		Alek Al Hadi ^{1*} , Weni Herlina ² , Diana Purbasari ³ , dan Yogi Wijaya ⁴	1.2.3≜ 4Teknik Pertambangan, Universitas Sriwijaya,	
6	TP-006	ANALISIS MODEL MATEMATIKA KUALITAS BATUBARA UNTUK OPTIMASI NILAI KALORI BATUBARA BA 55 DI PT.BUKIT ASAM (Persero) Tbk TANJUNG ENIM, SUMATERA SELATAN	U.A. Prabu ^{1*} , H. Waristian ² , O.Sari ³ dan M.R. Muchni ⁴	1.2.3.4Teknik Pertambangan, Universitas Sriwijaya, Palembang	
7 TP-007 PEMETAAN POTENSI TANAH LONGSOR DI JALAN UTAMA KECAMATAN DEMPO SELATAN KOTA PAGAR ALAM		Diana Purbasari ^{1*} , Alek Al Hadi ² , Bochori ³ , dan Eva Oktarina Sari ⁴	^{1,2,36+} Teknik Pertambangan, Universitas Sriwijaya, Palembang		
8	TP-008 PENGEMBANGAN WILAYAH SEKTOR PERTAMBANGAN PROVINSI SUMATERA SELATAN MELALUI PENGGUNAAN MULTIDIMENSIONAL SCALING		H. Waristian ^{1,*} , E. Rendika ² dan Andryanto ³ Universitas Sriwijay Palembang		
TEKN	OLOGI ARSITE	KTUR (TA)			
No	ID Makalah	Judul Makalah	Penulis	Afliasi	
1	TA-001	IMPLEMENTASI PEMBELAJARAN ARSITEKTUR TERHADAP ILMU- ILMU LAINNYA YANG TERKAIT	Naniek Widayati Priyomarsono ¹ dan Rudy Surya ²	¹ Magister Teknik Arsitektur, Universitas Tarumanagara, Jakarta, ² Teknik Arsitektur, Universitas Tarumanagara, Jakarta	
2	TA-002	PENERAPAN KONSEP BIOPHILIC DESIGN PADA ASRAMA MAHASISWA DI YOGYAKARTA	Jarwa Prasetya Sih Handoko ^{1*}	³ Jurusan Arsitektur, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia, Yogyakarta	
	TA-004	STUDI TATA SPASIAL CANDI MUARO TAKUS, MUARO JAMBI DAN CANDI BUMIAYU	Ardiansyah, ST, MT ¹ , Rizka Drastiani, ST, M.Sc ¹ , Ria Dwi Putri, ST, M.Sc ¹	Teknik Arsitektur Fakultas Teknik Universitas Sriwijaya, Palembang ³	

PENYELIDIKAN PENDAHULUAN

MINERALISASI DESA BEMBANG

KECAMATAN JEBUS KABUPATEN

BANGKA BARAT

TP-003

3

Mardiah¹, M. Ridho

Virgiawan¹

UNIVERSITAS SRIVILLAD

Buku Abstrak Seminar Nasional AVoER 9 Applicable Innovation of Engineering and Science Researches 29 November 2017 Palembang, Indonesia

Buku Abstrak Seminar Nasional AVoER 9

Applicable Innovation of Engineering and Science Researches 29 November 2017 Palembang, Indonesia

(TM-023)

PEMBUATAN ALAT SEDERHANA UNTUK PENGERING PISANG SALAI DENGAN MENGGUNAKAN BRIKET TEMPURUNG KELAPA SEBAGAI SUMBER PEMANAS KEPADA MASYARAKAT SEKITAR KAMPUS UNIVERSITAS SRIWIJAYA DI KELURAHAN TIMBANGAN KEC. INDERALAYA, KABUPATEN OGAN ILIR

Ismail Thamrin, dkk Jurusan Teknik Mesin Fakultas Teknik Universitas Sriwijaya

Abstrak

Proses pengasapan dan pengeringan pisang salai merupakan aktifitas gabungan. Adapun tujuan utama kedua proses ini, adalah untuk mengurangi kadar air pada pisang. Sehingga pisang dapat bertahan lama untuk dapat dikonsumsi.

Dalam proses pengasapan, unsur yang paling berperan adalah asap yang dihasilkan dari pembakaran briket tempurung kelapa. Pada pengasapan menghasilkan efek pengawetan yang berasal dari beberapa senyawa kimia yang terkandung di dalamnya.

Alat pengering pisang sederhana ini, dibuat dan didesain secara sederhana , dengan menggunakan limbah tempurung kelapa sebagai sumber panas untuk pengasapan. Pemanfaatan limbah ini didesain agar proses pengeringan dapat berlangsung terus tanpa menggunakan kayu sebagai bahan bakar.

Untuk mengembangkan daerah tersebut, khususnya sektor perdagangan dengan usaha kecil / industri rumah tangga ataupun masyarakat umum sebagai penggerak, maka tim pelaksana dari Jurusan Teknik Mesin Unsri berupaya membantu masyarakat disekitar kampus Universitas Sriwijaya Inderalaya ini dengan jalan membuat pelatihan-pelatihan untuk membuat mesin pengering pisang salai sederhana, dengan harapan dapat membekali masyarakat sekitar kampus Unsri dengan pengetahuan praktis untuk pengolahan makanan disamping itu dapat juga dijadsalai pisang sebagai salah satu jalan untuk ber - wira usaha

(TM-024) ANALISIS PERPINDAHAN KALOR KONVEKSI PADA *ROTARY KILN* DI PT. SEMEN BATURAJA (PERSERO) Tbk

M. I. Ammarullah¹, A. T. Prakoso¹, D. Wicaksono¹, I. G. Fadhlurrahman¹, I. Yani¹, Hasan Basri

¹Jurusan Teknik Mesin, Fakultas Teknik, Universitas Sriwijaya, Indralaya, 30662, Sumatera Selatan, Indonesia *Corresponding author: hasan basri@unsri.ac.id

ABSTRAK: Tujuan dari penelitian ini adalah untuk menganalisa seberapa besar laju perpindahan kalor secara konveksi pada rotary kiln khususnya pada daerah pembakaran dimana terjadinya titik kritis (red spot) dan menganalisa distribusi temperatur. Kontribusi penelitian yaitu untuk menjaga performansi rotary kiln akibat kerusakan dari beban termal agar tidak terjadinya panas berlebihan sehingga memperpanjang umur penggunaan rotary kiln. Hal ini dapat diperoleh dari perhitungan teoritis dan analisis simulasi dengan software SolidWorks. Data dari rotary kiln diolah dengan perhitungan distribusi temperatur, aliran kalor (heat flux) dengan cara simulasi. Data yang diperoleh dianalisa lebih lanjut agar meningkatkan efektifitas dan efisiensi penggunaan rotary kiln. Hasil perbandingan analisis distribusi temperatur pada perhitungan teoritis dan analisis program menunjukkan perbedaan yang tidak terlalu jauh pada meter ke 36, hasil perhitungan teoritis didapatkan Ts sebesar 1677,1°C dan dari simulasi 1677,85°C. Perbandingan selisih perhitungan teoritis maupun simulasi menunjukkan hasil yang hampir sama berarti dapat dinyatakan bahwa metode yang digunakan adalah sudah sesuai. Nilai heat flux konveksi pada daerah pembakaran berbeda-beda, salah satunya dipengaruhi oleh ketebalan lapisan coating dan pada meter ke 36 di dapatkan nilai heat flux sebesar 117.864,2 Watt.

Kata Kunci: Rotary kiln, red spot, distribusi temperatur, perpindahan kalor konveksi, heat flux.

ANALISIS PERPINDAHAN KALOR KONVEKSI PADA *ROTARY KILN* DI PT. SEMEN BATURAJA (PERSERO) Tbk

M. I. Ammarullah¹, A. T. Prakoso¹, D. Wicaksono¹, I. G. Fadhlurrahman¹, I. Yani¹, Hasan Basri^{1*}

¹Jurusan Teknik Mesin, Fakultas Teknik, Universitas Sriwijaya, Indralaya, 30662, Sumatera Selatan, Indonesia **Corresponding author*: hasan_basri@unsri.ac.id

ABSTRAK: Tujuan dari penelitian ini adalah untuk menganalisa seberapa besar laju perpindahan kalor secara konveksi pada *rotary kiln* khususnya pada daerah pembakaran dimana terjadinya titik kritis (*red spot*) dan menganalisa distribusi temperatur. Kontribusi penelitian yaitu untuk menjaga performansi *rotary kiln* akibat kerusakan dari beban termal agar tidak terjadinya panas berlebihan sehingga memperpanjang umur penggunaan *rotary kiln*. Hal ini dapat diperoleh dari perhitungan teoritis dan analisis simulasi dengan *software* SolidWorks. Data dari *rotary kiln* diolah dengan perhitungan distribusi temperatur, aliran kalor (*heat flux*) dengan cara simulasi. Data yang diperoleh dianalisa lebih lanjut agar meningkatkan efektifitas dan efisiensi penggunaan *rotary kiln*. Hasil perbandingan analisis distribusi temperatur pada perhitungan teoritis dia analisis program menunjukkan perbedaan yang tidak terlalu jauh pada meter ke 36, hasil perhitungan teoritis didapatkan Ts sebesar 1677,1°C dan dari simulasi 1677,85°C. Perbandingan selisih perhitungan teoritis maupun simulasi menunjukkan hasil yang hampir sama berarti dapat dinyatakan bahwa metode yang digunakan adalah sudah sesuai. Nilai *heat flux* konveksi pada daerah pembakaran berbeda-beda, salah satunya dipengaruhi oleh ketebalan lapisan *coating* dan pada meter ke 36 di dapatkan nilai *heat flux* sebesar 117.864,2 Watt.

Kata Kunci: Rotary kiln, red spot, distribusi temperatur, perpindahan kalor konveksi, heat flux.

PENDAHULUAN

Industri semen merupakan salah satu perusahaan besar yang berperan penting dalam proses pembangunan di berbagai bidang. PT. Semen Baturaja (Persero) Tbk merupakan salah satu perusahaan yang memproduksi semen. *Rotary kiln* merupakan sebuah alat pembakar produk *rawmill* menjadi klinker di pabrik semen, peranannya sangat besar sebagai komponen utama penghasil produk semen. Penggunaan energi pada unit ini meliputi energi untuk proses pembakaran (UNIDO, 1994).

Pada pabrik semen, proses pembakaran pembentukan klinker merupakan tahapan proses yang sangat vital. Salah satu faktor dominan penyebab berhentinya pengoperasian *kiln* adalah kerusakan pada batu tahan api yang melapisi dinding bagian dalam *rotary kiln*, ini disebabkan oleh beberapa hal diantaranya, kerusakan karena beban termal. Dalam hal ini terjadi proses perpindahan kalor secara konveksi di dalam *rotary kiln* dari gas ke klinker. Oleh karena itu diperlukan analisis seberapa besar laju perpindahan kalor konveksi pada *rotary kiln*.

METODOLOGI PENELITIAN

Diagram Alir Penelitian

Proses penelitian dilakukan dengan tahapan seperti ditunjukkan pada Gambar 1.

Gambar 1. Diagram Alir Penelitian

Pengambilan Data

Untuk menganalisis dengan akurat maka dibutuhkan data-data aktual yang diperoleh dari lokasi penelitian PT. Semen Baturaja, berikut ini akan dijelaskan mengenai data-data tersebut secara rinci.

Diskretisasi Geometrik dan Deskripsi Model

Shell kiln dan bagian-bagiannya telah dibuat menggunakan software SolidWorks 2014. Karakteristik geometri utama dari shell rotary kiln ditunjukkan pada Tabel 1 dan ketebalan dari shell di sepanjang bagian yang berbeda dari rotary kiln ditunjukkan pada Tabel 2.

Tabel 1. Karakteristik geometri utama dari kiln

Spesifikasi	Ukuran	Satuan
Panjang <i>kiln</i>	75	meter
Diameter dalam kiln	4.5	meter
Jumlah tyres	3	buah
Kemiringan kiln	3.5	derajat

Tabel 2 Variasi ketebalan shell kiln

Bagian (mm)	Ketebalan (mm)
0-10,300	25
10,300-11,900	40
11,900–14,100	60
14,100-19,700	40
19,700-41,100	28
41,100-42,900	40
42,900-45,100	60
45,100-46,900	40
46,900-65,300	28
65,300–66,900	40
66,900–69,500	70
69,500-72,500	90
72,500-75,000	60

Pada Tabel 3, titik nol diletakkan di ujung atas dari *rotary kiln*, disebut '*Inlet*-1'. Sedangkan ujung bawah disebut dengan 'III-*Outlet*'.

Tabel 3 Jarak antara penopang

Penopang	Jarak (mm)
Inlet–I	13,000
I–II	31,000
II–III	27,000
III–Outlet	4,000

Rotary kiln mencakup dinding berbentuk silinder yang mempunyai ujung masukan dan ujung luaran. Kiln diletakkan miring agar ujung luaran berada di posisi yang lebih rendah dari pada ujung masukan agar dapat memproses material yang dimasukkan. Material mengalir dari ujung masukan menuju ke ujung luaran. Dinding *kiln* ditopang oleh *ring* atau *tyre* yang bersentuhan dengan *roller* baja, yang ditopang oleh *pier* beton dan rangka baja. Material yang digunakan ditunjukkan pada Tabel 4.

Tabel 4 Jenis-jenis material pada komponen kiln

Komponen	Spesifikasi Material
Shell	ASTM 526 Grade 70 atau SS 400
Tyres cast iron	GS-25 Mo.25
Rollers cast	GS-42 Cr Mo.5
Iron	30 Cr Ni Mo 8
Pinion	(ISO R 638 = II-68 Type 3)

Material tersebut digunakan untuk membuat komponen utama *kiln* yaitu dinding, *tyre*, *roller*, dan *pinion*. Material ini dimodelkan secara isotropik dan linear, tergantung pada temperatur elastis, menurut sifat elastisitas dari material yang digunakan, seperti tertera pada Tabel 5.

Tabel 5 Spesifikasi material ASTM 516 Grade 70

Spesifikasi Material ASTM 516	Ukuran
Grade 70	
Tensile strength	485 MPa
Yield strength	260 MPa
Density	7.85 g/cm ³
Poisson ratio	0.29
Modulus of elasticity	200 GPa

Model geometri *rotary kiln* dirancang dengan menggunakan SolidWorks 2014, seperti ditunjukkan pada Gambar 2.

Gambar 2 Snapshot dari model tiga dimensi shell kiln menggunakan SolidWorks 2014

Analisa Elemen Hingga (Finite Element Analysis)

Analisis tiga dimensi *Finite Element Method* (FEM) dilakukan untuk mempelajari distribusi temperatur *rotary kiln*.

Kondisi Batas dan Evaluasi

Simulasi *shell kiln* dilakukan dengan menggunakan *finite element analysis* menggunakan perangkat lunak SolidWorks. Untuk menentukan analisis statik-struktural

di *shell kiln*, kondisi batas dari *finite element analysis* digunakan pada simulasi ini untuk menganalisis distribusi temperatur pada dinding *rotary kiln*. Gambar 3 menunjukkan model untuk analisis FEM. Elemen yang digunakan adalah elemen tetrahedral tiga dimensi dengan jumlah elemen 115.592 yang digunakan untuk memodelkan *solid* isotropik. Seluruh model dianalisa karena tidak ada garis simetri pada masalah ini.

Gambar 3 *Mesh* dari kondisi batas yang diaplikasikan pada analisis numerikal

Data spesifik *kiln* di daerah *burning zone* pada meter ke-36, adalah sebagai berikut:

Temperatur ambient	= 30.00 °C	
Wind Velocity $V\infty$,1	$= 3.2 \text{ m/s } V\infty,4$	= 2.1 m/s
Kiln Diameter (D)	= 4.556 m	
Jari-jari r4	= D/2	= 2.278 m
Jari-jari r3	= 2.278 - 0.028	= 2.250 m
Jari-jari r2	= 2.250 - 0.20	= 2.050 m
Jari-jari <i>r</i> 1	= 2.050 - 0.05	= 2.000 m
<i>Kiln Rotation</i> (ω)	= 3.40 rpm (CCV	V)
Panjang Kiln (L)	= 1.00 m	
Ketebalan Shell Kiln	= 28.00 mm	= 0.028 m
Ketebalan Brick	= 200.00 mm	= 0.20 m
Ketebalan Coating	= 50.00 mm	= 0.05 m
k Coating (Duda, 1985)	$= 0.73 \text{ W/m}^{\circ}\text{C}$	
k Brick (Magro 85)	$= 2.70 \text{ W/m}^{\circ}\text{C}$	
k shell (ASTM A516)	$= 52.00 \text{ W/m}^{\circ}\text{C}$	
Temperatur shell kiln Ts	= 390.7 °C	

Batu Tahan Api (Refractories)

Pada Lapisan dalam kiln terdapat batu tahan api yang berfungsi sebagai proteksi *shell kiln* terhadap temperatur tinggi agar tidak kontak langsung dengan nyala api atau padatan yang sangat panas, yang sekaligus dapat memperpanjang umur teknis dari *shell kiln*. Temperatur gas dan material tertinggi terletak pada *transition zone* (meter 25-36) yaitu sebesar 2050°C dan 1340°C pada meter 31 terjadi penurunan suhu drastis disebabkan karena sensor inframerah *shell scanner* tertutup oleh cincin penopang (*retaining ring*), pada meter 18-22 dan meter 11 terjadi lagi penurunan drastis disebabkan oleh adanya tiang konstruksi baja yang menutupi sensor inframerah.

Pemilihan kualitas batu tahan api pada masingmasing zona *kiln* disesuaikan dengan beban panas dan mekanis pada zona tersebut.

Gambar 4 Brick Chart PT. Semen Baturaja

Pengukuran Temperatur Shell Kiln

Pengukuran temperatur dilakukan dengan alat ukur temperatur manual (*infrared thermometer*) yakni dengan cara mengarahkan alat tersebut ke objek yang akan diukur temperaturnya sambil menekan tombol pada *infrared thermometer* maka suhu akan langsung diperoleh secara digital. Termometer non-kontak atau termometer inframerah dapat mengukur suhu tanpa kontak fisik antara termometer dan obyek dimana suhu diukur. Termometer ditujukan pada permukaan obyek dan secara langsung memberikan pembacaan suhu. Alat ini sangat berguna untuk pengukuran di tungku atau suhu permukaan dan lain sebagainya.

Central Control Room (CCR) adalah ruangan yang berisikan banyak Personal Computer (PC) yang dikendalikan oleh user. Ruangan ini berguna untuk tempat melakukan pemantauan terhadap temperatur dinding kiln. Untuk dapat melakukan pemindaian temperatur shell kiln PT. Semen Baturaja menggunakan Centurion Scanner Telescope. Alat ini terletak 30 meter dari dinding luar kiln, yang dioperasikan menggunakan perangkat lunak komputer Wincem Graphic 3D. Gejala kerusakan pada shell kiln bisa dilihat dari indikasi temperatur yang terlalu tinggi. Pada monitor komputer di ruang CCR akan terdeteksi dengan munculnya red spot pada beberapa atau salah satu titik di permukaan shell kiln. Data temperatur shell kiln dari scanner ditunjukkan pada Tabel 6.

Tabel 6 Data temperatur shell kiln pada burning zone

Tshell
130
180
240
230
220
240
300
150
300

13	280
14	260
15	250
16	250
17	250
18	240
19	190
20	180
21	190
22	180
23	250
24	330
25	330
26	340
27	340
28	340
29	340
30	340
31	170
32	350
33	240
34	300
35	360
36	390,7

Nilai koefisien perpindahan kalor konveksi untuk udara didapatkan dengan persamaan berikut (Khabari, A., et al, 2014):

 $h_c = 10.45 - \nu + 10\nu^{1/2} \tag{1}$

Maka,

- $h_1 = 10.45 3.2 + 10 \times 3.2^{1/2}$ $= 25.14 W/m^2 K$
- $\begin{array}{ll} h_2 & = 10.45 2.1 + 10 \times 2.1^{1/2} \\ & = 22.84 \, W/m^2 K \end{array}$

HASIL DAN PEMBAHASAN

Gambar 5 Profil aliran panas didalam *kiln* (Patil, R.K. et al, 2012).

Karena yang diketahui hanya profil temperatur *shell* (T_4/T_{sh}) maka untuk menganalisis distribusi temperatur

perlu dihitung terlebih dahulu *heat flux* yang terjadi dari luar ke dalam dinding *rotary kiln*. Perhitungan teoritis *heat flux* didapatkan melalui rumus berikut:

$$Q_{Total} = Q_{Wall-Coating} = Q_{Coating-Brick} = Q_{Brick-Shell} = Q_{Shell-Udara}$$
(2)

Laju heat flux dari shell ke udara

$$Q_{Shell-Udara} = 2\pi L r_4 h_2 (T_{s,4} - T_{\infty,4})$$
 (3)

Laju heat flux dari brick ke shell

$$Q_{Shell-Udara} = \frac{2\pi L k_c (T_3 - T_{s,4})}{\ln(T_4/r_3)}$$
(4)

Laju heat flux dari coating ke brick

$$Q_{Shell-Udara} = \frac{2\pi L k_b (T_2 - T_3)}{\ln(r_3/r_2)}$$
(5)

Laju heat flux dari wall ke coating

-

_

$$Q_{Shell-Udara} = \frac{2\pi L k_a(T_{S,1} - T_2)}{\ln(r_2/r_1)}$$
(6)

Data hasil perhitungan distribusi temperatur dan heat flux pada daerah pembakaran ditunjukkan masingmasing pada Tabel 7 dan Tabel 8.

Tabel 7 Data hasil perhitungan distribusi temperatur pada daerah *burning zone*

Meter	T _{s,1}	T_2	T ₃	T _{s,4}
ke-	(°C)	(°C)	(°C)	(°C)
4	492.52	311.73	134.03	130
5	723.79	452.60	186.05	180
6	992.96	616.54	246.56	240
7	947.10	588.60	236.24	230
8	901.25	560.67	225.93	220
9	980.47	608.92	243.72	240
10	1245.62	770.42	303.34	300
11	570.28	151.49	151.49	150
12	1245.62	770.42	303.34	300
13	1155.58	715.57	283.09	280
14	1065.53	660.73	262.85	260
15	1020.51	633.30	252.72	250
16	1020.51	633.30	252.72	250
17	1020.51	633.30	252.72	250
18	975.49	605.88	242.60	240
19	750.37	468.77	191.98	190
20	705.35	441.34	181.86	180
21	760.62	479.02	191.98	190
22	714.96	450.95	181.86	180
23	1034.60	647.40	252.72	250
24	1399.92	871.91	333.71	330
25	1399.92	871.91	333.71	330
26	1445.58	899.97	343.84	340
27	1445.58	899.97	343.84	340

28	1445.58	899.97	343.84	340
29	1453.04	904.56	345.49	340
30	1453.04	904.56	345.49	340
31	678.29	428.42	173.74	170
32	1511.80	940.68	358.55	350
33	994.00	622.44	243.72	240
34	1269.42	791.71	304.79	300
35	1536.91	956.10	364.08	360
36	1677.09	1042.25	395.15	390,7

Tabel 8 Data hasil perhitungan *heat flux* pada daerah *burning zone*

Meter ke-	$Q_{Total} \left(W/m^2 \right)$
4	33565.85996
5	50348.78993
6	69885.84175
7	66557.94453
8	63230.0473
9	68982.14553
10	88226.5719
11	39211.80973
12	88226.5719
13	81691.27028
14	75155.96866
15	71888.31784
16	71888.31784
17	71888.31784
18	68620.66703
19	52282.41298
20	49014.76217
21	52282.41298
22	49014.76217
23	71888.31784
24	98029.52433
25	98029.52433
26	101297.1751
27	101297.1751
28	101297.1751
29	101830.7863
30	101830.7863
31	46389.73979
32	106033.6909
33	68982.14553
34	88691.32996
35	107832.4768
36	117864.1648

Pembahasan Distribusi Temperatur

Untuk mempermudah dalam memahami data dan melakukan pembahasan, maka data yang disajikan dalam Tabel 7 yang berisi data hasil perhitungan distribusi temperatur akan disajikan ke dalam bentuk grafik seperti ditunjukkan pada Gambar 6 yang selanjutnya akan dideskripsikan dan dilakukan pembahasan.

Gambar 6 Grafik distribusi temperatur terhadap panjang rotary kiln

Distribusi Temperatur pada Shell Kiln

Data temperatur *shell kiln* dari *scanner* ditunjukkan pada Gambar 7. Rentang temperatur bagian dalam dari *rotary kiln* adalah sebesar 1000-1600⁰C.

Gambar 7 Data temperatur mentah dari scanner

Pembahasan Aliran Kalor (heat flux)

Nilai *heat flux* pada setiap meter daerah *burning zone* berbeda hal ini dipengaruhi oleh beberapa faktor yaitu ketebalan *shell kiln*, jenis batu tahan api, ketebalan lapisan (*coating*), dan yang utama adalah distribusi temperatur dari dalam yang berbeda beda disebabkan oleh bentuk nyala api, dengan menjumlahkan keseluruhan nilai *heat flux* (q) di setiap meter pada daerah pembakaran (meter 4-33) maka didapat panas total yaitu sebesar 2.523.256,805 Watt.

Terbukti bahwa besarnya aliran kalor pada meter 36 dari dalam dinding sampai keluar (arah radial) adalah sama sesuai pada persamaan (2).

Simulasi distribusi temperatur yang terindikasi *redspot* (meter ke 36) menggunakan *software* SolidWorks.

Gambar 8 Hasil analisa distribusi temperatur pada *rotary kiln* meter ke-36 dengan menggunakan FEM

Gambar 9 Cross section dari distribusi temperatur rotary kiln

Tabel 9	Analisis	Perbandingan	Perhitungan	Distribusi
Tempera	tur			

Temperatur	Teori	Simulasi	Perbedaan
	(°C)	(°C)	(%)
T _{s,4}	390.7	390.25	0.115%
T ₃	395.15	395.17	0.025%
T_2	1042.25	1042.83	0.055%
T _{s,1}	1677.09	1677.85	0.045%

KESIMPULAN

Pada daerah pembakaran didapat aliran panas konveksi pada meter ke 36 yaitu sebesar 117864.1648 Watt. Hasil teoritis pada meter 36 didapatkan T_{gas} sebesar 2050.39°C. Titik kritis *red spot* pada meter 36 menggunakan simulasi program hasil perhitungan yang didapat sebesar 1677.09°C. Perbandingan analisis ditribusi temperatur pada perhitungan teori dan simulasi program mengalami perbedaan yang tidak terlalu jauh, pada Ts1 perbedaannya hanya sebesar 0.0045%. Penelitian lebih lanjut sangat diperlukan dalam

mempertimbangkan beban mekanis pada meter 34 yang lebih besar karena dekat dengan *retaining ring*.

DAFTAR PUSTAKA

- A. Khabari, M. Zenouzi, T. O'Connor and A. Rodas, 2014, "Natural and Forced Convective Heat Transfer Analysis of Nanostructured Surface". London
- Data PT. Semen Baturaja (Persero), Departemen Penelitian dan Pengembangan, 26 Desember 2014.
- R.K Patil, Dr.M.P.Khond, Dr.L.G.Nawale, 2012, "Heat Transfer Modelling of Rotary Kiln for Cement Plants". International Journal for Advancements in Technical Research & Development, India.11
- United Nations Industrial Development Organization (UNIDO), 1994, "Output of a Seminar on Energy Conservation in Cement Industry". Japan.