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Abstract. Three partially pre-stressed interior beam-column sub-assemblages 
(SI) and two partially pre-stressed exterior beam-column sub-assemblages (SE) 
made of reactive powder concrete as test specimens were numerically modeled 
using a finite element program. The objective of this study was to investigate the 
behavior of the SI and SE numerical models. The numerical model inputs were: 
material data, details of test specimen dimensions, and test specimen 
reinforcements. The numerical models were subjected to the same loads as those 
applied experimentally. The numerical modeling results were hysteretic and 
backbone curves and stress distribution contours. The numerical model outputs 
showed good similarity with the experimental results. The stress distribution 
contours of the numerical models correlated with the crack patterns in the joint 
zone of the test specimens. The behavior of the SI numerical models differed 
from the SE numerical models due to various stresses on the beam plastic joints 
and the joint zones. 

Keywords: crack pattern; finite element numerical model; partially pre-stressed; 
reactive powder concrete; stress distribution.  

1 Introduction 
Five partially pre-stressed beam-column sub-assemblage test specimens were 
numerically modeled to investigate the hysteretic curves, stress distribution 
contours, and their relation to the behavior of the test specimens. The concrete 
material used for all test specimens was reactive powder concrete (RPC), using 
local materials and polypropylene microfibers with a compressive strength of 
101.79 MPa [1]. RPC is more compact than normal concrete to provide higher 
compressive strength. This compactness causes brittle behavior, so that addition 
of microfibers is required to maintain proper ductility. The use of polypropylene 
microfibers can significantly increase flexural strength, tensile strength and 
shear strength [2]. All beams of the test specimens were partially pre-stressed 
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reinforced and the columns were fully mild steel reinforced. The loads in the 
numerical modeling were the same as the loads applied experimentally, i.e. a 
combination of cyclic lateral and constant axial compressive loads at the top end 
of the column [1,3]. The experiments were conducted in the Laboratory of 
Structure and Building Construction, Center of Research and Development on 
People Housing, Ministry of Public Works and Housing. The numerical models 
represented three interior beam-column sub-assemblages (SI’s) and two exterior 
beam-column sub-assemblages (SE’s) with partial pre-stressed ratio of 33.79% 
and 22.78%. The numerical modeling used a program that supported finite 
element analysis. 

2 Finite Element Method Model 
The ANSYS program was used to perform the finite element analysis of the 
partially pre-stressed beam-column sub-assemblage numerical models. The 
RPC, mild steel bars, and pre-stressed strands were numerically modeled using 
elements that provided appropriate degrees of freedom numbers.  

2.1 Finite Element Equation Solution 
The relation between strain and nodal displacement is expressed in Eqs. (1) to 
(3). 

 {𝜀} =  [𝐵]{𝑢} (1) 

where [B] is the strain-displacement matrix based on the element shape function 
and {u} is the node displacement vector. 

The relation of stiffness matrix [K] and [B] is as follows: 

 [𝐾] = ∫ [𝐵]𝑇[𝐷][𝐵]{𝑢}𝑑𝑑𝑉  (2) 

The relation between stiffness, deformation, and load {p} is as follows: 

 [𝐾]{𝑢} = {𝑝} (3) 

2.2 Numerical Models 

2.2.1 Concrete Numerical Model 
In the ANSYS program, the concrete elements were numerically modeled using 
SOLID65 element as 8-node three-dimensional brick elements [4]. Each node 
had three degrees of freedom of translation to the X, Y, and Z axes. The 
SOLID65 element was modeled as an element cracked due to tensile stress, 
crushed due to compressive stress, plastic deformation, and creep. 
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a. Isotropic Condition 
In an isotropic material, the stress matrix {σ} and strain matrix {ε} are 
connected by the operator matrix [D] as in the following elasticity matrix:  

 {σ} = [D]{ε} (4) 

The inverse matrix of elasticity [D]-1 is expressed in Eq. (5): 

[𝐷]−1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

 

1/𝐸𝑥 −𝜐𝑥𝑥/𝐸𝑥 −𝜐𝑥𝑥/𝐸𝑥
−𝜐𝑥𝑥/𝐸𝑥 1/𝐸𝑥 −𝜐𝑥𝑥/𝐸𝑥
−𝜐𝑥𝑥/𝐸𝑥 −𝜐𝑥𝑥/𝐸𝑥 1/𝐸𝑥

  
0         0         0
0         0         0
0        0         0

0               0                0
0               0                0
0               0                0

1/𝐺𝑥𝑥  0   0
0 1/𝐺𝑥𝑥   0
0  0 1/𝐺𝑥𝑥⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (5) 

where 𝐸𝑥, 𝜈𝑥𝑥, 𝜈𝑥𝑥, and 𝐺𝑥𝑥 are the Young modulus on the x-axis, the major 
Poisson ratio, the minor Poisson ratio, and the shear modulus in the x-y plane, 
respectively. 

b. Crack Behavior on Concrete Element 
The material stiffness matrix under isotropic material conditions is in Eq. (6) as 
follows:  

Dc = 𝐸
(1+𝜐)(1−2𝜐) . 

⎣
⎢
⎢
⎢
⎢
⎡(1 − 𝜐)

𝜐
𝜐
0
0
0

𝜐
(1 − 𝜐)

𝜐
0
0
0

𝜐
𝜐

(1 − 𝜐)
0
0
0

0
0
0

(1−2𝜐)
2
0
0

0
0
0
0

(1−2𝜐)
2
0

0
0
0
0
0

(1−2𝜐)
2 ⎦

⎥
⎥
⎥
⎥
⎤

  (6) 

where E is the concrete elastic modulus (MPa) and υ is the Poisson ratio of 
concrete. The matrix of material stiffness based on the stress-strain correlation 
for materials considered to be cracked in one direction is shown in Eq. (7): 

 𝐷𝑐𝑐𝑐 =. 𝐸
(1+𝜐). 

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑅

𝑡(1−𝜐)
𝐸
0
0
0
0
0

0
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(1−𝜐)
0
0
0

0
𝜐
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(1−𝜐)
0
0
0

0
0
0
𝛽𝑡
2
0
0

  

0
0
0

  0  
1
2
0

 

0
0
0
0
0
𝛽𝑡
2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

  (7)                      

If the crack is closed due to unloading, the compressive stresses perpendicular 
to the crack plane will be forwarded to the crack and there is only shear transfer 
coefficient βc. Then the stiffness matrix becomes as in Eq. (8): 
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𝐷𝑐𝑐𝑐 =. 𝐸
(1+𝜐)(1−2𝜐). 
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𝜐
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⎤

 (8) 

2.2.2  Mild Steel and Strand Numerical Models 
In the ANSYS program, a longitudinal or transversal mild steel bar was 
numerically modeled using the LINK8 element [4]. The element was formed by 
two points at the ends of the bar in an X, Y, Z Cartesian coordinate system. 
Each point had three degrees of freedom of translation toward the X, Y, and Z 
axes. The element did not resist moment and the stress was assumed to be equal 
along the bar element. The element’s stiffness matrix is as in Eq. (9): 

 [𝐾] =. 𝐴𝐸𝑠
𝐿

. 

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0
0 0 0
0 0 0

   
−1 0 0
0 0 0
0 0 0

−1 0 0
0 0 0
0 0 0

   
1 0 0
0 0 0
0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 (9) 

where A is the cross-sectional area of the element (mm2), Es is the steel elastic 
modulus (MPa), and L is the elemental length (mm). 

2.2.3 Bond-Slip Interface Numerical Model in the ANSYS Program 
In the ANSYS program input, the stress-strain curves are influenced by bonds 
between the concrete and the mild steel bars or pre-stressed strands. The 
interface between the mild steel bars or pre-stressed strands with concrete was 
numerically modeled using a CONTA178 node to node element with three 
degrees of freedom of translations toward the X, Y, and Z axes, causing slip 
(gap) between the concrete and the mild steel bars or pre-stressed strands [4]. 
The CONTA178 elements were applied along the longitudinal mild steel bars or 
pre-stressed strands, which resisted compressive and tensile forces under cyclic 
lateral loads. 

The properties of the CONTA178 element are expressed by the curve of bond 
stress (τb) and the strain (εb) correlation. The correlation between the concrete 
strain and the mild steel bar or pre-stressed strand transferred to the concrete 
around the mild steel bar or pre-stressed strand is expressed in Eq. (10) [5]: 

 𝜀𝑐 = 𝜀𝑠 − 𝜀𝑏 (10) 
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where εc, εs, and εb are the concrete strains, mild steel bar or pre-stressed strand 
strain, and mild steel bar or pre-stressed strand strain that are transferred to the 
concrete around the mild steel bar or pre-stressed strand (bond strain), 
respectively. If the attachment between the concrete and the mild steel bar or 
pre-stressed strand is reduced or lost due to cracking of the concrete, then slip 
occurs. The correlation between concrete cracks and mild steel bar strain or pre-
stressed strand strain transferred to the concrete around the mild steel bar or pre-
stressed strand is described in Eq. (11): 

 𝜀𝑏 =. 2 𝛿𝑏
𝐶𝑠

 (11) 

where δb, Cs and T are slip length (mm), crack width (mm), and tensile force 
(Newton), respectively, as shown in Figure 1.  

 
Figure 1 Specimen of concentric tensile test [6]. 

The crack widths were obtained from the experimental results. The strain 
conditions due to the loss of attachment can be divided into the following three 
conditions [7]: 

1. The condition εb ≤ εb0. The maximum slip distance when the attachment 
breaks down is 0.0317 mm [8]. Then the attachment strain of break-down is 
in Eq. (12)-(15): 

 𝜀𝑏0 =. 63.4 × 10−3

𝐶𝑠
  (12) 

𝜏𝑏 = [0.0451 𝐶𝑠 𝜀𝑏 − 1.07 (𝐶𝑠𝜀𝑏)2 + 12.5(𝐶𝑠𝜀𝑏)3  

−58.2(𝐶𝑠𝜀𝑏)4]�𝑓𝑐′ × 103  (13) 

 𝐸𝑏 =.𝜏𝑏
𝜀𝑏

 (14) 

𝐸𝑏 = �0.0451 𝐶𝑠 − 1.07 𝐶𝑠2𝜀𝑏0 + 12.5𝐶𝑠3𝜀𝑏02 − 58.2𝐶𝑠4𝜀𝑏03 ��𝑓𝑐′ × 103 (15) 

δb δb δb δb 

T T 

Cs Cs 
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Because: 

 𝐸𝑏 × 𝜀𝑏 −. 𝑇
𝑂 𝐶𝑠

 = 0 (16) 

 𝑇 = 𝐴𝑠𝐸𝑠𝜀𝑠 (17) 

then for a pre-stressed strand, if the tensile force that occurs is higher than the 
initial tensile force in the pre-stressing process, Eq.(17) becomes Eq. (18) as 
follows: 

 𝑇𝑝 = 𝐴𝑝𝐸𝑝𝜀𝑝 (18) 

Then: 

[0.0451 𝐶𝑠 𝜀𝑏 − 1.07 (𝐶𝑠𝜀𝑏)2 + 12.5(𝐶𝑠𝜀𝑏)3 − 58.2(𝐶𝑠𝜀𝑏)4] 

�𝑓𝑐′ × 103 − 𝑇
𝑂 𝐶𝑠

= 0  (19) 

where εbo, τb, Eb, O, As, Ap, Es, and Ep are bond strain at break-down, concrete 
stress (MPa), concrete elastic modulus (MPa), circumference of mild steel bar 
or pre-strand strand cross section (mm), mild steel bar cross section area (mm2), 
pre-stressed strand cross-section area (mm2), elastic modulus (secant) of mild 
steel bar (MPa), and the elastic modulus (secant) of pre-stressed strand (MPa), 
respectively. 

2. The condition |𝜀𝑏𝑏| < |𝜀𝑏| ≤ 𝛿1|𝜀𝑏𝑏|, when the attachment starts being 
damaged. δ1 is 3. 

𝜏𝑏,𝑚𝑚𝑥 = [0.0451 𝐶𝑠 𝜀𝑏 − 1.07 (𝐶𝑠𝜀𝑏)2 + 12.5(𝐶𝑠𝜀𝑏)3   

−58.2(𝐶𝑠𝜀𝑏)4]�𝑓𝑐′ × 103  (20) 

 εc =. 𝑂 𝐶𝑠 𝜏𝑏,𝑚𝑚𝑚
𝐴𝑠𝐸𝑠

  (21) 

where εc is the concrete strain (constant) and τb,max is the maximum attachment 
stress transferred to the concrete (MPa). 

3. The condition 𝛿1|𝜀𝑏𝑏| < |𝜀𝑏| ≤ 𝛿2|𝜀𝑏𝑏|, when the attachment has been 
damaged. Concrete stress on the descending branch of the stress-strain 
curve: 

 𝜏𝑏,𝑠𝑠𝑠𝑝 = 𝜏𝑏,𝑚𝑚𝑥.�1− 0.9 (𝜀𝑏−𝛿1𝜀𝑏0)
𝜀𝑏0(𝛿2−𝛿1)  �  �𝑓𝑐′  (22) 

 𝜀𝑐 =. 𝑂 𝐶𝑠 𝜏𝑏,𝑠𝑠𝑠𝑠

𝐴𝑠𝐸𝑠
 (23) 

where τb,slip is the attachment stress when the slip is transferred to the concrete 
(MPa) and δ2 is 1.7516. 
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4. The condition 𝛿2|𝜀𝑏𝑏| < |𝜀𝑏|, when the attachment does not work at all.  

 𝜏𝑏 = 0.1 𝜏𝑏,𝑚𝑚𝑥 (24)  

2.3 Non-linear Equation Numerical Model 
The equilibrium equation for a linear system is expressed in Eq. (25) as: 

 [𝐾]{𝑢} = {𝐹𝑚} (25) 

where [𝐾], {𝑢}, and {𝐹𝑚} are structural stiffness matrix, degrees of freedom 
vector, and working load vector, respectively. 

In nonlinear cases, the Newton-Raphson iteration process is required to solve 
Eq. (26). It performs iterations for solving each incremental equilibrium: 

 �𝐾𝑠𝑇�{∆𝑢𝑠} = {𝐹𝑚} − {𝐹𝑠𝑛𝑛} (26) 

 {𝑢𝑠+1} = {𝑢𝑠} + {∆𝑢𝑠} (27) 

where [𝐾𝑠𝑇], {𝑢𝑠}, and {𝐹𝑠𝑛𝑛} are the structural stiffness matrix, degrees of 
freedom vector, and working load vector, respectively. 

For a convergent solution, multiple iterations with the following steps are 
needed: 

1. Assume the value of {𝑢𝑏}. Usually, {𝑢𝑏} is the solution of the previous 
iteration step, then in the first iteration, {𝑢𝑏} = {0} 

2. Create [𝐾𝑠𝑇] matrix, {𝐹𝑠𝑛𝑛} from confirmed {𝑢𝑠}. 
3. Determine {∆𝑢𝑠}. 
4. Add {∆𝑢𝑠} to {𝑢𝑠} to obtain {𝑢𝑠+1} 

3 Numerical Modeling of the Test Specimens 
Numerical modeling of the three SI and two SE test specimens was conducted 
using the finite element method. The numerical model inputs referred to the 
material test results of RPC, mild steel bars and pre-stressed strands, the details 
of the test specimen dimensions, and the test specimen reinforcement. 

3.1 Test Specimen Details 
All test specimens were designed to resist seismic loads. The reinforcement of 
the beams consisted of mild steel bars and pre-stressed strands, while the 
columns were reinforced by mild steel bars. The partial pre-stressed ratio (PPR) 
levels on the beams were 22.78% and 33.79% and the strands were placed 
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unbondedly in the plastic hinge of the beams to reduce strain and slow down the 
damaging due to cyclic lateral forces [9,10]. 

The details of the reinforcements are shown in Figures 2, 3, and 4. Each test 
specimen was placed on a loading frame and resisted loads from vertical and 
horizontal hydrolic jacks as shown in Figure 5. 

 
Figure 2 SI-A-33.79, SI-B-33.79, and SI-B-22.78 test specimens [1]. 

 
Figure 3 SE-A-33.79 and SE-B-22.78 test specimens [1]. 
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Figure 4 Sections of all test specimens. 

 

 
Figure 5 A specimen on the loading frame. 

Reaction Frame 

Hydraulic Jack; 
Lateral capacity: 1000 kN 

Hydraulic Jack; 
Axial capacity: 2000 kN 

Load Cell 
Linear Variable 
Displacement 
Transducer 
(LVDT) 

Reaction  
Wall 

Reaction Floor 
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3.2 Numerical Models 
Each numerical model had name, dimensions, reinforcement details, and partial 
pre-stressed ratio (PPR) according to the related test specimen (Table 1). The 
RPC, mild steel bar, and pre-stressed strand elements on the beam-column sub-
assemblages were meshed for finite element analysis.  

Front views of all SI and SE numerical models are shown in Figures 6 and 7. 

Table 1 Five types of beam-column sub-assemblage numerical models. 

Numerical model Type Stirrup space on the beam plastic hinges 
s (mm) PPR (%) 

SI-A-33.79 Interior 100 33.79 
SI-B-33.79 Interior 50 33.79 
SI-B-22.78 Interior 50 22.78 
SE-A-33.79 Exterior 100 33.79 
SE-B-22.78 Exterior 50 22.78 

 

Figure 6 Front view of the beam-column sub-assemblage numerical model’s 
interior (unit: mm). 
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Figure 7 Front view of the beam-column sub-assemblage numerical model’s 
Exterior (unit: mm). 

3.3 Loading History 
In the numerical modeling, the lateral cyclic loading was based on displacement 
control [3] and applied only in cycle 1. This was because at each drift ratio, the 
output of the lateral force-deflection hysteretic curve in cycle 2 and 3 was 
almost the same as the output of the lateral force-deflection hysteretic curve in 
cycle 1 [11]. To simplify the analysis, the numerical models were performed 
only in cycle 1 at each drift ratio, i.e. 0.20, 0.25, 0.35, 0.50, 0.75, 1.00, 1.40, 
1.75, 2.20, 2.75, 3.50, and 5.00 percent. 

4 Hysteretic Curves 
The verification of the numerical models against the experimental results 
included curve shape and ductility. The hysteretic and backbone curves of all 
numerical models were relatively the same as those of the experimental results. 
Figures 8 to 12 show the hysteretic and backbone curves for the lateral force 
and the displacement relation of the test specimens and the related numerical 
models. The lateral force differences between the numerical models and the test 
specimen curves at some high drift ratios were due to the reduced strength and 
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stiffness of the numerical models. This was caused by the cracked and crushed 
concrete elements of the numerical models. In this condition, the contribution of 
the concrete elements in the numerical models to strength and stiffness is 
decreased significantly [12]. However, the ductility values of the numerical 
modeling results are close to the experimental results [11]. 

  
(a) Hysteretic curves of 0% to 5% drift ratio (b) Backbone curves of 0% to 5% drift ratio 

Figure 8 Hysteretic and backbone curves of SI-A-33.79 test specimen and 
numerical model. 

  
(a) Hysteretic curves of 0% to 5% drift ratio. (b) Backbone curves of 0% to 5% drift ratio 

Figure 9 Hysteretic and backbone curves of SI-B-33.79 test specimen and 
numerical model. 
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(a) Hysteretic curves of 0% to 5% drift ratio. (b) Backbone curves of 0% to 5% drift ratio. 

Figure 10 Hysteretic and backbone curves of SI-B-22.78 test specimen and 
numerical model. 

  

(a) Hysteretic curves of 0% to 5% drift ratio (b) Backbone curves of 0% to 5% drift ratio 

Figure 11 Hysteretic and backbone curves of SE-A-33.79 test specimen and 
numerical model. 
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(a) Hysteretic curves of 0% to 5% drift ratio (b) Backbone curves of 0% to 5% drift ratio 

Figure 12 Hysteretic and backbone curves of SE-B-22.78 test specimen and 
numerical model. 

5 Stress Distribution 
In general, all numerical models began to resist the tensile and the compressive 
stress at 0.20% drift ratio. The tensile stress was less than 5 MPa, lower than the 
primary compressive stress and below the average tensile stress value of the 
material test result of 6.59 MPa. The tensile stress increased along with the drift 
ratio increment. A diagonal strut action occurred on the joint zone of all SI and 
SE numerical models at 0.35% drift ratio. Plastic joints on the beams were 
formed by significantly increased stress. The diagonal strut became wider and 
increased the stress on the next drift ratios. After peak lateral force, degradation 
of strength and stiffness set in. 

In all SI numerical models there were decreased concrete stresses at the center 
of the joint zone when the concrete exceeded its peak compressive strength. The 
low tensile stress of the joint zone centers increased at 5.00% drift ratio. This 
indicates widespread damage when compared to the conditions of 3.50% drift 
ratio (Figures 13, 14, and 15). In the SE numerical models, the stress was over 
43.89 MPa (dark blue) in the middle of the joint zones and began to spread. The 
shape of the diagonal strut began to change and spread until 5.00% drift ratio 
(Figures 16 and 17). The stress on the SE beams was higher than that on the SI 
beams of the numerical models with the same PPR at 3.50% drift ratio, 
especially in the plastic hinge areas. This was indicated by the color of the stress 
contours. The larger stresses led to larger ultimate shear forces on the beams of 
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the SE test specimens, especially in the plastic hinges. The stress was higher in 
the SE numerical model, with a PPR of 33.79%, than in the SE numerical 
model, with a PPR of 22.78%, because of higher lateral forces. 

  
(a) At 1.40% drift ratio: Loading Step (LS)-18; 

increased stress in the center of the joint zone  
diagonal strut (light blue) (25.56 to 37.78 
MPa) 

(b) At 3.50% drift ratio: LS-26; decreased 
compressive stress due to increased concrete 
damage in the middle of the joint zone (red) 
(1.11 MPa); continued strength and stiffness 
degradation 

 

Figure 13 Main stress distribution (σ3) in SI-A-33.79 longitudinal section; push 
load condition (unit: MPa). 

  
(a) At 1.40% drift ratio: LS-18; increased stress 

in the center of the joint zone diagonal strut 
(light blue) (25.56 to 37.78 MPa) 

(b) At 3.50% drift ratio: LS-26; decreased 
compressive stress due to increased 
concrete damage in the middle of the joint 
zone (red) (1.11 MPa); continued 
degradation of strength and stiffness 

 

Figure 14 Main stress distribution (σ3) in SI-B-33.79 longitudinal section; push 
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load condition (unit: MPa). 

  
(a) At 1.40 drift ratio: LS-18; increased stress 

in the center of the joint zone diagonal strut 
(light blue) (25.56 to 37.78 MPa) 

(b) At 3.50% drift ratio: LS-26; decreased 
compressive stress due to increased 
concrete break-down in the middle of the 
joint zone (red); continued degradation of 
strength and stiffness 

 

Figure 15 Comparison of primary stress distribution (σ3) in SI-B-22.78 and SE-
B-22.78 longitudinal section (unit: MPa). 

… 

  
(a) At 1.40% drift ratio: LS-18; increased stress 

in the center of the joint zone diagonal strut 
(light blue) (25.56 to 37.78 MPa) 

(b) At 3.50% drift ratio: LS-26; the stress 
above 43.89 MPa (dark blue) in the 
middle of the joint zone spread; the shape 
of the diagonal strut started to change and 
spread at 2.75% drift ratio 

 
Figure 16 Comparison of primary stress distribution (σ3) in longitudinal section 
of  SE-A-33.79; push load condition (unit: MPa). 
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(a) At 1.40% drift ratio: LS-18; increased stress in 
the center of the joint zone diagonal strut 
(light blue) (25.56 to 37.78 MPa) 

(b) At 3.50% drift ratio: LS-26; the stress 
above 43.89 MPa (dark blue) in the 
middle of the joint zone spread; the shape 
of the diagonal strut started to change and 
spread at 2.75% drift ratio. 

 
Figure 17 Comparison of primary stress distribution (σ3) in SE-B-22.78 
longitudinal section; push load condition (unit: MPa). 

The stress distribution contours of all SI numerical models corresponded to the 
crack patterns in the joint zone of all SI test specimens due to diagonal cracks 
under cyclic lateral load and damage in the center of the joint zones (Figures 
18(a-c)). The compressive stress on the joint zone increased and did not reach 
peak compressive stress until the end of loading in all SE numerical models. 
This corresponds to the crack patterns of the joint zones of all SE test 
specimens, as there were only a few hair cracks (Figures 18(d-e)). 

  
(a) SI-A-33.79 (b) SI-B-33.79 

Figure 18  Crack patterns in the joint zone of test specimens. 
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(c) SI-B-22.78 

  
(d) SE-A-33.79 (e) SE-B-22.78 

Figure 18  Continued. Crack patterns in the joint zone of test specimens. 

6 Conclusions 
From the numerical modeling results it can be concluded that the hysteretic and 
backbone curves of the numerical models showed good similarity with the test 
specimen curves. The differences were caused by stiffness and strength 
degradation due to cracking and crushing of the concrete elements in the 
numerical models. This condition made the contribution to strength and 
stiffness of the concrete elements in the numerical models decrease 
significantly. However, the numerical model results showed values of ductility 
that were close to those from the experimental results. 

The modeling of test specimens with numerical analysis showed a correlation 
between each numerical model and the related test specimen. The diagonal strut 
shapes and stress distributions in the numerical models performed similarly as 
the crack patterns in the test specimens. The stress distribution showed that 
diagonal strut action formed in the joint zones from the beginning of loading in 
all SI and SE numerical models. The stress continued to increase according to 
the loading history. After achieving peak lateral force, the behavior of the SI 
numerical models began to differ from the SE numerical models. In the SI 
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numerical models, the diagonal strut shapes changed due to spread stress on the 
joint zones, which were followed by decreased stress and then relatively 
constant stress. This corresponded to the crack patterns in all SI test specimens 
because there were many diagonal cracks in the joint zones due to the diagonal 
strut action. The stress continued to increase and then became relatively 
constant. It did not achieve maximum stress in all SE numerical models. This 
corresponded to the crack patterns in all SE test specimens since there were 
almost no diagonal cracks in the joint zones because the maximum stress was 
not achieved. 

7 Recommendations 
Numerical modeling of crack patterns to be compared with experimental results 
can be used to predict the failure behavior of test specimens. Moreover, to 
improve the numerical modeling, finer concrete element dimensions are 
required to avoid premature stiffness and strength degradation due to cracked 
and crushed concrete elements, which significantly decrease the strength and 
stiffness in the numerical models. 
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