Eddy Roflin, Iche Andriyani Liberty, Pariyana, Muhammad Reagan, dan Hanna Marsinta Uli

Faktor Risiko TB di Kota Palembang 2020

Faktor Risiko TB di Kota Palembang 2020

Eddy Roflin, Iche Andriyani Liberty, Pariyana, Muhammad Reagan, dan Hanna Marsinta Uli

Eddy Roflin, Iche Andriyani Liberty, Pariyana, Muhammad Reagan, dan Hanna Marsinta Uli

Faktor Risiko TB di Kota Palembang 2020

Faktor Risiko TB di Kota Palembang 2020

Copyright SIMETRI, 2020 Hak cipta dilindungi undang-undang All rights reserved Cetakan I, Oktober 2020

Penulis:

Eddy Roflin, Iche Andriyani Liberty, Pariyana, Muhammad Reagan, dan Hanna Marsinta Uli

Desain sampul & tata letak: Akhmad Aminuddin Bama

Diterbitkan oleh: SIMETRI

Jl. Srijaya Negara Lrg. Jaya Sempurna 2014-2015, Bukit Besar, Palembang Telp. 081328740911, 082180833456 Email: simetri penerbit@yahoo.com; akhmadbama@yahoo.com

x + 156 hlm.; 23.5×15.5 cm

ISBN (13) 978-602-1160-26-8

Isi di luar tanggung jawab Pernerbit

B uku ini merupakan bagian dari hasil penelitian berjudul Skrining Tuberkulosis Menggunakan Metode Multi-Objective Gradient Evolution-Base Support Vektor Machine and C5.0 Decision Tree, bertujuan untuk mengetahui gambaran penderita tuberkulosis di kota Palembang, menganalisis faktor risiko tuberkulosis di Kota Palembang, dan memperoleh model skrining deteksi dini tuberkulosis menggunakan metode multi-objective gradient evolution-base support vektor machine and C5.0 decision tree, berdasarkan sembilan faktor risiko tuberkulosis, vakni ienis kelamin, usia, pendidikan, status gizi, status ekonomi, kebiasaan merokok, kontak serumah dengan penderita TB, family size, dan imunisasi BCG

Pembahasan pada buku ini dibatasi pada gambaran penderita TB dan faktor risiko tuberkulosis di Kota Palembang tahun 2020.

Diharapkan buku ini dapat dimanfaatkan sebagai referensi bagi bagi para mahasiswa, dosen, dan atau peneliti yang berminat untuk mempelajari kejadian tuberkulosis di kota Palembang, serta sebagai informasi kepada Pemerintah Daerah Kotamadya Palembang dalam upaya menangulangi penyebaran dan menekan angka kejadian penyakit TB.

Penulis mengucapkan banyak terima kasih kepada rekan sejawat yang telah membantu penerbitan buku ini. Secara khusus ucapan terikasih disampaikan kepada mbak Fera dan Mas Indi vang telah membantu pengolahan dan analisis data, serta kepada mahasiswa bimbingan kepanitraan klinik (Koas) yang membantu pengumpulan data dan penulisan buku ini. Ucapan terima kasih juga disampaikan kepada pimpinan fakultas dan pimpinan UPPM Fakultas Kedokteran Universitas Sriwijaya atas pemberian bantuan dana penelitian melalui PNBP Fakultas Kedokteran Universitas Sriwijaya tahun anggaran 2020.

Prakata

Tidak ada gading yang tak retak, tidak ada buku yang sempurna, kerena itu kritik dan saran sangat diharapkan demi untuk kebaikan bersama.

Palembang, Oktober 2020

ttd

Penulis

DAFTAR ISI

ΑT	ГА	V
AF	R ISI	vii
1	PENDAHULUAN	1
2	TINJAUAN PUSTAKA; TUBERKULOSIS	7
.1	Definisi	7
.2	Epidemiologi	7
.3	Etiologi dan Faktor Risiko	8
	2.3.1 Jenis Kelamin	9
	2.3.2 Usia	9
	2.3.3 Pendidikan	0
	2.3.4 Status Gizi	0
	2.3.5 Status Ekonomi	0
	2.3.6 Kebiasaan Merokok	I 1
	2.3.7 Kontak Serumah	12
	2.3.8 Family Size	12
	2.3.9 Imunisasi BCG	13
.4	Gejala Klinis dan Diagnosis	13
	2.4.1 Gejala Klinis	13
	2.4.2 Diagnosis	14
.5	Patofisiologi	15
.6	Tatalaksana	17
3	METODE PENELITIAN	9
.1	Desain Penelitian	19
.2	Waktu dan Tempat Penelitian	19
.3	Populasi	19
.4	Besar Sampel	19
		20
		21
		21
		21
	3.7.2 Definisi Operasional Variabel	22
	'All 1 2 2 1 2 2 3 3 4 4 5 6 6 3 3 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6	1 PENDAHULUAN 2 TINJAUAN PUSTAKA; TUBERKULOSIS .1 Definisi .2 Epidemiologi .3 Etiologi dan Faktor Risiko 2.3.1 Jenis Kelamin 2.3.2 Usia 2.3.3 Pendidikan 1 2.3.4 Status Gizi 1 2.3.5 Status Ekonomi 1 2.3.6 Kebiasaan Merokok 1 2.3.7 Kontak Serumah 1 2.3.8 Family Size 1 2.3.9 Imunisasi BCG 1 .4 Gejala Klinis dan Diagnosis 1 2.4.1 Gejala Klinis 1 2.4.2 Diagnosis 1 .5 Patofisiologi 1 .6 Tatalaksana 1 3 METODE PENELITIAN 1 1.1 Desain Penelitian 1 2.2 Waktu dan Tempat Penelitian 1 3.3 Populasi 1 4.4 Besar Sampel 1 5.5 Teknik Sampling 2 6.6 Teknik Pengumpulan Data 2 7.7 Variabel 2 3.7.1 Jenis Variabel 2

	3.8	Pengolahan dan Analisis Data	25
		3.8.1 Pengolahan Data	25
		3.8.2 Analisis Data	25
BAI	3 4	ANALISIS DESKRIPTIF	27
	4.1	Analisis Deskriptif Univariate	27
		4.1.1 Tabel Distribusi Frekuensi	28
		4.1.2 Ukuran Statistik	31
		4,1,3 Uji Normalitas Sebaran Data	38
		Analisis Deskriptif Bivariate	42
	4.3	Analisis Deskriptif Threevariate	43
BAI	3 5	GAMBARAN PENDERITA TB	45
	5.1	Jenis Kelamin	46
	-		47
		Pendidikan	49
		Status Gizi	51
		Status Ekonomi	54
		Kebiasaan Merokok	56
		Kontak Serumah	58
		Family Size	59
	5.9	Imunisasi BCG	61
BAI	3 6	ANALISIS REGRESI LOGISTIK BINER	63
		Pengaruh Usia (Numerik) Terhadap PJK	64
	6.2	Pengaruh Usia (2 Katagorik) Terhadap PJK	74
	6.3	Pengaruh Usia (8 Katagori) Terhadap PJK	80
	6.4	Pengaruh LDL dan Obsitas Terhadap PJK	92
		6.4.1 Pengaruh LDL terhadap PJK	93
		6.4.2 Pengaruh LDL dan Obesitas terhadap PJK	
		(Faktor Utama)	97
		6.4.3 Pengaruh LDL dan Obesitas terhadap PJK	
		(Faktor Interaksi)	100
BAI	3 7	ANALISIS FAKTOR RISIKO TB SECARA	
			105
	7.1		105
	7.2	Usia	106
	7.3	Pendidikan	109
	7.3 7.4		109 112

7.6	Kebiasaan Merokok	117
7.7	Kontak Serumah	119
7.8	Family Size	122
7.9	Imunisasi BCG	125
BAB 8.	ANALISIS FAKTOR RISIKO TB SECARA	
	SIMULTAN	129
BAB 9	DISKUSI DAN PEMBAHASAN	139
9.1	Jenis Kelamin	139
9.2	Usia	140
9.3	Pendidikan	141
9.4	Status Gizi	141
9.5	Status Ekonomi	142
9.6	Kebiasaan Merokok	143
	Kontak Serumah	
9.8	Family Size	144
9.9	Imunisasi BCG	144
BAB 10	SIMPULAN	147
DAFTAI	R PUSTAKA	149

BAR 1

PENDAHULUAN

Tuberkulosis (TB) adalah salah satu dari sepuluh penyebab kematian terkait penyakit menular di dunia. TB disebabkan oleh infeksi bacillus mycobacterium tuberculosis, yang menyebar ketika penderita TB mengeluarkan bakteri ke udara: misalnya pada saat batuk. Bakteri ini umumnya menyerang paru-paru yang menyebabkan TB paru, tetapi juga dapat mempengaruhi situs lain yang menyebabkan TB luar paru.

Meski angka kejadian TB relatif stabil dalam beberapa tahun terakhir, insiden kasus baru TB terus meningkat di sebagian besar negara. Namun sesungguhnya jumlah kasus TB yang terjadi setiap tahun dan jumlah kematian terkait TB dapat diturunkan dengan cara mengurangi terjadinya faktor risiko TB. Beberapa faktor risiko yang dipelajari pada buku ini adalah jenis kelamin, usia, pendidikan, status gizi, status ekonomi, kebiasaan merokok, kontak serumah dengan penderita TB, kepadatan penghuni dalam rumah (family size), dan imunisasi BCG.

Pengobatan TB memerlukan waktu yang cukup lama, yakni sekitar 18 – 24 bulan dengan biaya yang mahal, terutama bagi masyarakat berpenghasilan rendah. Oleh karena itu, banyak kasus TB ditemukan di komunitas berpenghasilan rendah. Upaya untuk menekan angka kejadian TB dapat dilakukan dengan pengontrolan faktor risiko infeksi TB, sehingga perlu dipelajari faktor risiko yang dominan berpengaruh terhadap kejadian TB di kota Pelembang.

TB merupakan penyakit menular, oleh karena itu apabila pada satu komunitas penduduk ditemukan satu kasus TB, maka untuk mencegah penularan TB perlu dilakukan tes medis untuk semua orang di komunitas tersebut. Hal ini tentunya memerlukan biaya yang mahal, sehingga diperlukan metode lain untuk deteksi awal yang berbiaya murah dan mudah dilakukan. Buku ini menawarkan satu metode deteksi dini tuberkulosis menggunakan metode multiobjective gradient evolution-base support vektor machine and C5.0 decision tree, berdasarkan sembilan faktor risiko tuberkulosis, yakni jenis kelamin, usia, pendidikan, status gizi, status ekonomi, kebiasaan merokok, kontak serumah dengan penderita TB, family size, dan imunisasi BCG

Sekitar seperempat populasi dunia terinfeksi M. tuberculosis dan karenanya berisiko menderita penyakit TBC. Menurut perkiraan *World Health Organization* (WHO), bahwa pada tahun 2016, diketahui sebanyak 10.4 juta orang terinfeksi TB dan 1,6 juta lainnya meninggal akibat penyakit tersebut. Namun dengan diagnosis dan pengobatan tepat waktu menggunakan lini pertama antibiotik selama enam bulan lamanya, kebanyakan penderita TB dapat disembuhkan sehingga penularan infeksi selanjutnya dapat dibatasi.

Meski angka kejadian TB relatif stabil dalam beberapa tahun terakhir, insiden kasus baru TB terus meningkat di sebagian besar negara. Namun sesungguhnya jumlah kasus TB yang terjadi setiap tahun dan jumlah kematian terkait TB dapat diturunkan dengan cara mengurangi terjadinya faktor risiko terkait kesehatan untuk TB.

Upaya pengobatan preventif terhadap penderita laten infeksi TB, pengambilan tindakan atau kebijakan yang bersifat multisektoral, serta pengontrolan faktor penentu infeksi TB (misalnya kebiasaan merokok, diabetes, inveksi HIV, kemiskinan, kualitas perumahan, dan kekurangan gizi) merupakan beberapa upaya yang dapat membantu menekan angka kejadian TB.

Mengingat angka kejadian TB yang bervariasi antar negara, maka beban penyakitnya pun sangat bervariasi antar negara. Saat ini diperkirakan ada 130 kasus baru TB per 100.000 penduduk per tahun. Penyakit TB menyerang baik laki-laki maupun perempuan di semua kelompok umur, tetapi beban tertinggi berada pada laki-laki berusia lebihdari atau sama dengan 15 tahun, yang menyumbang sebesar 57% dari semua kasus TB pada tahun 2018.

Karena penurunan insiden TB yang lambat, saat ini upaya untuk menemukan strategi pengendalian TB yang baru sangat diperlukan. Beberapa hal yang menjadi fokus saat ini adalah strategi menambah obat TB, menemukan vaksin TB, dan merancang

regimen TB yang lebih pendek. Namun, pengetahuan mengenai faktor risiko TB diyakini berpotensi lebih efektif untuk mengendalikan TB di Masyarakat.

Faktor risiko yang diduga berhubungan dengan kejadian TB antara lain jenis kelamin laki-laki, usia lanjut, pendidikan rendah. status gizi kurang sehat, kebiasaan merokok, kontak serumah dengan penderita TB, penghuni rumah yang padat, infeksi HIV, penyakit penyerta seperti diabetes tidak mendapatkan imunisasi Bacillus Calmette-Gue'rin (BCG), penggunaan alkohol, status perkawinan tunggal, kepadatan penduduk, dan status sosial ekonomi yang buruk, terutama di negara berkembang. Inilah mengapa pengecekan dan pemeriksaan kembali akan karakteristik pasien, serta pemahaman akan faktor risiko yang berkontribusi pada kejadian TB menjadi sangat penting untuk dilakukan. Dengan mengetahui karakteristik penderita TB serta faktor risiko vang terkait, maka dapat disusun suatu kebijakan pengendalian TB secara promotif dan preventif.

Atas dasar tersebut maka dilakukan penelitian bertujuan untuk mengetahui gambaran penderita TB di kota Palembang; menganalisis faktor risiko TB di Kota Palembang baik secara parsial maupun simultan guna mengidentifikasi dan menganalisis faktor risiko yang diduga berkontribusi terhadap penyebaran dan perkembangan kejadian TB di kota Palembang: dan memperoleh model skrining deteksi dini Tuberkulosis menggunakan metode multi-objective gradient evolution-base support vektor machine and C5.0 decision tree, berdasarkan 9 variabel faktor risiko tuberkulosis, yakni jenis kelamin, usia, pendidikan, status gizi, status ekonomi, kebiasaan merokok, kontak serumah, family size, dan imunisasi BCG.

Buku ini menyajikan sepuluh bab sebagai berikut:

Bab 1 Pendahuluan berisi latar belakang dilakukannya penelitian, tujuan penelitian, tujuan buku, dan isi buku. Bab ini bertujuan untuk memberikan gambaran kepada pembaca tentang latar belakang penelitian, tujuan penelitian, tujuan buku, isi buku, dan cara mempelajari buku.

Bab 2 berisi tinjauan pustaka. Tujuan bab ini adalah untuk menjelaskan teori tentang tuberkulosis dan metode *multi-objective* gradient evolution-base support vektor machine and C5.0 decision tree, yang berkaitan dengan tujuan penelitian.

Bab 3 berisi metode penelitian. Bab ini bertujuan untuk menjelaskan metode penelitian, meliputi jenis dan desain penelitian, waktu dan tempat penelitian, populasi, sampel, teknik sampling, dan teknik pengumpulan data penelitian, variabel penelitian, dan pengolahan serta analisis data.

Bab 4 berisi analisis deskriptif. Bab ini bertujuan untuk mejelaskan kepada pembaca tentang pengertian analisis deskriptif dan cara melakukan analisis data secara deskriptif menggunakan SPSS. Pada bab ini dijelaskan, bahwa analisis deskriptif dapat dilakukan secara *univariate*, *bivariate*, maupun *multivariate* (tiga variabel) yang disajikan dalam bentuk tabel atau grafik (diagram). Diharapkan setelah mempelajari bab ini, pembaca dapat melakukan sendiri analisis data secara deskriptif.

Bab 5 berisi gambaran penderita TB di kota Palembang tahun 2020. Bab ini menjelaskan hasil penelitian tentang gambaran penderita TB di kota Palembang yang disajikan secara deskriptif.

Bab 6 berisi analisis regresi logistik biner menggunakan SPSS. Bab ini bertujuan untuk menjelaskan cara melakukan analisis regresi logistik biner menggunakan SPSS baik secara parsial maupun simultan, serta cara membaca hasil *output* hasil olahannya. Setelah mempelajari bab ini, diharapkan pembaca dapat melakukan sendiri analisis regresi logistik biner secara parsial dan simultan.

Bab 7 berisi hasil penelitian tentang analisis faktor risiko TB secara parsial. Bab ini bertujuan untuk mengetahui variabel apa saja yang berisiko terhadap kejadian TB di kota Palembang pada tahun 2020. Pada buku ini terdapat 9 variabel faktor risiko yang dipelajari, yakni jenis kelamin, usia, pendidikan, status gizi, status ekonomi, kebiasaan merokok, kontak serumah dengan penderita TB, family size, dan imunisasi BCG.

Bab 8 berisi hasil penelitian tentang analisis faktor risiko TB secara simultan. Bab ini bertujuan untuk mengetahui variabel apa saja yang secara simultan dominan berisiko atau perpengaruh signifikan terhadap kejadian TB di kota Palembang pada tahun 2020.

Bab 9 berisi diskusi dan pembahasan. Bab ini bertujuan untuk mengetahui hasil penelitian ini berkaitan dengan hasil penelitian sebelumnya yang dilakukan peneliti lain.

Bab 10 berisi simpulan hasil penelitian.

TINJAUAN PUSTAKA

TUBERKULOSIS

2.1 Definisi

Tuberkulosis (TB) adalah penyakit menular yang merupakan I salah satu dari sepuluh penyebab utama kematian di seluruh dunia. TB juga merupakan penyebab utama kematian akibat agen infeksi tunggal, di atas peringkat kematian akibat HIV/AIDS. Penyakit ini disebabkan oleh basil Mycobacterium tuberculosis, yang menyebar ketika penderita TB mengeluarkan bakteri ke udara; misalnya Ketika penderita batuk. Selain organ paru, Mycobacterium tuberculosis juga dapat menginfeksi organ tubuh lain, seperti kelenjar limfe, dan tulang belakang.

2.2 Epidemiologi

Saat ini diperkirakan sekitar seperempat populasi dunia terinfeksi M. tuberculosis dan sekaligus berisiko menularkan penyakit ini. Maka dari itu hingga sekarang TB tetap menjadi pembunuh menular paling mematikan di dunia. Setiap hari, terdapat lebih dari 4.000 orang kehilangan nyawanya karena TB dan sebanyak hampir 30.000 orang jatuh sakit karena penyakit yang sebetulnya dapat dicegah dan disembuhkan ini.

Angka kejadian TB yang berhasil didata oleh WHO pada tahun 2018 mencapai sebesar 10 juta orang di seluruh dunia dengan angka kematian sebanyak 1.500.000 juta orang.

Angka kejadian ini relative stabil dalam beberapa tahun terakhir ini. Kejadian multi-drug resistant (MDR) juga makin meningkat. Pada tahun 2018 diketahui angka kejadiannya adalah 484.000 penderita TB. Beban penyakit sangat bervariasi antar negara, diketahui kurang dari lima hingga lebih dari 500 kasus baru per 100.000 penduduk per tahun, dengan rata-rata global sekitar 130 kasus.

TB dapat menyerang baik laki-laki dan perempuan di semua kelompok umur, tetapi kejadian tertinggi diketahui ada pada laki-laki usia ≥15 tahun. Angka kejadian TB pada kelompok tersebut menyumbang hingga 57% dari semua kasus TB pada tahun 2018. Sebagai perbandingan, perempuan hanya menyumbang 32% dan anak-anak berusia <15 tahun menyumbang angka kejadian sebesar 11%.

Secara geografis, sebagian besar kasus TB pada 2018 berada di wilayah WHO Asia Tenggara (44%), Afrika (24%) dan Pasifik Barat (18%), dengan persentase lebih kecil di Mediterania Timur (8%), Amerika (3%) dan Eropa (3%). Delapan negara menyumbang dua pertiga dari total kejadian TB global yaitu: India (27%), Cina (9%), Indonesia (8%), Filipina (6%), Pakistan (6%), Nigeria (4%), Bangladesh (4%) dan Afrika Selatan (3%).⁴

2.3 Etiologi dan Faktor Risiko

Penyakit TB disebabkan oleh basil *Mycobacterium tuberculosis*. Meski semua orang memiliki risiko terkena TB, namun ada beberapa kelompok individu yang lebih rentang terinfeksi TB. Orang-orang yang berisiko terkena TB setelah terinfeksi oleh basil tuberkulum antara lain adalah orang-orang yang mengalami malnutrisi, dan yang memiliki sistem imunitas buruk, misalnya penderita HIV, penderita diabetes, pecandu alkohol, pasien dengan leukemia dan pasien yang menerima terapi imunosupresif. Beban TB yang tinggi di banyak negara mungkin disebabkan oleh profil demografis dan sosio-ekonomi penduduk negara tersebut seperti kemiskinan, kurangnya pengetahuan, sikap dan praktik, kepadatan penduduk, malnutrisi, dan penyakit penyerta.

Seperti disebutkan di atas, ada banyak sekali faktor risiko sehingga seseorang dapat terinfeksi TB. Faktor risiko ini seringkali tidak terjadi sendiri namun berinteraksi. Berikut adalah beberapa faktor risiko yang diduga terkait dengan kejadian TB dan akan dibahas lebih lanjut, yaitu: jenis kelamin, usia, pendidikan, status gizi, status ekonomi, kebiasaan merokok, kontak serumah, family size, dan riwayat imunisasi BCG.

2.3.1 Jenis Kelamin

Rasio penderita TB berdasarkan ienis kelamin pria: wanita secara global dilaporkan tetap konsisten berkisar antara 1:6 sampai dengan 1:7 selama empat tahun terakhir. Data terakhir dari Global Tuberculosis Report 2019 melaporkan bahwa diperkirakan penderita TB kebanyakan berjenis kelamin pria sebanyak 5.7 juta penderita, sementara sisanya adalah perempuan sebanyak 3,2 juta penderita.

Studi epidemiologi TB mengungkapkan bahwa mayoritas penderita TB adalah laki-laki dengan jumlah persentase bervariasi dari 55% sampai dengan 71% meski dijumpai juga studi yang menemukan kejadian TB yang sedikit lebih rendah pada laki-laki yaitu sebesar 43,3%.

Perbedaan angka kejadian di kedua jenis kelamin ini telah dicoba untuk dijelaskan berdasarkan berbagai faktor berbeda. Teori yang diajukan antara lain adalah karena adanya perbedaan biologis yang mempengaruhi kerentanan penyakit, hingga perbedaan kemampuan mengakses layanan kesehatan di beberapa negara berkembang. Secara umum populasi laki-laki juga diduga rentan menderita TB karena mereka memiliki lebih banyak kesempatan untuk kontak dengan carrier dikarenakan aktivitas sosial mereka yang banyak di luar ruangan.

2.3.2 Usia

Kejadian TB dapat terjadi pada semua orang dari segala umur tanpa terkecuali. Populasi anak-anak pun diketahui mencapai angka 1,1 juta penderita di tahun 2018. Anak-anak memang diketahui berisiko lebih tinggi tertular infeksi dan penyakit TB, dimana sebagian besar anak usia kurang dari 2 tahun tertular dari kasus sumber rumah tangga, sementara pada anak di atas usia 2 tahun sebagian besar tertular di masyarakat. Kasus yang bersumber dari penularan rumah tangga merupakan faktor risiko terpenting bagi anak-anak dan tetap menjadi kontributor penting infeksi TB hingga anak usia 5-10 tahun.

Namun beberapa studi lainnya menunjukkan, bahwabanyak juga penderita TB yang merupakan populasi dewasa muda dengan usia kebanyakan di rentang 15 – 44 tahun.Resiko tinggi infeksi pada kelompok usia ini diduga berkaitan dengan jumlah kontak sosial yang lebih tinggi di masyarakat selama masa dewasa muda.

2.3.3 Pendidikan

Sebuah studi di Ethiopia menunjukkan data, bahwa penderita TB yang buta huruf memiliki kemungkinan dua kali lipat lebih besar terinfeksi dibandingkan mereka yang setidaknya bisa membaca dan menulis dalam bahasa lokal. Hasil serupa juga ditemui pada beberapa studi lainnya.

Pendidikan merupakan bagian dari status sosiodemografi seseorang. Penyakit TB telah lama diketahui memiliki akar permasalahan yang dalam di aspek sosial dan ekonomi. Masyarakat yang hidup dalam keterbatasan sosioekonomi amat rentan untuk terinfeksi TB, hal ini utamanya terkait dengan tingkat pengetahuan dan pemahaman, serta aksesibilitas ke layanan kesehatan itu sendiri.

2.3.4 Status Gizi

Banyak penelitian telah menunjukkan, bahwa malnutrisi (baik defisiensi mikro maupun makro) meningkatkan risiko TB karena adanya gangguan respons imun.Kondisi malnutrisi dan TB sendiri saling mempengaruhi satu sama lain. Malnutrisi dapat meningkatkan risiko TB, dan TB pun dapat menyebabkan timbulnya malnutrisi. Penyakit TB dapat menyebabkan malnutrisi karena penurunan nafsu makan dan perubahan proses metabolisme.Oleh karena itu, kejadian malnutrisi sering kali sangat dijumpai di antara penderita TB. Dengan pengobatan TB yang tepat status gizi penderitanya dapat berangsur-angsur membaik. Namun begitu, masih dijumpai juga pasien TB yang tetap mengalami kekurangan gizi di akhir masa pengobatan TB.

2.3.5 Status Ekonomi

TB dikenal sebagai penyakit yang seringkali dihubungkan dengan kemiskinan. Faktor risiko sosial untuk penyakit menular telah lama dilaporkan terkait satu sama lain. Beberapa penelitian mene-

mukan, bahwa peningkatan insiden kasus infeksi TB terkait dengan pengangguran, kurangnya pendidikan, dan migrasi yang semuanya disebabkan oleh kemiskinan, yang merupakan penanda status sosial ekonomi. Hingga saat ini data yang tersedia untuk hubungan status sosial ekonomi dengan TB di negara berkembang masih sangat terbatas.

2.3.6 Kebiasaan Merokok

Merokok adalah salah satu faktor risiko global yang paling penting untuk COPD dan kanker paru-paru dan menyebabkan proporsi kematian yang signifikan akibat penyakit ini di negara berkembang. Berbagai tinjauan sistematis telah menyimpulkan bahwa merokok iuga merupakan faktor risiko independen untuk tuberkulosis dan menunjukkan hubungan positif antara polusi udara dalam ruangan dan penyakit.

Merokok terbukti mengurangi aktivitas sitotoksik killer alami yang berakibat tertekannya fungsi sel T di keduanya paru-paru dan darah, terganggunya pembersihan partikel mukosiliar, dan jumlah makrofag alveolar di saluran pernapasan bagian bawah meningkat. Sel dari kelompok makrofag fagositik mempengaruhi imunitas langsung atau bawaan melalui penanganan dan eliminasi mikrobakteri. Ada kemungkinan nikotin dalam asap tembakau dapat mengganggu dengan respon imun inang terhadap M. tuberculosis. Dengan demikian terganggunya imunitas inang dapat menyebabkan peningkatan risiko infeksi TB pada perokok.

Merokok meningkatkan kejadian TB klinis dan merupakan penyebab separuh kematian TB laki-laki di India, dan seperempat dari semua kematian laki-laki di usia paruh baya (ditambah sebagian kecil kematian pada usia lain). Merokok tidak hanya meningkatkan kemungkinan terinfeksi tuberkulosis paru (PTB), tetapi juga memiliki risiko lebih tinggi untuk terkena tuberkulosis ekstra paru (EPTB). Risiko berkembangnya TB meningkat seiring dengan dosis dan lamanya merokok, oleh karena itu peningkatan risiko TB pada perokok secara tidak langsung dapat meningkatkan beban fasilitas kesehatan dan perlu dilakukan pemeriksaan.

2.3.7 Kontak Serumah

Telah diamati, bahwa dengan meningkatnya jumlah anggota dalam rumah tangga khususnya orang dewasa di rumah dapat meningkatkan risiko TB dua kali lipat yang telah dibenarkan oleh banyak penelitian. Pada kondisi perumahan kurang terawat dengan tipe rumah tertutup, kurang atau tidak ada jumlah ruangan dan jendela/ruangan serta material yang buruk yang digunakan dalam konstruksi juga merupakan faktor risiko yang signifikan dari meningkatnya kejadian TB karena berakibat pada kepadatan dan ventilasi yang buruk.

Hasil ini didukung oleh berbagai penelitian yang menunjukkan bahwa kondisi kepadatan, ventilasi dan perumahan merupakan penanda peningkatan kerentanan terkena infeksi. Hal tersebut utamanya dikaitkan dengan kontak serumah yang terjadi sehingga risiko penularan meningkat.

2.3.8 Family Size

Kepadatan rumah tangga merupakan salah satu manifestasi kemiskinan dan bisa menjadi faktor yang memengaruhi hubungan antara TB dan deprivasi. Salah satu ciri karakteristik TB adalah variabel periode latensi yang dapat terjadi dalam jangka waktu yang lama (terkadang puluhan tahun) setelahnya infeksi. Hal ini membuat tingkat penyakit yang diamati untuk paparan lingkungan saat ini dan faktor risiko, khususnya di mana populasi termasuk imigran dari negara dengan insiden TB tinggi sulit diamati.

Sebuah penelitian di Selandia Baru mendapatkan hasil bahwa pada anak-anak yang berasal dari rumah tangga yang padat signifikan lebih berisiko untuk ditemukan kasus infeksi TB. Kepadatan rumah tangga saat ini lebih mungkin terjadi berkontribusi pada TB di jalur kedua (infeksi baru). Apapun tingkat kepadatan rumah tangga, penularan TB hanya dapat terjadi jika ada sumber kasus TB menular. Kenyataan bahwa tingkat TB dikaitkan dengan kondisi keluarga/rumah tangga yang padat tidak mengherankan karena memang diketahui bahwa penularan efektif bakteri ini di rumah tangga melalui droplet yang kecil.^{26,27}

2.3.9 Imunisasi BCG

Mycobacterium tuberculosis (Mtb) adalah penyebab utama kematian akibat infeksi di seluruh dunia. Beberapa penelitian pada primata non-manusia (Macaca mulatta) menunjukkan bahwa pemberian BCG secara intravena sangat berpengaruh dalam melindungi dari infeksi Mtb. Dibandingkan dengan inieksi intradermal atau aerosol, imunisasi intravena menyebabkan respon sel T CD4 dan CD8 yang jauh lebih responsif terhadap antigen dalam darah, limpa, lavage bronchoalveolar dan kelenjar getah bening paru. Kekebalan sel T diperlukan untuk mengendalikan infeksi Mtb dan mencegah penyakit klinis.

Hambatan utama untuk mengembangkan vaksin berbasis sel T vang efektif dan tahan lama untuk melawan TB paru adalah untuk mendorong dan mempertahankan respons sel T di paru-paru untuk segera mengendalikan infeksi sambil juga memunculkan reservoir sel memori sistemik untuk mengisi kembali jaringan paruparu. Pemberian intradermal dan intramuskular — rute yang paling umum dari pemberian vaksin — tidak menyebabkan frekuensi tinggi sel T memori menetap (TRM) di paru.

Walaupun pemahaman tentang mekanisme di mana dosis dan rute BCG mempengaruhi kekebalan sel T sistemik dan spesifik jaringan masih sangat minim, namun penemuan bahwa BCG intravena mencegah atau secara substansial membatasi infeksi Mtb pada kera rhesus yang sangat rentan terinfeksi, memiliki implikasi penting untuk pemberian vaksin dan pengembangan klinis dalam menentukan korelasi kekebalan dan mekanisme perlindungan vang diperoleh dari vaksin terhadap tuberkulosis.

2.4 Gejala Klinis dan Diagnosis

2.4.1 Gejala Klinis

Berdasarkan organ yang terlibat, gejala klinis penyakit TB dapat dibedakan menjadi gejala klinis umum dan gejala klinis khusus. Gejala sistemik/umum penyakit TB adalah sebagai berikut:

• Batuk-batuk selama 2-3 minggu atau lebih (dapat juga berupa batuk darah),

- Demam tidak terlalu tinggi yang berlangsung lama, hiang timbul, dan biasanya dirasakan malam hari disertai keringat malam hari tanpa kegiatan fisik,
- Penurunan nafsu makan diikuti penurunan berat badan, dan
- Perasaan tidak enak (malaise), lemah.

Sementara itu, gejala khusus penyakit TB akan tergantung pada organ tubuh mana yang terkena. Organ-organ yang bisa terinfeksi TB antara lain adalah tulang, otak, dan kelenjar limfe. Jadi jika salah satu organ tersebut terkena TB, maka akan memberikan gejala klinis sesuai dengan organ. Contohnya, jika yang terkena adalah otak, maka akan timbul gejala meningitis TB, berupa demam tinggi, penurunan kesadaran, dan defisit neurologis.

2.4.2 Diagnosis

Beberapa pemeriksaan yang harus dilakukan untuk menegakkan diagnosis penyakit TB adalah sebagai berikut:

- Autoanamnesis dan alloanamnesis
- Pemeriksaan fisik menyeluruh
- Pemeriksaan laboratorium (darah, dahak, cairan otak)
- Pemeriksaan foto thoraks dada
- Uji tuberkulin (untuk anak)

Pemeriksaan Dahak

Pemeriksaan dahak merupakan pemeriksaan utama pada penyakit TB yang berfungsi untuk menegakkan diagnosis. Cara pemeriksaan dahak adalah dengan mengumpulkan 3 spesimen dahak yang dikumpulkan dalam dua harikunjungan yang berurutan berupa dahak Sewaktu-Pagi-Sewaktu (SPS):

 S (Sewaktu): Dahak sewaktu adalah dahak dikumpulkan pada saat seseorang yang dicurigai menderita TB (suspek) datang berkunjung pertama kali ke fasilitas layanan kesehatan (fasyankes). Ketika pulang, suspek akan dibekali dengan sebuah pot dahak yang akan digunakan untuk mengumpulkan dahak pagi pada hari kedua atau esoknya.

- P (Pagi): Dahak yang dikumpulkan di rumah pada pagi hari kedua, segera setelah suspek bangun tidur. Pot dahak kemudian dibawa dan diserahkan sendiri kepada petugas di fasyankes.
- S (Sewaktu): Dahak dikumpulkan di fasyankes pada hari kedua, saat menyerahkan dahak pagi.

Berdasarkan program TB nasional, seseorang didiagnosis menderita TB paru iika ditemukan kuman TB (Basil Tahan Asam/BTA) di dalam dahaknya melalui pemeriksaan mikroskopis.

Pemeriksaan Foto Thoraks

Pemeriksaan penunjang lain seperti foto thoraks dapat dilakukan sesuai dengan indikasi. Hal ini dikarenakan hasil pemeriksaan foto thoraks seringkali tidak memberikan gambaran TB Paru yang khas, sehingga dapat timbul kemungkinan salah diagnosis. Berikut adalah beberapa indikasi pemeriksaan foto thoraks pada pasien TB:

Hanya 1 dari 3 spesimen dahak SPS hasilnya BTA positif

- Ketiga spesimen dahak hasilnya tetap negatif setelah 3 spesimen dahak SPS pada pemeriksaan sebelumnya hasilnya BTA negatifdan tidak ada perbaikan setelah pemberian antibiotika non OAT (non fluoroguinolon)
- Pasien tersebut diduga mengalami komplikasi sesak nafas berat yang memerlukan penanganan khusus (seperti: pneumotorak, pleuritis eksudativa, efusi perikarditis atau efusi pleural) dan pasienyang mengalami hemoptisis berat (untuk menyingkirkan diagnosis banding bronkiektasis atau aspergiloma).

2.5 Patofisiologi

Organ paru merupakan tempat masuk atau portd'entrée bagi hampir seluruh kasus TB. Mycobacterium tuberculosis berukuran sangat kecil dan dijumpai pada *droplet* pernafasan, sehingga dapat terhirup dan mencapai alveolus. Begitu masuk, sistem imunitas tubuh melalui mekanisme imunologi non-spesifik, makrofag akan segera memfagosit sebagian besar kuman TB. Untuk kuman TB yang tidak dapat dihancurkan, maka akan berkembang biak dan membentuk koloni. Lokasi koloni pertama kuman TB di jaringan paru kemudian akan disebut fokus primer gohn.

Berawal dari fokus primer tersebut kuman TB kemudian akan menyebar melalui pembuluh limfe menuju kelenjar limfe regional. Penyebaran kuman TB ini akan menyebabkan timbulnya peradangan (limfangitis dan limfadenitis). Gabungan antara fokus primer, limfangitis, dan limfadenitis ini disebut dengan kompleks primer. Waktu yang diperlukan sejak masuknya kuman TB hingga terbentuknya kompleks primer secara lengkap disebut sebagai masa inkubasi TB. Masa inkubasi penyakit TB ini umumnya berlangsung dalam waktu 4 – 8 minggu dengan rentang waktu antara 2 – 12 minggu.

Setelah kompleks primer terbentuk, imunitas seluluer tubuh terhadap TB akan terbentuk. Pada sebagian besar individu dengan imunitas yang baik, maka proliferasi kuman TB akan berhenti. Setelah imunitas seluler terbentuk, fokus primer di jaringan paru biasanya mengalami resolusi secara sempurna membentuk fibrosis atau kalsifikasi setelah mengalami nekrosis perkijuan dan enkapsulasi. Yang perlu diingat adalah kuman TB ini dapat tetap hidup dan menetap selama bertahun-tahun dalam kelenjar ini. Kompleks primer dapat juga mengalami komplikasi berupa pneumonitis atau pleuritis fokal.

Selama masa inkubasi, sebelum terbentuknya imunitas seluler, dapat terjadi penyebaran limfogen dan hematogen. Pada penyebaran limfogen, kuman menyebar ke kelenjar limfe regional membentuk kompleks primer. Sedangkan pada penyebaran hematogen, kuman TB masuk ke dalam sirkulasi darah dan menyebar ke seluruh tubuh. Adanya penyebaran hematogen inilah yang menyebabkan TB disebut sebagai penyakit sistemik.

2.6 Tatalaksana

Tatalaksana penyakit TB dilakukan dengan pemberian Obat Anti Tuberkulosis (OAT). Daftar OAT dapat dilihat di Tabel di bawah. Terapi TB sendiri bertujuan untuk menyembuhkan pasien, mencegah kematian, mencegah kekambuhan, memutuskan rantai penularan dan mencegah terjadinya resistensi kuman terhadap OAT.

Dosis yang Direkomendasikan Jenis OAT Sifat Harian 3x Seminggu Isoniazid (H) 5 (4 - 6) 10 (8 - 12) Bakterisid Rifampicin (R) Bakterisid 10 (8 - 12) 10 (8 - 12) 35 (30 - 40) Pyrazinamide (Z) Bakterisid 25 (20 - 30) Streptomycin (S) Bakterisid 15 (12 - 18) Ethambutol (E) Bakteriostatik 15 (15 - 20) 30 (20 - 35)

Tabel Jenis OAT

Adapun pengobatan TB dilakukan berdasarkan prinsip berikut:

- OAT harus diberikan dalam bentuk kombinasi beberapa jenis obat, dalam jumlah cukup dan dosis tepat sesuai dengan kategori pengobatan.
- Jangan gunakan OAT tunggal (monoterapi). Pemakaian OAT-Kombinasi Dosis Tetap (OAT-KDT) lebih menguntungkan dan sangat dianjurkan.
- Untuk menjamin kepatuhan pasien menelan obat, dilakukan pengawasan langsung (DOT= Directly Observed Treatment) oleh seorang Pengawas Menelan Obat (PMO).

Pengobatan TB akan dilakukan dalam 2 tahap, yaitu tahap awal (intensif) dan lanjutan.

Tahap awal (intensif)

Pada tahap awal (intensif) pasien mendapat obat setiap hari dan perlu diawasi secara langsung untuk mencegah terjadinya resistensi obat. Bila pengobatan tahap intensif tersebut diberikan secara tepat, biasanya pasien menularmenjadi tidak menular dalam kurun waktu 2 minggu. Sebagian besar pasien TB BTA positif menjadi BTA negatif (konversi) dalam 2 bulan.

Tahap Lanjutan

Pada tahap lanjutan pasien mendapat jenis obat lebih sedikit, namun dalam jangka waktu yang lebih lama. Tahap lanjutan penting untuk membunuh kuman *persister* sehingga mencegah terjadinya kekambuhan.

Panduan OAT yang digunakan di Indonesia

Panduan OAT berdasarkan WHO dan IUATLD (International Union Against Tuberculosis and Lung Disease), adalah sebagai berikut:

Kategori 1:

- o 2HRZE/4H3R3
- o 2HRZE/4HR
- o 2HRZE/6HE

Kategori 2:

- o 2HRZES/HRZE/5H3R3E3
- o 2HRZES/HRZE/5HRE

Kategori 3:

- o 2HRZ/4H3R3
- o 2HRZ/4HR
- o 2HRZ/6HE

Panduan OAT berdasarkan yang digunakan oleh Program Nasional Penanggulangan TB di Indonesia adalah sebagai berikut:

- o Kategori 1 : 2HRZE/4(HR)3.
- o Kategori 2 : 2HRZES/(HRZE)/5(HR)3E3.

Di samping kedua kategori ini, disediakan paduan OAT Sisipan: HRZE dan OAT Anak: 2HRZ/4HR.

BAB 3

METODE PENELITIAN

3.1 Desain Penelitian

nenelitian ini merupakan penelitian observasional analitik dengan desain *case-control* (kasus-kontrol).

3.2 Waktu dan Tempat Penelitian

Penelitian dilakukan pada Bulan Agustus – Desember 2020 di Kota Palembang.

3.3 Populasi

Populasi kasus adalah penderita TB yang berobat di pusat kesehatan di Kota Palembang, dan populasi kontrol adalah masvarakat yang tidak menderita TB (Non-TB) yang berada di wilayah penelitian yang memenuhi kriteria inklusi dan eksklusi sebagai berikut.

Kriteria Inklusi

- Telah berusia 15 tahun
- Bersedia menjadi responden

Kriteria Eksklusi

- Menderita penyakit kronis lainnya
- Penderita TB yang sudah sembuh

3.4 Besar Sampel

Besar sampel minimal yang dibutuhkan untuk tujuan penelitian dihitung menggunakan rumus Twisk (2003), yaitu:

$$n = \frac{\left\{z_{1-\alpha/2}\sqrt{2\lambda^2} + z_{1-\beta}\sqrt{(\lambda_1^2 + \lambda_2^2)}\right\}^2}{(\lambda_1^2 - \lambda_2^2)^2}$$

$$n = \frac{\left\{1,96\sqrt{2(0,37)^2} + 1,64\sqrt{(542)^2 + (0,20)^2}\right\}^2}{(0,542 - 0,20)^2}$$

$$n = 120$$

keterangan

 $z_{1-\alpha/2} = 1,96$ diperoleh dari tabel z dengan $\alpha = 5\%$

 $z_{1-\beta} = 1,64$ diperoleh dari tabel z dengan $1 - \beta = 90\%$

 $\lambda_1=54{,}2\%$ insidensi populasi terpajan diperoleh dari penelitian sebelumnya

 $\lambda_2 = 20\%$ insidensi populasi tidak terpajan, diperoleh dari penelitian sebelumnya

$$\lambda = \frac{\lambda_1 + \lambda_2}{2} = 0.371$$

Berdasarkan rumus tersebut, besar sampel minimal yang dibutuhkan untuk kelompok sampel kasus dan sampel kontrol masing-masing berjumlah 120 orang.

Berdasarkan hasil pengumpulan data, diperoleh besar sampel kasus dan sampel kontrol masing-masing sebanyak 240 orang

3.5 Teknik Sampling

Teknik sampling dilakukan sebagai berikut.

 Pada kelompok Kasus, sampel diambil dengan cara purposif insidental, yaitu pasien TB yang berobat di pusat kesehatan di kota Palembang dan memenuhi kriteria inklusi dan eksklusi secara insidental dengan pertimbangan peneliti diambil sebagai unit sampel. • Pada kelompok Kontrol, sampel diambil dengan cara purposif insidental, yaitu masyarakat yang sedang berada di wilayah (daerah) penelitian dan tidak menderita TB dan memenuhi kriteria inklusi. secara insidental dengan pertimbangan peneliti diambil sebagai unit sampel.

3.6 Teknik Penumpulan Data

Pengumpulan data dilakukan dengan cara wawancara menggunakan pedoman wawancara (daftar pertanyaan) dan pemeriksaan fisik guna mengetahui ada tidaknya scar Imunisasi BCG pada bagian lengan atas mereka.

Kuesioner yang digunakan sebagai pedoman wawancara adalah sebagai berikut.

- 1. Identitas responden:
- 2.. Anda didiagnosis: (1) TB atau (2) Non-TB
- 3. Jenis Kelamin: (1) Pria atau (2) Wanita
- Usia: Tahun 4.
- Pendidikan: (1) SD, (2) SLTP, (3) SLTA, (4) PT 5.
- 6. Tinggi Badan: cm
- 7. Berat Badan: kg
- 8. Penghasilan rerata per bulan: (1) \leq Rp 2,5 Juta, (2) > Rp 2,5 Juta
- 9. Punya kebiasaan merokok: (1) Ya, (2) Tidak
- 10. Apakah ada anggota keluarga serumah yang menderita TB: (1) Ada, (2) Tidak Ada
- 11. Jumlah anggota keluarga yang tinggal serumah: orang
- 12. Apakah Anda pernah melakukan Imunisasi BCG: (1) Ya ada tanda Scar di bagian lengan. (2) Tidak

3.7 Variabel

3.7.1 Jenis Variabel

• Variabel dependen: Y = Kejadian TB

Bab 3 Metode Penelitian

• Variabel Independen terdiri atas 9 variabel berikut.

X1 = Jenis kelamin

X2 = Usia

X3 = Pendidikan

X4 = Status Gizi

X5 = Status Ekonomi

X6 = Kebiasaan Merokok

X7 = Kontak Serumah

X8 = Family Size

X9 = Imunisasi BCG

3.7.2 Definisi Operasional Variabel

Y = Kejadian TB Paru

Kejadian TB adalah pasien yang didiagnosis TB, merupakan variabel katagorik nominal dengan dua katagori, yaitu:

- (1) Positif TB apabila pasien didiagnosis TB
- (2) Negatif TB apabila bukan penderita TB

X1 = Jenis Kelamin

Jenis kelamin adalah jenis kelamin responden, merupakan variabel katagorik dengan dua katagorik, yaitu

- (1) Pria
- (2) Wanita

X2 = Usia

Usia adalah usia responden pada saat pengumpulan data, merupakan variabel numerik dalam satuan tahun.

X3 = Pendidikan

Pendidikan adalah tringkat pendidikan terakhir responden. merupakan variabel katagorik nominal dengan 4 katagori, yaitu:

- (1) SD
- (2) SLTP
- (3) SLTA
- (4) PT

X4 = Status Gizi

Status gizi dihitung dari Berat Badan (BB) dalam satuan kg dan Tinggi Badan (TB) dalam satuan meter dengan formula $IMT = \frac{BB}{TB^2}$.

Status gizi merupakan variabel katagorik dengan tiga katagori, vaitu:

- (1) Gizi Buruk (kurus) apabila *IMT* < 18,49
- (2) Gizi Baik (sehat) apabila $18,50 \le IMT \le 22,99$
- (3) Gizi Lebih (gemuk) apabila $IMT \ge 23.00$

X5 = Status Ekonomi

Status ekonomi adalah kedudukan atau posisi seseorang dalam masyarakat ditinjau dari penghasilan rerata keluarga yang di diperoleh setiap bulan. Status ekonomi dikalsifikasikan menjadi dua katagori nominal, yaitu :

- (1) tidak cukup apabila rerata penghasilannya dalam satu bulan \leq Rp 2.500.000
- (2) cukup apabila rerata penghasilannya dalam satu bulan > Rp 2.500.000,-.

X6 = Kebiasaan Merokok

Kebiasaan merokok adalah seseorang yang memiliki kebiasaan merokok sehari-hari, atau pernah menjadi perokok aktif walupun selama satu tahun terakhir sudah tidak merokok aktif lagi.

Kebiasaan merokok merupakan variabel katagorik nominal dengan dua katagori, yaitu:

- (1) Ya apabila memiliki kebiasaan merokok
- (2) Tidak apabila tidak memiliki kebiasaan merokok

X7 = Kontak Serumah

Kontak serumah adalah kontak dengan penderita TB Paru yang tinggal serumah. Kontak serumah merupakan variabel katagorik nominal dengan dua katagori, yaitu

- (1) Ya apabila ada kontak dengan penderita TB Paru yang tinggal serumah
- (2) Tidak apabila tidak ada kontak dengan penderita TB Paru

X8 = Family Size

Family size atau kepadatan dalam rumah adalah ukuran besar keluarga yang diukur dari jumlah anggota keluarga yang tinggal serumah. Family size merupakan variabel katagorik nominal dengan dua katagori, yaitu:

- (1) Keluarga kecil apabila apabila jumlah anggta keluarga yang tinggal serumah ≤ 4 orang
- (2) Keluarga besar apabila apabila jumlah anggota keluarga yang tinggal serumah > 4 orang.

X9 = Imunisasi BCG

Imunisasi BCG adalah pemberian vaksin BCG (*Bacillus Calmette–Guérin*) untuk melindungi diri terhadap tuberkulosis (TB). Imunisasi BCG merupakan variabel katagorik nominal dengan dua katagorik, yaitu:

- (1) Ya apabila pernah melakukan imunisasi BCG yang ditunjukkan dengan adanya tanda scar di lengan bagian atas.
- (2) Tidak apabila belum pernah melakukan imunisasi BCG.

3.8 Pengolahan dan Analisis Data

3.8.1 Pengolahan Data

Pengolahan data dilakukan bertahap, dimulai dari input data ke komputer menggunakan bantuan program Excel, dilanjutkan dengan editing dan cleaning untuk membersihkan data dari kesalahan dengan menggunakan SPSS.

3.8.2 Analisis Data

Analisis data dilakukan secara deskriptif dan analitik (inferensial).

Analisis Deskriptif

Analisis deskriptif dilakukan untuk mengetahui gambaran penderita TB di kota Palembang baik secara univariate maupun bivariate, berdasarkan sembilan faktor risiko TB, yakni jenis kelamin, usia, pendidikan, status gizi, status ekonomi, kebiasaan merokok, kontak serumah dengan penderita TB, family size, dan imunisasi BCG.

Analisis Inferensial (Analitik)

Analisis inferensial (analitik) dilakukan untuk menganalisis faktor risiko TB baik secara parsial maupun simultan dengan menggunakan Analisis Regresi Logistik Biner.

ANALISIS DESKRIPTIF

nalisis deskriptif dilakukan untuk mengetahui gambaran penderita TB di kota Palembang berdasarkan 9 faktor risiko TB, yaitu jenis kelamin, usia, pendidikan, status gizi, status ekonomi, kebiasaan merokok, kontak serumah, family size, dan imunisasi BCG.

Analisis deskriptif pada dasarnya dilakukan untuk memberikan gambaran tentang subjek penelitian (responden) berdasarkan data tanpa bermaksud melakukan generasisai terhadap populasinya. Salah satu ciri analisis deskriptif adalah tidak melakukan uji hipotesis. Deskripsi tentang subjek penelitian dapat dilakukan secara univariate, bivariate, atau multivariate (tiga variabel).

4.1 Analisis Deskriptif Univariate

Analisis deskriptif univariate dilakukan untuk mengetahui gambaran masing-masing variabel penelitian. Variabel penelitian pada umumnya terdiri atas variabel numrik (variabel berskala interval atau rasio) dan variabel katagorik (variabel berskala ordinal atau nominal). Variabel numerik biasanya disajikan dalam bentuk tabel ukuran statistika dan variabel katagorik disajikan dalam betuk tabel distribusi frekuensi.

Tabel Statistik Berat Badan, T	Γinggi Badan, dar	ı IMT
--------------------------------	-------------------	-------

Variabel	n	Rerata	s.d.	Median	Minimum	Maksimum
Berat Badan	480	55.28	9.61	55	29	96
Tinggi Badan	480	162.50	6,47	163	146	185
IMT	480	20.88	3,10	20.94	11.62	30.48

Kejadian TB	Frekuensi	Persentase
Sampel Kasus (Penderita TB)	240	50
Sampel Kontrol (Non - TB)	240	50
Jumlah	480	100

Tabel Distribusi Responden Berdasarkan Kejadan TB

4.1.1 Tabel Distribusi Frekuensi

Tabel distribusi frekuensi secara umum berfungsi untuk mengetahui gambaran sebuah variabel sekaligus untuk mempersiapkan data tersebut pada analisis lebih lanjut. Melalui tabel distribusi frekuensi dapat diketahui apakah sebuah variabel dalam kondisi yang siap untuk dianalisis lebih lanjut atau perlu ditransformasi atau direklasifikasi sedemikian rupa sehingga lebih optimal untuk analisis selanjutnya. Tabel distribusi frekuensi juga berfungsui untuk:

- 1. Memeriksa apakah jawaban responden atas satu pertanyaan adalah konsisten dengan jawaban atas pertanyaan lainnya.
- 2. Mendapatkan deskripsi ciri responden atas dasar analisis satu variabel tertentu (*univariate analysis*)
- 3. Mempelajari distribusi frekuensi variabel
- 4. Menentukan klasifikasi atau katagori yang paling baik untuk tabulasi silang
- 5. Mengetahui sebaran data, apakah berdistribusi normal atau berdistribusi tidak normal.

Data yang baru selesai dikumpulkan biasanya disebut data mentah (*raw data*) yang belum bisa langsung dianalisis. Data tersebut perlu dibersihkan dari kesalahan yang umum terjadi, misalnya salah membaca kuesioner atau salah ketik sewaktu mengentri data ke komputer, atau lupa memberikan kode untuk data yang hilang (*missing value*).

Tabel distribusi frekuensi merupakan salah satu alat untuk melihat adanya kesalahan tersebut. Melalui tabel ditribusi frekuensi, dapat terlihat apakah sebuah variabel:

- 1. mempunyai jawaban di luar yang diperkirakan. Misal berat badan orang ditulis 750 kg. Mungkin ini terjadi karena salah ketik pada waktu mengentri data.
- 2. mempunyai jawaban yang ekstrim. Misal berat badan orang ditulis 180 kg. Mungkin saja ada orang yang berat badannya mencapai 180 kg tetapi untuk ukuran orang Indonesia angka sebesar itu tergolong ekstrim.
- 3. mempunyai nilai yang sama dengan kode missing value. Misal ada orang berusia 99 tahun. Angka 99 biasanya digunakan untuk kode jawaban "tidak tahu" dan missing value. Jika ada responden yang berusia 99 tahun, maka perlu diperiksa lagi, apakah betul demikian atau kerena lupa memberikan kode jawaban tidak tahu atau missing value.

Distribusi frekuensi sangat bermanfaat untuk menentukan bagaimana sebuah variabel perlu direklasifikasi untuk tujuan analisis tertentu. Apakah peneliti akan membaginya menjadi variabel dikotom (dua katagori) atau multikategori. Ada dua pertimbangan untuk mentransformasi variabel numerik menjadi variabel katagorik.

- 1. Pertama menurut standar yang berlaku atau melihat gambaran univariatnya. Misalnya usia dapat dikelompokkan menurut usia pendidikan, usia lima tahunan, atau kelompok usia lainnya sesuai kondisi sebaran datanya.
- 2. Kedua menuruk ukuran standar. Misalnya berat badan bayi lahir dikelompokkan menjadi dua kelompok, yaitu Rendah dan Normal. Bayi baru lahir dikatakan memiliki berat badan rendah apabila beratnya sewaktu lahir kurang dari 2500 gram. Keuntungan membagi data menurut ukuran standar adalah dapat dibandingkan dengan penelitian Kelemahannya, biasanya distribusi frekuensi pada masingmasing katagori menjadi tidak proporsional (timpang) bahkan terdapat kategori yang kosong.

Cara lain untuk membuat variabel numerik menjadi katagorik adalah dengan aturan Strurges. Kelabihan aturan Sturges adalah distribusi frekuensi responden pada masing-masing katagori menjadi lebih proporsional, tetapi kelemahannya tidak bisa

dibandingkan dengan hasil penelitian sebelumnya atau tidak sejalan dengan teori.

Dalam penelitian ilmu kedokteran, data umumnya diperoleh dari hasil pengukuran atau observasi. Data yang baru saja dikumpulkan disebut data dasar (raw data). Data tersebut biasanya diperoleh dalam bentuk yang tidak teratur atau tidak tersusun.

Misalkan kita ingin mengetahui kadar kolesterol total dari 250 responden. Data tentang kadar kolesterol total dapat disajikan dalam tabel sebagai berikut.

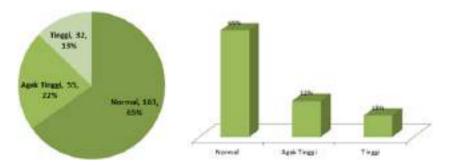
Tabel Kolesterol Total 250 Responden (Data Mentah)

	1	1	3	4	5	6	7	1	1	10	11	17	13	14	15	10	17	R	15	10	M	11	23	34	75
1	286	158	171	213	115	305	101	213	110	171	塘	181	156	134	400	171	225	1%	204	175	20	135	155	198	70
2	155	195	155	113	723	241	192	238	215	155	247	125	256	158	151	188	731	194	250	215	152	227	150	168	28
3	150	191	237	127	15	341	165	385	28	181	104	200	36	304	20	345	115	100	155	300	258	305	201	100	200
1	201	165	105	121	170	161	186	160	171	348	186	347	26	230	25	171	156	198	150	250	194	141	194	182	18
5	194	182	28	178	226	100	156	188	194	209	201	160	155	250	20	155	133	172	201	135	136	344	134	161	153
6	184	362	153	343	725	125	156	188	115	15	155	217	198	150	34	181	155	380	250	151	170	168	145	365	1E
7	149	355	23	191	100	125	26	229	40	191	20	366	171	201	185	348	155	188	115	171	228	309	400	196	138
1	400	191	184	132	250	171	127	309	137	178	257	139	20	194	100	309	Ш	19L	729	195	725	129	151	18	225
3	151	194	136	150	135	181	139	110	238	181	135	212	183	181	125	175	161	181	145	137	100	125	115	158	28
10	115	151	135	291	W	115	202	18	16	100	186	272	131	149	125	191	265	158	170	105	250	230	156	139	145

Data pada tabel ini merupakan data mentah yang belum mengalami pengelahan secara sistimatis. Penyajian data seperti ini tidak praktis dan tidak efisien serta sulit dipahami.

Penyusunan data yang paling sederhana adalah dalam bentuk tabel distribusi frekuensi. Misalkan Kolesterol Total (KT) diklasifikasi menjadi tiga katagori sebgai berikut.

- (1) normal apabila KT < 200 mg/dL;
- (2) agak tinggi apabila KT berkisar antara 200-239 mg/dL
- (3) tinggi apabila V9 > 239 mg/dL.


Kolesterol Total	frekuensi	%
Normal: < 200 mg/dL	163	65
Agak Tinggi: 200 - 239 mg/dL	55	22
Tinggi: ≥ 240 mg/dL	32	13
Jumlah	250	100

Hasil SPSS

lesti		

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	'Normal'	163	65.2	65.2	65.2
	'Agak Tinggi'	55	22.0	22.0	87.2
	'Tinggi'	32	12.8	12.8	100.0
	Total	250	100.0	100.0	

Selain disajikan dalam bentuk tabel distribusi frekuensi, analisis deskriptif univariate untuk variabel katagorik juga dapat disajikan dalam bentuk grafik (diagram). Secara visual, data pada tabel ini distribusi frekuensi di atas dapat disajikan sebagai berikut.

4.1.2 Ukuran Statistik

Ukuran statistik merupakan sebuah bilangan yang diperoleh melalui perhitungan yang menggambarkan gejala tertentu dari sekumpulan data. Ukuran statistik terdiri atas ukuran pemusatan data (measures of tendencies) dan ukuran sebaran data (measures of dispersion).

Rerata dan Median merupakan ukuran pemusatan yang sering digunakan. Rerata dan Median merupakan harga tunggal yang diharapkan dapat mewakili sekelompok data.

Misalkan dari 250 responden diketahui rerata gula darahnya adalah 135,072 mg/dL atau Median gula darah 112 mg/dL. Rerata atau Median diharapkan dapat menggambarkan kondisi gula darah dari 250 responden tersebut. Namun demikian, sampai sejauhmana harga Rerata atau Median dianggap dapat mewakili sekelompok data bergantung pada cara nilai data tersebut bervariasi. Dengan demikian, apabila kita ingin menginformasikan Rerata atau Median dari sekelompok data, hendaknya diinformasikan juga ukuran variasi atau sebaran dari data tersebut.

Tabel ukuran statistik dilakukan untuk menggambarkanukuran statistik masing-masing variabel penelitian yang berskala numerik (skala interval atau rasio). Ukuran statistik terdiri atas ukuran pemusatan data dan ukuran sebaran data. Rerata dan Median merupakan ukuran pemusatan data yang sering digunakan

Misalkan kita memiliki data gula darah dan usia dari 250 responden seperti disajikan pada tabel berikut.

		V13 = G	da Darah	V4 =	Usia
<u>L</u>		Statistic	Std. Error	Statistic	Std Error
Mean		135.072	4.672	50.928	0.813
95% Confidence Interval for Mean	Lower Bound	125.871	-	49.327	
	Upper Bound	144.273	8	52,529	1 3
5% Trimmed Mean		123.200	3	50.862	
Median		112,000	9	50,000	
Variance		5456.549		165.208	1 8
Std. Deviation		73.868	8	12.853	
Minimum		82,000		22,000	1 3
Maximum		699.000		80,000	
Range	10.	617.000	3	58,000	
Interquartile Range		37.250	9	18.250	
Skewness		4.190	0.154	0.038	0.154
Kurtosis		21.632	0.307	-0.448	0.307

Tabel Ukuran Statistik Gula Darah dan Usia 250 Responden

Secara deskriptif, masing-masing ukuran statistik pada tabel di atas dapat dijelaskan sebagai berikut.

1. *Mean* (Rerata) dihitung menggunakan seluruh data. Dengan demikian rerata sangat sensitif terhadap adanya data yang ekstrim. Karena itu rerata digunakan untuk menggambarkan kondisi populasi apabila sebaran datanya berdistribusi normal, tidak terdapat data yang ekstrim.

Penulisan rerata biasanya diikuti oleh simpangan baku. Misalkan Rerata Usia adalah ($50,928 \pm 12,853$) tahun. Artinya rerta usia responden adalah 50,928 tahun dengan simpangan baku 12,853 tahun.

Hal ini mengandung arti, bahwa apabila sebaran data berdistribusi normal, maka sekitar 68.27% data tersebar diantara rerata + satu simpangan baku; atau sekitar 95,45% data tersebar diantara rerata + dua simpangan baku; atau 99,70% data tersebar di antara rerata ± tiga simpangan baku.

2. Median merupakan ukuran rerata berdasarkan posisi atau letak data setelah data tersebut diurutkan dari yang nilainya terkecil sampai yang terbesar. Karena itu median sering disebut rerata posisi.

Median adalah bilangan yang membagi deretan data yang terurut ke dalam dua bagian yang sama banyak. Median = 112 mg/dL menunjukkan, bahwa 50% responden memiliki gula darah kurang dari 112 mg/dL atau dapat dikatakan 50% responden memiliki gula darag lebih dari 112 mg/dL.

Median digunakan untuk menggambarkan kondisi populasi apabila sebaran data berdistribusi tidak normal.

Penulisan Median biasanya diikuti dengan minimal dan maksimal. Median gula darah adalah 112 (82; 699) mg/dL; artinya Median gula darah adalah 112 mg/dL dengan kadar gula darah terendah adalah 82 mg/dL dan tertinggi adalah 699 mg/dL.

Ukuran rerata posisi lainnya adalah kuartil, desil, dan persentil. Kuartil adalah bilangan yang membagi deretan data yang terurut ke dalam empat bagian yang sama banyak. Desil adalah bilangan yang membagi deretan data yang terurut ke dalam 10 bagian yang sama banyak. Persentil adalah bilangan yang membagi deretan data yang terurut ke dalam 100 bagian yang sama banyak.

3. 95% Confidence Interval for Mean merupakan nilai taksiran rerata pada populasi. Artinya dengan $\alpha = 5\%$, maka rerata gula darah pada populasi berkisar antara 125,87 - 144,27 mg/dL. Secara sederhana dapat diartikan, apabila terdapat 100 orang, maka 95 orang diantaranya memiliki gula darah berkisar antara 125,87 – 144,27 mg/dL, dan sisanya 5 orang memiliki gula darah di luar interval angka tersebut.

95% confidence interval for mean dihitung mengunakan rumus

$$\bar{x} - zs_{\bar{x}} \le \mu \le \bar{x} - zs_{\bar{x}}$$
 atau $\bar{x} - z\frac{s}{\sqrt{n}} \le \mu \le \bar{x} - z\frac{s}{\sqrt{n}}$.
 $\mu = \text{rerata populasi dan } \bar{x} = \text{rerata sampel}$

Reara sampel akan mendekati rerata populasi $(\bar{x} \to \mu)$ apabila $z \frac{s}{\sqrt{n}} \to 0$ atau $n \to N$. Dengan demikian, apabila dikehendaki rerata sampel mendekati rerata populasi, maka jumlah unit sampel harus diperbanyak mendekati jumlah unit populasi.

4. 5% trimmed mean adalah rerata setelah data dipotong 5% dibagian atas dan 5% di bagian bawah.5% trimmed mean adalah 123,20 mg/dL, turun cukup banyak jika dibandingkan dengan rerata yang melibatkan seluruh data (135,072 mg/dL).

Hal ini menunjukkan, bahwa terdapat angka ekstrim di bagian atas, atau mengindikasikan, bahwa sebaran data gula darah berdistribusi tidak normal.

Dalam hal ini rerata gula darah 135,072 mg/dL tidak menggambarkan populasinya dengan baik.

Bandingkan juga dengan M-Estimator yang disajikan pada tabel berikut.

M-Estimators

	Huher's M .	Tukeys	Hampel's M-	Andrews:
	Esumajor	Bweight	Esomator	Wave4
'VI 3 = Gula Darah Sewaktu'	1147615	110.5572	1127230	1105676

- a. The weighting constant is 1,339.
- In The weighting constant is 4 685.
- The weighling constants are 1,700, 3,400, and 8,500
- d. The weighting constant is 1,340°p).

M-Estimator adalah estimasi rerata yang dihitung oleh Huber, Tukey, Hampel, dan Andrew berkisar antara 110 – 115 mg/dL mendekati nilai Median. Dengan demikain M-Estimator ini lebih realistis untuk menggambarkan populasinya.

5. Variansi (*variance*) dalam populasi diberi notasi σ^2 , sedangkan pada sampel diberi notasi s^2 .

Variasi sampel dihitung menggunakan rumus $s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$.

Variansi merupakan ukuran sebaran data, sampai sejauh mana data menyebar dari reratanya. Makin besar variansi makin jauh data menyebar dari reratanya. Variansi menjadi kurang bermakna karena memiliki satuan yang berbeda dengan satuan reratanya. Apabila satuan rerata usia adalah tahun, maka satuan yariansi usia adalah tahun².

6. Simpangan baku atau standar deviasi (standard deviation) pada populasi diberi notasi σ sedangkan pada sampel diberi notasi s. Simpangan baku sampel dihitung menggunakan rumus $s = \sqrt{s^2}$.

Simpangan baku merupakan ukuran sebaran data, sama maknanya dengan variansi, tetapi satuan simpangan baku sama dengan satuan reratanya. Karena itu simpangan baku lebih tepat digunakan sebagai ukuran sebaran dari rerata, terutama untuk sebaran data yang berdistribusi normal.

Makin besar simpangan baku maka keragaman data makin heterogen. Sebaliknya, makin kecil simpangan baku, maka keragaman data makin homogen. Apabila simpangan baku s = 0 berarti sekumpulan data bernilai sama (data homogen sempurna).

Simpangan baku memiliki kelemahan. Simpangan baku tidak dapat digunakan sebagai alat pembanding keragaman antar kelompok data apabila satuan pengukurannya tidak sama. Misalkan untuk menbandingkan keragaman data berat badan dan tinggi badan, maka tidak dapat digunakan simpangan baku karena berat badan dan tinggi badan memiliki satuan yang berbeda. Untuk membandingkan keragaman dua kelompok data yang memiliki satuan yang berbeda dapat digunakan ukuran sebaran data yang sifatnya relatif, yaitu ukuran penyebaran data yang tidak mempunyai satuan, antara lain koefisien variansi.

Rumus Koefisien Variansi (Coefficient of Variation) adalah sebagai berikut. $K_v = \frac{s}{\bar{s}}$

 $s = \text{simpangan baku mempunyai satuan dan } \bar{x} \text{ mempunyai}$ satuan. s dan \bar{x} mempunyai satuan yang sama. Dengan demikian koefisien variansi K_n tidak memiliki satuan.

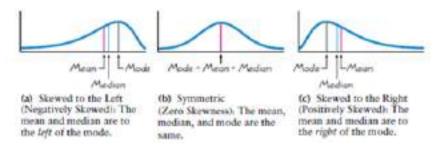
- 7. Range = maximum minimum merupakan ukuran sebaran data yang lemah dan jarang digunakan. Range = 617 mg/dL dapat berasal dari pengurangan dua angka yang beragam.
- 8. Rentang antar kuartil (interquartile range) adalah rentang antara kuartil pertama dan kuartil ketiga. Rentang antar kuartil nilainya hanya ditentukan oleh kuartil pertama dan kuartil ketiga. Karena itu ukuran ini termasuk ukuran penyebaran yang lemah.
- 9. Skewness dan kurtosis merupakan ukuran sebaran data, dan secara subjektif dapat digunakan untuk mengestimasi normalitas data. Apabila rasio skewness dan rasio kurtosis nilainya berkisar antara [-2; 2] maka dapat dikatakan data berdistribusi normal. Rasio skewness merupakan hasil bagi skewness dibagi standar error of skewness, dan rasio kurtosis merupakan hasil bagi kurtosis dibagi standar error of kurtosis.

Catatan

Apabila dari sebuah populasi diambil semua sampel berulangkali, kemudian dari setiap sampel tersebut dihitung rerata dan mediannya, maka harga median bervariasi lebih besar jika dibandingkan dengan rerata. Dengan kata lain, rerata bersifat lebih stabil jika dibandingkan dengan median atau ukuran statistik lainnya, terutama apabila sebaran data populasi berdistribusi normal. Oleh karena itu rerata lebih sering digunakan jika dibandingkan dengan median atau ukuran statistik lainnya.

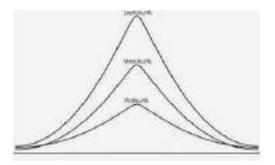
Rerata dihitung dari seluruh data. Dengan demikian rerata dipengaruhi oleh adanya data yang ekstrem, baik ekstrim di bawah maupun di atas. Hal ini merupakan kelebihan sekaligus kelemahan rerata jika dibandingkan dengan median. Oleh karena itu rerata digunakan apabila sebaran data berdistribusi normal (tidak ada data yang ekstrim), sedangkan median diginakan apabila seberan data berdistribusi tidak normal.

MODUS digunakan untuk menyatakan fenomena yang paling banyak terjadi atau paling banyak terdapat. Dengan kata lain modus adalah nilai data yang memiliki frekuensi terbanyak. Modus dari sekelompok data bisa tidak tunggal. Apabila dalam sekelompok data, semua data bernilai sama atau tidak ada yang


sama, maka kelompok data tersebut dikatakan tidak memiliki modus

Rerata, Modus, dan Median dapat digunakan untuk melihat kecenderungan normalitas sebaran data.

- Apabila Rerata, Modus, dan Median berada pada satu titik, maka dapat diduga kurva lengkungan frekuensi yang unimodal akan simetris dan sebaran data berdistribusi normal.
- Apabila Rerata, Modus, dan Median tidak berada pada satu titik, maka kuva lengkungan frekuensi tidak semetris (asimetris), kurva bisa miring ke kiri atau ke kanan.


Skewness merupakan ukuran kemiringan kurva distribusi normal (kurva normal) dan Kurtosis merupakan ukuran keruncingan atau kelandaian kurva normal. Skewness dan Kurtosis dapat digunakan untuk mengetahuinormalitas sebaran data. Secara empiris, apabila nilai koefisien skewness dan koefisien kurtosis berkisar antara [-2 ; 2] maka diperkirakan sebaran data berdistribusi normal.

Terdapat tiga model kecondongan lengkungan kurva normal. vaitu model positif, negatif, dan simetris, seperti diperlihatkan pada gambar berikut.

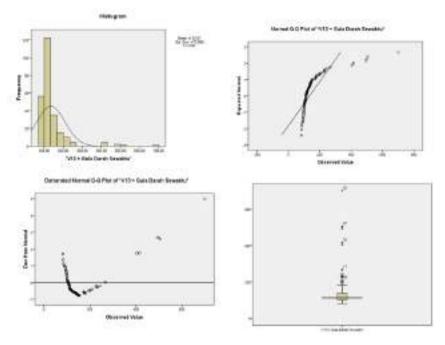
Tingkat keruncingan atau kelandaian kurva normal diukur dengan membandingkan bentuk keruncingan kurva distribusi data dengan kurva normal. Terdapat tiga model keruncingn kurva normal, vaitu model Leptokurtic, Platykurtic, dan Mesokurtic seperti diperlihatkan pada gambar berikut.

Bab 4 Analisis deskriptif

4.1.3 Uji Normalitas Sebaran Data

Uji normalitas sebaran data dapat dilakukan dengan dua cara, yaitu cara subjektif dan analitik.

Uji normalitas secara subyektif dapat ditentukan menggunakan salah satu ukuran statistik berikut.

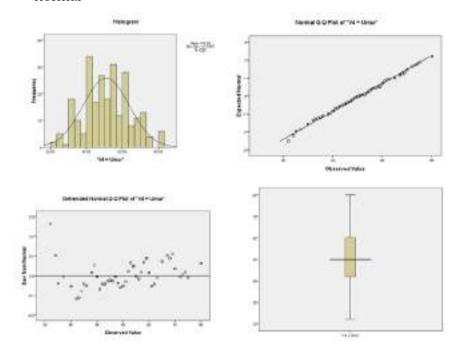

- 1. Koefisien variansi < 30%
- 2. Rasio skewness dan rasio kurtosis: [-2, 2]
- 3. Histogram frekuensi simetris;
- 4. Diagram normal Q-Q plot: menyebar sekitar garis diagonal;
- 5. Diagram detrented normal Q-Q plot : menyebar sekitar garis pada nilai Nol;
- 6. Diagram *box plot* (simetris, median tepat ditengah, tdk ada titik data *outlier*)

Tabel Ukuran Statistik Gula Darah dan Usia 250 Responden

/	1	V13 = G	da Darah	V4=	Usia
5		Statistic	Std Error	Statistic	Std Error
Mean		135.072	4.672	50.928	0.813
95% Confidence Interval for Mean	Lower Bound	125.871		49.327	
	Upper Bound	144.273		52,529	1 3
5% Trimmed Mean		123.200	((50.862	
Median		112,000	8	50,000	1 8
Variance		5456.549		165,208	Ji B
Std. Deviation		73.868	8	12.853	
Minimum		82,000	3	22,000	T
Maximum		699,000		80,000	
Range	17.	617:000	3	58,000	
Interquartile Range		37.250	1	18.250	
Skewness		4.190	0.154	0.038	0.154
Kurtosis	1	21.632	0.307	-0.448	0.307

Perhatikan Data Gula Darah

- 1. Koefisien variansi = $\frac{s}{\bar{x}} = \frac{73,87}{135,07} = 55\% > 30\%$ berarti sebaran data berdistribusi tidak normal
- 2. Rasio Skweness = $\frac{4,190}{0.154}$ = 27,21 \notin [-2, 2] dan Rasio Kurtosis = $\frac{21,632}{0.307} = 70,46 \notin [-2, 2]$ berarti sebaran data berdistribusi tidak normal


Gambar Sebaran Data Gula Darah

- 3. Histogram frekuensi tidak simetris, berarti sebaran data berdistribusi tidak normal
- 4. Pada diagram normal Q-Q plot, titik-titik data tidak menyebar di sekitar garis diagonal, beberapa titik terletak jauh dari garis diagonal, berarti sebaran data berdistribusi tidak normal
- 5. Pada diagram detrented normal Q-Q plot, titik-titik data tidak menyebar di sekitar garis horizontal (pada garis nol) yang berarti sebaran data berdistribusi tidak normal

6. Pada diagram *box plot*, banyak titik yang ekstrim di bagian atas, hal ini mengindikasikan sebaran data berdistribusi tidak normal

Perhatikan Data Usia

- 1. Koefisien variansi = $\frac{s}{\bar{x}} = \frac{12,853}{50,928} = 25\% < 30\%$ berarti sebaran data berdistribusi normal
- 2. Rasio *Skweness* = $\frac{0,038}{0,154}$ = 0,246 \in [-2, 2] dan Rasio *Kurtosis* = $\frac{-0,448}{0,307}$ = -1,46 \in [-2, 2] berarti sebaran data berdistribusi normal

Gambar Sebaran Data Usia

- 3. Histogram frekuensi simetris, berarti sebaran data berdistribusi normal
- 4. Pada diagram normal Q-Q plot, titik-titik data menyebar di sekitar garis diagonal, berarti sebaran data berdistribusi normal

- 5. Pada diagram detrented normal Q-Q plot, titik-titik data menyebar di sekitar garis horizontal (pada garis nol) yang berarti sebaran data berdistribusi normal
- 6. Pada diagram box plot, tidak terdapat titik yang ekstrim, yang berarti sebaran data berdistribusi normal

Uji normalitas secara analitik dapat dilakukan menggunakan statistik Kolmogorov-Smirnov atau Shapiro Wilk. Kolmogorov-Smirnov digunakan pada sampel besar, sedangkan Shapiro Wilk digunakan pada sampel kecil. beberapa buku menyebutkan sampel besar apabila jumlah unit sampel lebih dari 30, sementara buku lainya menyebutkan jumlah unit sampel lebih dari 50.

Bentuk Hipotesis

 H_0 : sebaran data berdistribusi normal

 H_1 : sebaran data berdistribusi tidak normal

Kriteria Uji : Tolak H_0 apabila $p_{value} < \alpha = 5\%$

Pengolahan data menggunakan SPSS menghasilkan tabel berikut.

	Kolm	ogorov Smil	inar+	Shapiro-Wilk				
	Statistic	đf	Skq	Statistic	đf	Skq		
'013 - Oula Darah Sewaktu'	263	250	000	536	250	000		
N4 = Umur'	046	250	200"	990	250	074		

a Latiefors Significance Conjection

Hasil Uji

 $p_{value} = 0.000 < \alpha(5\%).$ Pada variabel gula darah, nilai Hipotesis H_0 ditolak yang berarti sebaran data gula darah berdistribusi tidak normal

Pada variabel usia, nilai $p_{value} = 0.200 > \alpha(5\%)$. Hipotesis H_0 yang berarti sebaran data gula darah berdistribusi diterima normal

This is a lower bound of the hue significance.

4.2 Analisis Deskriptif Bivariate

Analisis deskriptif bivariate dilakukan untuk mengetahui distribusi frekuensi berdasarkan dua variabel katagorik yang disajikan dalam tabel silang atau tabel baris kolom. Variabel yang diletakkan di kolom pada umumnya adalah variabel dependen, sedangkan yang diletakkan di baris adalah variabel independen.

Status Gizi	ТВ		
Status Gizi	Positif	Negatif	Jumlah
Gizi Kurang (Kurus)	78.6%	21.4%	98
Gizi baik (Sehat)	48.4%	51.6%	273
Gizi Lebih (Gemuk)	28.4%	71.6%	109

Tabel Kejadian TB Menurut Status Gizi

HASIL SPSS

M4 - 2000 - 0 - Velence in Long racoconstruction						
			У : Иејаскав ТВ Раш			
			Nor T8 Paro	T8 P≥u	Total	
X4 = Slalus Occ	Gel Buruk) Kurus	Count	31	77	98	
		% wjmn xa = \$jalys ()@	21.1%	79.6%	100.0%	
		% wijhin 7 : Kejadian 18 Paru	88%	32 1%	20.4%	
	Sehal / Normal	Court	141	132	270	
		% withness = Slaus Om	516%	48.4%	100.0%	
		% without a Kajadian TB Paru	588%	56 D%	56.0%	
	Gel Lebih (Gemuk	Count	78	31	109	
		% withn 24 = Status Ger	71.6%	28.4%	100.0%	
		% wijtin Y tikejagian T9 Paru	12.5%	12.9%	72.7%	
Total		Count	240	24.0	480	
		% within %4 = Status OES	500%	50 0%	100.0%	
		% without • Kejadian TB Parti	100.0%	100.0%	100.0%	

X4 = Status Gizi "Y = Kejadian TB Paru Gresstabulatum

Beberapa butir penting yang harus diperhatikan dalam membuat tabel silang antara lain sebagai berikut.

- 1. Variabel dependen (Kejadian TB) ditempatkan di kolom sementara variabel independen (Status Gizi) diletakkan di baris.
- 2. Fokus pembahasan adalah pada responden yang menderita TB dengan status gizi kurang, oleh karena itu untuk meningkatkan

keterbacaan, status gizi kurang ditempatkan pada baris pertama dan positif TB ditempatkan pada kolom pertama

- 3. Karena tujuan penelitian adalah untuk membandingkan angka persentase kejadian positif TB pada kelompok gizi kurang dan gizi sehat, maka dipilih row percentages (jumlah 100% ditempatkan pada baris).
- 4. Kolom positif TB dan negatif TB ditulis dalam angka persentase (%) sedangkan kolom jumlah ditulis dalam angka absolut (n), karena tujuan analisis adalah untuk membandingkan kejadian TB pada kelompok gizi kurang dan gizi sehat.
- 5. Analisis lebih lanjut untuk mengetahui signifikansi perbedaan risiko kelompok gizi kurang dan gizi seat akan menderita TB dapat dilakukan menggunakan analisis regresi logistik biner.

4.3 Analisis Deskriptif Threevariate

Analisis deskriptif threevariate atau analisis deskriptif tiga variabel dilakukan untuk menyajikan data dari tiga variabel, yang terdiri atas satu variabel numerik dan dua variabelk katagorik dalam bentuk tabel silang. Tabel ini bertujuan untuk mengetahui ukuran statistik (rerata) berdasarkan dua variabel katagorik.

Misalkan penelitian bertujuan untuk mengetahui rerata tekanan darah sistolik berdasarkan jenis kelamin dan obesitas.

Jenis Kelamin	(Obesitas		-Obesitas
Jenis Kelaniin	n Rerara Sistolik		n	Rerara Sistolik
Wanita	37	153.46	94	139.32
Pria	47	153.36	72	142.24

Tabel Rerata Sistolik menurut Jenis Kelamin dan Obesitas

Tabel ini bertujuan untuk membandingkan rerata tekanan darah sistolik menurut jenis kelamin dan obesitas secara deskriptif.

Tekanan darah sistolik pada kelompok obesitas cenderung lebih tinggi jika dibandingkan dengan kelompok non-obesitas baik pada Wanita maupun pada Pria. Pada kelompok obesitas, rerata tekanan darah sistolik pada Pria adalah 153,36 mmHg sedangkan pada Wanita 153,46 mmHg. Pada kelompok non-obesitas, tekanan

Bab 4 Analisis deskriptif

darah sistolik Pria 142,24 mmHg sedangkan pada Wanita 139,32 mmHg

Langkah pengolahan data menggunakan SPSS adalah sebagai berikut.

- Analyze, Table, Costum Tables
- Drug Kejadian Obesitas pada Kolom
- Drug Usia Pada Baris
- Drug Tekanan Darah Sistolik pada kolom di bawah Obesitas
- Klik Summary Statistics, pilih Count dan Mean

HASIL SPSS

Table 1

		'OBESITAS'			
			'Non-Obesitas'		siats'
		'V7 = Sistolik' 'V7 = Sistolik'		istolik'	
		Count	Mean	Count	Mean
'V2 = Jenis Kelamin'	'Wanita'	94	139.32	37	153.46
	'Pria'	72	142.24	47	153.36

BAB 5

GAMBARAN PENDERITA TB

ambaran penderita TB di kota Palembang meliputi sembilan variabel faktor risiko TB, yaitu jenis kelamin, usia, pendidikan, status gizi, status ekonomi, kebiasaan merokok, kontak serumah, family size, dan imunisasi BCG.

Penelitian menggunakan desain studi kasus-kontrol dengan besar kasus dan sampel kontrol masing-masing sebesar 240 orang. Sampel kasus adalah penderita TB yang berobat di pusat layanan kesehatan (puskesmas dan rumah sakit) di kota Palembang, sedangkan sampel-kontrol adalah masyarakat yang sehat yang sedang berada di wilayah penelitian, yaitu pusat layanan kesehatan di kota Palembang dengan memperhatikan jenis kelamin dan usia.

Tabel Distribusi Responden Berdasarkan Kejadan TB

Kejadian TB	Frekuensi	Persentase
Sampel Kasus (Penderita TB)	240	50
Sampel Kontrol (Non - TB)	240	50
Jumlah	480	100

Hasil SPSS

Frequencies variables=y

/order=analysis.

Y = Keiadian TB Paru

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Non TB Paru	240	50.0	50.0	50.0
	TB Paru	240	50.0	50.0	100.0
	Total	480	100.0	100.0	

5.1 Jenis Kelamin

Responden berjumlah 480 orang, terdiri terdiri atas 260 pria (54,2%) dengan penderita TB berjumlah 156 orang (60%) dan 220 wanita (45,8%) dengan penderita TB berjumlah 84 orang (38,2%).

Data ini menunjukkan bahwa pria berpeluang menderita TB lebih tinggi jika dibandingkan dengan wanita. Pria berpeluang 60% menderita TB sedangkan wanita berpeluang 38,2% berpeluang menderita TB.

Tabel Kejadian TB Berdasarkan Jenis Kelamin

Jenis Kelamin		Kejadian TB			
	Positif	Negatif	Jumlah		
Pria	60.0%	40.0%	260		
Wanita	38.2%	61.8%	220		

SINTAX SPSS

Crosstabs

/tables=x1 by y

/format=avalue tables

/cells=count row

/count round cell.

HASIL SPSS

kus – Jerus Kasamia IIV – sčejaniau TB Paru Cressianusanom

			Y • Mgadian TS Paru		
			ПонТВ Рани	TBPanu	Total
At = Jans Pelanin	Pua	Count	104	156	260
		% with 31 = Jens Pelann	40.0%	80.0%	100.0%
		5; within Y = Mejadian TB Panj	43.3%	65.0%	54.3%
	Vanta	(your)	1,16	84	2.70
		% with 31 = Jens Pelann	61.8%	39.2%	100.0%
		% within Y = Mejodian TB Panj	56.7%	35.0%	15.8%
Total		Count	240	240	480
		Swipin killo Jens kelamin	50.0%	50.0%	100.0%
		% within Y = Nerathan TB Paru	100.0%	100.0%	100.0%

5.2 Usia

Responden rerata berusia adalah 43,33 tahun dengan usia termuda adalah 16 tahun dan usia tertua adalah 79 tahun. TB paling banyak terjadi pada responden berusia 35 – 39 tahun, yaitu sebanyak 70,0%. Selanjutnya penderita TB pada kelompok usia 30 - 34 tahun berjumlah 61.5%, pada kelompok usia 45 - 49 tahun sebanyak 61,2%, pada kelompok usia 60 - 64 dan 70 - 74 tahun masing-masing sebanyak 57,1%; dan kelompok usia 65 - 69 sebanyak 55,0%. Data ini menunjukkan, bahwa penderita TB di kota Palembang menyebar secara proporsional pada setiap kelompok usia.

Ileie		ТВ				
Usia	Positif	Negatif	Jumlah			
< 20 th	39.1%	60.9%	23			
20 - 24 th	47.4%	52.6%	57			
25 - 29 th	43.2%	56.8%	37			
30 - 34 th	61.5%	38.5%	52			
35 - 39 th	70.0%	30.0%	40			
40 - 44 th	44.2%	55.8%	43			
45 - 49 th	61.2%	38.8%	49			
50 - 54 th	37.1%	62.9%	35			
55 - 59 th	36.5%	63.5%	52			
60 - 64 th	57.1%	42.9%	42			
65 - 69 th	55.0%	45.0%	20			
70 - 74 th	57.1%	42.9%	14			
75 - 79 th	25.0%	75.0%	16			

Tabel Kejadian TB Berdasarkan kelompok Umur

SINTAX SPSS

compute X2B = X2.

variable label x2b 'X2b = kelompok Usia'.

recode x2b

(lo thru 19 = 1)

(20 thru 24 = 2)

(25 thru 29 = 3)

Bab 5 Gambaran Penderita TB

- (30 thru 34 = 4)
- (35 thru 39 = 5)
- (40 thru 44 = 6)
- (45 thru 49 = 7)
- (50 thru 54 = 8)
- (55 thru 59 = 9)
- (60 thru 64 = 10)
- (65 thru 69 = 11)
- (70 thru 74 = 12)
- (75 thru 79 = 13).
- value label x2b
- 1 '< 20 tahun'
- 2 '20 24 tahun'
- 3 '25 29 tahun'
- 4 '30 34 tahun'
- 5 '35 39 tahun'
- 6 '40 44 tahun'
- 7 '45 49 tahun'
- 8 '50 54 tahun'
- 9 '55 59 tahun'
- 10 '60 64 thun'
- 11 '65 69 thun'
- 12 '70 74 tahun'
- 13 '75 79 tahun'.

Crosstabs

/tables=x2b by y

/format=avalue tables

/cells=count row

/count round cell.

48 E. Roflin, I. A. Liberty, Pariyana, M. Reagan, & H. M. Uli

HASIL SPSS

X2h - Helompok Usra "Y - Kepallan IB Paru Crossiakulalle

			Y = Ivepadran	TB Paru	
			Non TB Pam	T9 Parti	Topa
X2h o kelampak Usia	4 30 tahun	Count	14	9	23
		% within kids = Peterspek. Uses	60.9%	39.1%	100.0%
	20 - 24 faticar	Cour	30	27	57
		% within <3b = Felompok Usia	526%	47.4%	100.0%
	35 - 29 lahun	Cauni	21	16	37
		5, wijhin 73h = kelompok Usia	568%	43.2%	1000%
	30 - 34 Jahrun	Count	20	72	53
		55 wijhin 73h = kelompok Usa)8 5%	61 5%	100 0%
	35 · 39 Jahum	Count	12	28	10
		5, wijinn > }h = kelompok Usa	30.0%	70.0%	100 0%
	40 - 44 (90cm	(OurM	24	19	13
		% within k3b = Peterbjok Usa	55.8%	44 2%	100.0%
	45 - 49 lälkur	Coma	19	30	49
		5; wijhin 23h = kelompok Usia	188%	61.2%	100.0%
	50 - 54 Jahren	Count	22	1.3	35
		5, wijinn > }h = kelompok Usu	629%	37 1%	100 0%
	55 - 59 (artin	(OurM	33	19	52
		% within k3b = Peterbjok Usa	63.5%	36 5%	100.0%
	60 - 84 lanuar	Coma	18	24	42
		% within k 30 = Perompok Usas	129%	57.1%	100.0%
	65 - 89 lanuar	Coma	9	- 11	20
		% within X3b = kelompok Usra	160%	55.0%	100.0%
	70 - 74 lahun	Court	6	8	14
		% wijhin ≯3h = kelompok U\$is	129%	57.1%	1000%
	75 - 79 lahun	Count	13	4	18
		% wijhin 73h = kelompok Usia	750%	25.0%	100 0%
Total		Count	240	240	490
		% within X2b = Felompok Osia	500%	50.0%	1000%

5.3 Pendidikan

Responden berpendidikan tamat Sekolah Dasar (SD) berjumlah 90 orang (18,8%) dengan jumlah penderita TB sebanyak 54 orang (60,0%). Responden berpendidikan tamat Sekolah Menengah Pertama (SMP) sederajat berjumlah 103 orang (21,5%) dengan jumlah penderita TB sebanyak 41 orang (39,8%). Responden

berpendidikan tamat Sekolah Menengah Atas (SMA) sederajat berjumlah 178 orang (37,1%) dengan jumlah penderita TB sebanyak 97 orang (54,5%). Responden berpendidikan Perguruan Tinggi (PT) berjumlah 109 orang (22,7%) dengan jumlah penderita TB sebanyak 48 orang (44,0%).

Data ini menunjukkan, bahwa responden berpendidikan SD berpeluang paling tinggi menderita TB jika dibandingkan dengan tingkat pendidikan yang lebih tinggi. Responden berpendidikan SD berpeluang 60% menderita TB, berpendidikan SLTP berpeluang 39.8%, berpendidikan SLTA berpeluang 54.5%, dan berpendidikan PT berpeluang sebesar 44.0%.

Pendidikan	ТВ		
	Positif	Negatif	Jumlah
SD	60.0%	40.0%	90
SMP Sederajat	39.8%	60.2%	103
SMA sederajat	54.5%	45.5%	178
PT	44.0%	56.0%	109

Tabel Kejadian TB Berdasarkan Pendidikan

SINTAX SPSS

Compute x3b = x3.

Variable Label x3b 'X3b = Pendidikan'.

Recode x3b

(1 = 1)(2 = 2)(3 = 3)(4 5 6 = 4).

Value label x3b

1 'SD'

2 'SLTP'

3 'SLTA'

4 'PT'.

Crosstabs

/tables=x3b by v

/format=avalue tables

/cells=count row column

/count round cell.

HASIL SPSS

			Y= Kejadian	TB Palu	
			Non TB Paiu	TBParu	Total
43b = Pendidikan	SD	Count	36	3	90
		% within X3b = Pendidikan	40 0%	60.0%	100.0%
		% wildin Y = Yejadian TB Paru	15.0%	22.6%	19.8%
	SLTP	Cortal	62	41	103
		% within XIb = Pendidikan	60.2%	39.8%	100.0%
		% w@ijn Y = Kejadian TB Paru	25.8%	17.1%	21.5%
	SLTA	Corta	91	97	179
		% wilde XIIb = Pendidikan	49 5%	54 5%	100.0%
		% within Y = Kejantan TB Paru	3) 8%	40.4%	37,1%
	PΤ	Count	G1	48	109
		% wijijn KJb = Pendidikan	56 D%	44.0%	100.0%
		% wataja Y± Kejarian TB Paru	25 aw	20.0%	22,7%
Total		Count	240	240	480
		% w@i[nX]h = Pendidikan	50.0%	500%	100.0%
		% within Y = Kejarkan TB Paru	100.0%	1000%	100.0%

XSb - Pendidikan "Y - Kejadian TB Pare Cressiabulation

5.4 Status Gizi

Status gizi adalah suatu ukuran mengenai kondisi tubuh seseorang yang dapat dilihat dari makanan yang dikonsumsi dan penggunaan zat-zat gizi di dalam tubuh (Almatsier, 2010). Cara menentukan status gizi seseorang antara lain dengan melakukan penilaian status gizi secara langsung, yaitu dengan antropometri.

Antropometri sebagai salah satu indikator status gizi dapat dilakukan dengan mengukur beberapa parameter, antara lain berat badan dan tinggi badan.

Responden memiliki rerata berat badan 55,28 kg dengan berat badan terendah 29 kg dan tertinggi 96 kg; dan memiliki rerata tinggi badan 162,50 cm dengan tinggi badan terendah 146 cm dan tertinggi 185 cm.

Variabel	n	Rerata	s.d.	Median	Minimum	Maksimum
Berat Badan	480	55.28	9.61	55	29	96
Tinggi Badan	480	162.50	6,47	163	146	185
IMT	480	20.88	3.10	20.94	11.62	30.48

Tabel Statistik Berat Badan, Tinggi Badan, dan IMT

Berat badan dan tinggi badan digunakan sebagai dasar untuk mengetahui status gizi. Status gizi secara antropometri dihitung menggunakan rumus berikut.

$$IMT = \frac{BB}{(TB)^2}$$

dengan

- BB adalah berat badan dalam satuan kilogram
- TB adalah tinggi badan dalam satuan meter

Status gizi diklasifikasi dalam tiga katagori sebagai berikut.

- (1) Gizi Kurang (kurus) apabila *IMT* < 18,49
- (2) Gizi Sehat apabila $18,50 \le IMT \le 22,99$
- (3) Gizi Lebih (gemuk) apabila $IMT \ge 23,00$

Berdasarkan klasifikasi tersebut, diketahui responden berstatus gizi kurang (kurus) berjumlah 98 orang (20,4%) dengan jumlah penderita TB sebanyak 77 orang (78,6%). Responden berstatus gizi sehat berjumlah 273 orang (56,9%) dengan jumlah penderita TB sebanyak 132 orang (48,4%), Responden berstatus gizi lebih (gemuk) berjumlah 109 orang dengan jumlah penderita TB sebanyak 31 orang (28,4%).

Data ini menjunjukkan, bahwa responden dengan gizi kurang (kurus) bepeluang paling tinggi menderita TB jika dibandingkan responden dengan status gizi sehat atau gizi lebih. Makin kurus makin besar risiko menderita TB

Besarnya responden berstatus gizi kurang menderita TB adalah 78,6%, sedangkan responden yang berstatus gizi sehat sebesar 48,4%, dan yang berstatus gizi lebih sebesar 28,4%.

Tabel: Kejadian TB Menurut Status Gizi

Chabus Ciai	TB			
Status Gizi	Positif	Negatif	Jumlah	
Gizi Kurang (Kurus)	78.6%	21.4%	98	
Gizi baik (Sehat)	48.4%	51.6%	273	
Gizi Lebih (Gemuk)	28.4%	71.6%	109	

SINTAX SPSS

Compute IMT = BB/(TB/100)**2.

Variable label IMT 'IMT = Indeks Massa Tubuh'.

Compute x4 = IMT.

Variable Label x4'X4 = Status Gizi'.

Recode x4

(lo thru 18.49 = 1)

(18.50 thru 22.99 = 2)

(23.00 thru hi = 3).

Value label x4

1 'Gizi Kurang / Kurus'

2 'Gizi Sehat / Normal'

3 'Gizi Lebih / Gemuk'.

Crosstabs

/tables=x4 by y

/format=avalue tables

/cells=count row column

/count round cell.

HASIL SPSS

			Y : Pejackan	TB Paul	
			Nor T8 Paro	TB Pau	Total
X4 = Sialus Gra	Gel Buruk) Kurus	Count	31	77	98
		% wijno xa = Sjans ()@	21.1%	79.6%	100.0%
		% wijhin 7 : Pejadian 18 Paru	88%	32 1%	20.4%
	Sehal / Normal	Court	141	132	271
		% withn X4 = Slaus O@	516%	48.4%	100.0%
		% withorr = Nejadian TB Paru	588%	56 D%	56.0%
	Gel Lebih (Gemuk	Count	78	31	109
		% withn 24 = Status Ger	716%	28.4%	100.0%
		% wijtin Y± kejagian T9 Paru	12.5%	12.9%	23.7%
Total		Count	240	24.0	480
		% wilkin ¼4 = Slalus O⊠	500%	50.0%	100.0%
		% withor + Nejadian TB Paru	100.0%	100.0%	100.0%

X4 = Status Gizi ' Y = Keledian TB Paru Gresstabulatum

5.5 Status Ekonomi

Status ekonomi adalah kedudukan atau posisi seseorang dalam masyarakat ditinjau dari penghasilan rerata yang diperoleh setiap bulan. Status ekonomi diklasifikasikan menjadi dua katagori, yaitu (1) tidak cukup apabila rerata penghasilannya dalam satu bulan \leq Rp 2.500.000 dan (2) cukup apabila rerata penghasilannya dalam satu bulan > Rp 2.500.000,-.

Responden yang tergolong berpenghasilan tidak cukup berjumlah 266 orang (55,4%) dengan jumlah penderita TB sebanyak 123 orang (46,2%) dan responden yang berpenghasilan cukup berjumlah 214 orang (44,6%) dengan jumlah penderita TB sebanyak 117 orang (54,7%).

Data ini menunjukkan, bahwa responden berpenghasilan cukup lebih berpeluang menderita TB jika dibandingkan dengan responden berpenghasilan kurang cukup. Tetapi apabila dilihat berdasarkan jenis kelamin, maka pria yang berpengsilan tidak cukup lebih besar peluangnya akan menderita TB jika dibandingkan dengan wanita yang berpenghasilan tidak cukup.

Pria yang berpenghasilan tidak cukup berpeluang menderita TB sebesar 60,6% sedangkan wanita yang berpenghasilan tidak cukup berpeluang menderita TB sebesar 29,8%.

Tabel Kejadian TB Menurut Status Ekonomi

Status Ekonomi	Kejadian TB			
Status Ekonomi	Ya	Tidak	Jumlah	
Tidak Cukup ≤ Rp 2.500.000 per bulan	46.2%	53.8%	266	
Cukup > Rp 2.500.000 per bulan	54.7%	45.3%	214	
PRIA				
Tidak Cukup ≤ Rp 2.500.000 per bulan	60.6%	39.4%	142	
Cukup > Rp 2.500.000 per bulan	59.3%	40.7%	118	
WANITA				
Tidak Cukup ≤ Rp 2.500.000 per bulan	29.8%	70.2%	124	
Cukup > Rp 2.500.000 per bulan	49.0%	51.0%	96	

SINTAX SPSS

Crosstabs

/tables=x5 by y

/format=avalue tables

/cells=count row column

/count round cell.

HASIL SPSS

X5 - States Excitetio "Y - Reportar IB Pare Cressianuaries

			Y = Iveragran	TB Faru	
			Non TS Paul	TBPany	Tolal
75 = Slatus Ekonomi	Tidak Çirkiya	Count	143	127	286
		% within 25 : 5(a)), s Ekonomi	500m	46.7%	100 0%
		% wilter ∀ :: Vejarlan TB Pam	597%	71.3%	55.4%
	CORED	C0014	97	110	214
		% water %5 • Slak.4 Ekonomi	453%	14.7%	100.0%
		'A within's Historia an TD Paru	40.4%	48.8%	44.6%
Total		Count	340	240	180
		% waren 46 - SIDNA Ekonomi	20 1%	50.0%	1000%
		% water Y = Neiad an TB Paru	100.3%	1000%	100.0%

SINTAX SPSS

Crosstabs

/tables=x5 by y by x1

/format=avalue tables

/cells=count row column

/count round cell.

HASIL SPSS

				7 - I statiat		
						_
	6 / 89 K K K			Nan Hiji kwiii	le kan	1974
P:=	-5 - Slatus C-urum	Tidal Cukua	CAIT	26	t b	143
			3, wale >) = (3.0) /s Potrati	3)4%	60.6%	100.0%
			% within vio Mejadan TE Maru	5) 6%	2010	94.6%
		(das	Charl	48	70	111
			Rwdie konstalis Biorom	4)7%	59.3%	100.0%
			ң көпе үнт құзыз ТҚ Раш	46.2%	119%	45,456
	"plat		Coort	1174	156	261
			5; within 75 c (Joh) 5 Evangers	4)0%	600%	·000
			5. wdrs: 7 - Rojedan TC Pyro	10)0%	1000%	100,0%
Wards	:5 • Slawa E-oron (Traff Cakas	Court	14	:7	1)4
			t ware kā s Slaus Express	702%	3960	100.0%
			% within √ a Mejawkan TE Panu	64.0%	40.0%	56.4%
		ri lera	Calc	15	47	- 25
			5. within 105 h Status Evangers	51.0%	490%	100.0%
			Rwdie Yellojada TE Prin	25.0%	56 DA	40.6%
	"(dal		(wit	1.0	ę.i	201
			Rendu >5 - Slatys Formeri	61.6%	38.7%	100.0%
			5 within Vic Mejodon TF Paru	10)0%	1000%	000%

AS - States Bacherel "Y - Ratadan IB Pare " k1 - Jenis Rasania Cressantia con

5.6 Kebiasaan Merokok

Rokok adalah lintingan atau gulungan tembakau yang digulung dan dibungkus dengan kertas, daun, atau kulit jagung, sebesar kelingking dengan panjang 8-10cm, dan biasanya dihisap seseorang setelah dibakar ujungnya. Rokok termasuk zat adiktif karena dapat menyebabkan adiksi (ketagihan) dan dependensi (ketergantungan) bagi orang yang menghisapnya. Dengan kata lain, rokok termasuk golongan NAPZA (Narkotika, Psikotropika, Alkohol, dan Zat Adiktif).

Pada penelitian ini, yang dimaksud kebiasaan merokok adalah perokok aktif, yaitu seseorang yang memiliki kebiasaan merokok sehari-hari, atau pernah menjadi perokok aktif walupun selama satu tahun terakhir sudah tidak merokok aktif lagi.

Responden yang memiliki kebiasaan merokok berjumlah 150 orang (33,1%) dan seluruhnya adalah pria, tidak terdapat respon-

den wanita yang perokok aktif. Dari 159 pria perokok aktif terdapat 109 orang (68,6%) yang didiagnosis menderita TB.

Data ini menunjukkan, bahwa pria perokok berpeluang lebih besar menderita TB jika dibandingkan dengan pria non-perokok. Besarnya peluang pria perokok menderita TB adalah 68,6% sedangkan pria non-perokok berpeluang menderita TB sebesar 46.5%.

Tabel Kejadian TB Menurut Kebiasaan Merokok pada Pria

Kebiasaan Merokok	ТВ			
Rediasaan Merokok	Positif	Negatif	Jumlah	
Pria Perokok Aktif	68.6%	31.4%	159	
Pria Non Perokok Aktif	46.5%	53.5%	101	

SINTAX SPSS

Use all.

Compute filter =(x1=1).

Variable label filter $x_1 = 1$ (filter)'.

Value labels filter \$ 0 'not selected' 1 'selected'.

Format filter \$ (f1.0).

Filter by filter \$.

Execute.

Crosstabs

/tables=x6 by y

/format=avalue tables

/cells=count row column

/count round cell.

HASIL SPSS

RE-INCOME IN THE TOTAL CONTRACTOR						
			у - Корован ТС Расо			
			You TB Party	TBPatt	Tojal	
105 – Liebias aan Maio-ok	Farekal	Count	50	103	154	
		% water×6 = √abrasilan Maraka	3, 14	68.6%	1000%	
		% water Y = I-ejadianTB Paru	481%	60.0%	617%	
	Eukan Faraksk	Craid	72	3/	Lül	
		% within kit o Ketuasaan. Nemikak	505%	46.5%	1100%	
		% with Y = kejadianTB Pain	51.9%	30.1%	78.8%	
logi		'-00M	101	157	260	
		% water >6 = √etracular Moroece	40.0%	60.0%	1000%	
		% water Y = I-gradianTB Paru	100.0%	100.0%	1000%	

kiš – Kelmas aan Merenan, 1 Y – Kapaman IB Paris Cressmalmanian

5.7 Kontak Serumah

Kontak serumah adalah kontak dengan penderita TB yang tinggal serumah dengan responden. Responden yang tinggal serumah dengan penderita TB berjumlah 59 orang (12,3%) dengan jumlah penderita TB sebanyak 56 orang (94,9%); dan responden yang tidak dengan penderita TB berjumlah 421 orang (87,7%) dengan jumlah penderita TB sebanyak 184 orang (43,7%).

Data ini menunjukkan, bahwa responden yang tinggal serumah dengan penderita TB berpeluang lebih besar menderita TB jika dibandingkan dengan responden yang tidak tinggal serumah dengan penderita TB. Besarnya peluang responden yang tinggal serumah dengan penderita TB adalah 94,9% sedangkan responden yang tidak tinggal serumah dengan penderita TB berpeluang menderita TB sebesar 43,7%.

ita TB sebesar 43,7%.		-	-
Tabel Kejadian TB N	l enurut i	Kontak Seru	mah

Kontak Serumah	ТВ			
Kontak seruman	Positif	Negatif	Jumlah	
Positif (ada Kontak)	94.9%	5.1%	59	
Negatif (Tidak Ada Kontak)	43.7%	56.3%	421	

SINTAK SPSS

Crosstabs

/tables=x7 by y

/format=avalue tables

/cells=count row column

/count round cell.

HASIL SPSS

			Y • Pojadian TB Paru		
			Nor TB Pare	TBParu	Total
A? = Ivorias Seruman	Negati/ Tidat	Court	237	184	421
		% waten 27 = Norsa. Saruman	56.7%	43.7%	100.0%
		% wilten Vic kejadian TB Pain	98.8%	76.7%	97.7%
	Posedya	Coun	3	58	59
		% within 77 = Montak Serimah	51%	94.9%	100.0%
		% waten Y • Pajadian TB Paiu	1.256	23.1%	123%
Tolal		Count	240	240	190
		% waten 27 = Lones. Seruman	200%	50.0%	100.0%
		% willen √≎ kejadian TB Parir	100.0%	100.0%	100.0%

X7 - Kengak Seruman : Y - Keladan IB Pare Crossnabeladen

5.8 Family Size

Family size atau ukuran keluarga adalah ukuran besar keluarga vang diukur dari jumlah anggota keluarga yang tinggal serumah. Pada penelitian ini family size diklasifikasi dalam dua katagori, vaitu:

- (1) Keluarga kecil apabila apabila jumlah anggota keluarga yang tinggal serumah ≤ 4 orang (jarang),
- (2) Keluarga besar apabila apabila jumlah anggota keluarga yang tinggal serumah > 4 orang (padat).

Responden yang tinggal dalam keluarga kecil berjumlah 196 orang (40,8%) dengan jumlah penderita TB sebanyak 85 orang (43,4%). Responden vang tinggal dalam keluarga besar berjumlah 284 orang (59,2%) dengan jumlah penderita TB sebanyak 155 orang (54,6).

Data ini menunjukkan, bahwa responden yang tinggal di rumah yang padat penghuni berpeluang lebih besar menderita TB jika dibandingkan dengan responden yang tinggal di rumah tidak padat penghuni. Besarnya peluang responden yang tinggal di rumah yang padat penghuni adalah 54,6% sedangkan responden yang tinggal di rumah yang tidak padat penghuni berpeluang menderita TB sebesar 43.3%.

Tabel: Kejadian TB Menurut Family Size

Family Cina	TB			
Family Size	Positif	Negatif	Jumlah	
Padat > 4 orang	54.6%	45.4%	284	
Cukup≤ 4 orang	43.4%	56.6%	196	

SINTAX SPSS

Compute x8a = x8.

Variable label x8a 'X8a = Family Size'.

Recode x8a

(lo thru 4 = 1)

(5 thrhu hi = 2).

Value label x8a

1 'Cukup \leq 4 orang'

2 'Padat > 4 orang'.

Crosstabs

/tables=x8a by y

/format=avalue tables

/cells=count row column

/count round cell.

HASIL SPSS

			Y = Piejadian	TB Paris	
			Nog ТӨ Раци	TB Parm	Total
)8A=FamirSge	Cuking	Count	111	85	196
		% AQIJO X3P = F3OJN Biza	56.8%	40.4%	100 0%
		% жөдүлү = кераонул Т8 Раги	46 7%	15 4%	40 8%
	Parist	Coval	129	155	284
		% within 108A = Family Size	45 4%	54.0%	100 0%
		% within Y = Ireladian TB Paru	5) 8%	64.6%	59.2%
Total		Count	240	2+0	480
		% within 29# = Family 628	50.0%	50.0%	100 0%
		% within Y = Keledian TB Pain	100 0%	100.0%	100 0%

XBA - Family Size ' Y - Keladian TB Paru Crossiahelation

5.9 Imunisasi BCG

Imunisasi BCG adalah pemberian vaksin BCG atau Bacillus Calmette-Guérin, vaitu vaksin vang diberikan untuk melindungi diri terhadap tuberkulosis (TB).

Imunisasi BCG diketahui dengan cara melakukan pemeriksaan secara fisik untuk mengetahui ada tidaknya Scar Imunisasi BCG pada bagian lengan atas responden. Apabila terdapat scar imunisasi BCG maka berarti mereka telah diberi imunisasi yaksin BCG dan apabila tidak ditemukan scar BCG maka berarti mereka tidak pernah diberi imunisasi vaksin BCG.

Responden yang melakukan imunisasi vaksin BCG berjumlah 280 orang (58.3%) dengan jumlah penderita TB sebanyak 212 orang (43,25). Responden yang tidak melakukan imunisasi vaksin BCG berjumlah 200 orang (41,7%) dengan jumlah penderita TB sebanyak 119 orang (59,5%).

Data ini menunjukkan, bahwa responden yang tidak melakukan imunisasi BCG berpeluang lebih besar menderita TB jika dibandingkan dengan responden yang melakukan imunisasi BCG. Besarnya peluang responden yang tidak melakukan imunisasi BCG akan menderita TB adalah 59,5% sedangkan besarnya peluang

Bab 5 Gambaran Penderita TB

responden yang melakukan imunisasi BCG akan menderita TB adalah 43,2%.

Tabel Kejadian TB Menurut Imunisasi BCG

Imunisasi BCG	ТВ				
illiullisasi BCG	Positif	Negatif	Jumlah		
Negatif (non- Imunisasi BCG)	59.5%	40.5%	200		
Positif (Imunisasi BCG)	43.2%	56.8%	280		

SINTAX SPSS

Crosstabs

/tables=x9 by y

/format=avalue tables

/cells=count row column

/count round cell.

HASIL SPSS

NP - Ingeligati DOS 1Y - Holarian (DPS) - Crest/ol-syllan

			Y = 1 (2.00 A)	TD Paris	
			QVCTR Para	TARSO	Tops
19 - Imanicaci 006	Nggani Tdak muricas	C curi	- 31	1.5	230
	D>)	¥ writer 79 c. m. m.quş SUU	3()6	છલ	.0)12
		Эсмиган майырынари ТЭ Эчүн	J:86	dyco	41.3
	Taul Direction ECC	: cud	159	121	291
		State (10 miles)	31:4%	47.2%	1001%
		'S writen''' - Kojadian Të Pjetë	36.34	50 4%	53 ± 10
0491		,rim	3:40	510	43(
		% wrbs)% = m m = vs ⊝ -)	30.0%	20136	.0013
		¥emiler - Fryskyl T3 Talu	11/16	100.0%	1001#

ANALISIS REGRESI LOGISTIK BINER

C ecara umum, analisis regresi digunakan untuk menganalisis O pengaruh satu atau beberapa variabel bebas terhadap satu variabel terikat. Terdapat banyak jenis analisis regresi, antara lain analisis regesi tunggal, analisis regresi ganda, dan analisis regresi logistik biner.

Analisis regresi tunggal atau analisis regresi sederhana adalah analisis regresi yang terdiri atas satu variabel bebas. Analisis regresi ganda adalah analisis regresi yang memiliki lebih dari satu variabel bebas. Analisis regresi tunggal atau analisis regresi ganda memiliki satu variabel terikat yang berskala numerik, sedangkan analisis regresi logistik biner memiliki satu variabel terikat berskala katagorik nominal dikotomi.

Bentuk umum model regresi tunggal adalah sebagai berikut.

$$y_i = \beta_0 + \beta_1 x + e_i$$

Bentuk umum model regresi ganda adalah sebagai berikut.

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + e_i$$

Keterangan: y = variabel terikat (dependent) merupakan variabelnumerik berdistribusi normal, x = variabel bebas (independent)merupakan variabel numerik atau boleh juga katagorik (yang dibuat meniadi dummy variable).

Secara umum, analisis regresi logistik biner digunakan untuk menganalisis hubungan antara variabel terikat yang berupa variabel katagorik nominal binerdan variabel bebas yang berupa variabel numerik atau katagorik (Hosmer dan Lemeshow, 1989)

6.1 Pengaruh Usia (Numerik) Terhadap PJK

Misalkan penelitian bertujuan untuk menganalisis pengaruh usia terhadap kejadian Penyakit Jantung Koroner (PJK) menggunakan analisis regresi logistik biner.

Pada contoh ini

x = Usia merupakan variabel bebas (*independent*) berskala numerik

y = kejadian PJK merupakan variabel terikat (*dependent*) berskala katagorik nominal dikotomi, atau variabel katagorik biner

- y = 0 apabila tidak terjadi PJK (PJK negatif)
- y = 1 apabila terjadi PJK (PJK positif)

Bentuk umum model regresi logistik biner adalah sebagai berikut.

- $\pi(x) = P(y = 1|x) = \frac{e^{g(x)}}{1 + e^{g(x)}}$ merupakan peluang terjadi PJK positif pada usia tertentu.
- Besar $\pi(x)$ berkisar antara 0 dan 1 atau $0 \le \pi(x) \ge 1$
- $\pi(x)$ merupakan peluang bersyarat yang nilainya bergantung pada nilai variabel bebas x

Secara umum $\pi(x)$ menyatakan proporsi y=1 di dalam populasi. Dengan demikian $\pi(x)$ menyatakan besarnya peluang terambil PJK positif apabila seorang individu dipilih secara random dari populasi tertentu.

Fungsi $\pi(x)$ merupakan fungsi non linier, sedangkan variabel bebas x dan variabel terikat y memiliki hubungan yang linier. Oleh karena itu fungsi $\pi(x)$ harus dibuat menjadi linier dengan cara melakukan transformasi Logit.

Bentuk Logit dari
$$\pi(x)$$
 adalah $\ln\left[\frac{\pi(x)}{1-\pi(x)}\right] = g(x)$ dengan $g(x) = \beta_0 + \beta_1 x$.

Perhatikanlah, $g(x) = \beta_0 + \beta_1 x$ sama dengan bentuk model regresi tunggal (regresi sederhana).

Berkaitan dengan model ini perlu diperhatikan ketentuan sebagai berikut.

1. $\ln \left[\frac{\pi(x)}{1 - \pi(x)} \right] = g(x)$ dan x mempunyai hubungan linier.

Untuk memenuhi asumsi ini maka diperlukan cukup banyak observasi untuk setiap nilai dari variabel x, sehingga diperoleh suatu nilai $\pi(x) = P(y = 1|x)$ yang rasional untuk setiap nilai variabel x. Hal ini dipandang sebagai suatu kelemahan dari model regresi logistik biner, khususnya untuk variabel x numerik karena pada umumnya peneliti tidak mempunyai observasi yang cukup banyak untuk semua nilai x.

2. Apabila pada setiap nilai x terdapat cukup banyak observasi, maka nilai $\ln \left[\frac{\pi(x)}{1 - \pi(x)} \right] = g(x)$ dapat dihitung untuk setiap nilai variabel x.

Selanjutnya dapat dibuat plot (diagram pencar) antara variabel terikat $\ln \left[\frac{\pi(x)}{1-\pi(x)} \right]$ dengan variabel bebas x yang dapat menunjukkan kebenaran asumsi yang dipakai secara empiris.

3. Apabila prasyarat hubungan linier tersebut di atas tidak terpenuhi, maka dengan sendirinya model regresi logistik biner tersebut di atas tidak sepatutnya diterapkan untuk data yang bersangkutan.

Dalam kasus seperti ini perlu dicoba model bentuk lain, di antaranya model non-linier, model dengan variabel prediktor $\ln \mathbb{Z}_x$) sebagai ganti dari variabel x.

4. Apabila x merupakan variabel katagorik satu-nol maka asumsi hubungan linier antara $\ln \left[\frac{\pi(x)}{1-\pi(x)} \right]$ dan x mutlak berlaku, karena hanya terdapat dua titik observasi yang sesuai dengan x = 0dan x = 1.

Dengan demikian model $g(x) = \beta_0 + \beta_1 x$ akan menyatakan garis lurus yang melalui dua koordinat, yaitu: untuk x = 0 maka $g(x) = \beta_0$ dan untuk x = 1 maka $g(x) = \beta_0 + \beta_1$.

Dengan demikian garis $g(x) = \beta_0 + \beta_1 x$ melalui dua buah titik, yaitu titik (0; β_0) dan titik (1; $\beta_0 + \beta_1$).

Data hasil penelitian disajikan pada tabel berikut.

Bab 6 Analisis Regresi Logistik Biner

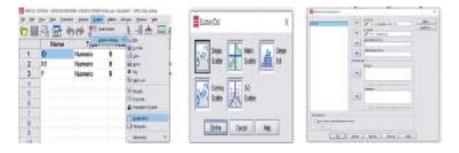
x =Usia merupakan variabel numerik

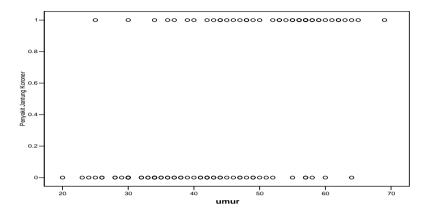
y = Kejadian PJK merupakan variabel katagorik biner, yaitu:

- y = 0 apabila tidak terjadi PJK (PJK negatif)
- y = 1 apabila terjadi PJK (PJK positif)

Besar sampel sebanyak n = 100 orang

	Freq. PJK			F	req. P.I	K		F	req. PJ	K:		F	req. PJ	K	
DESCRIPTION OF THE PERSON OF T	+	9.2	I	Umar.	+	-	2	Umar	+	-	2	Linear	+	-	2
29.	0 :	1.1	1	35	0	20	2	48	1.7	1	1	57	4	2:	. n
27	0	ΞŤ	1	36	1	2.7	3	47	13	- 2	1	58	2	1	3
24	0	- 1	1	37	1	2	3	48	2	30	3	59	2	0	2
25	1	- 1	2	38	.0	2	2	- 48	1.	2	1	60	1	1	2
28	0	- 2	2	79	1	1	2	38	100	-1	. 2	-dl	1.	Ø.	1
28	0	- 2	2	+0	1	1	2	-51	9	1	1	63	/2:	0	2
29:	0	1.1	1	44	0	2	2	52	1	-1-	2	63.	1	0	1
30	1		6.	42	1	2	4	95	2	0	- 2	64	1	1	3
11	σ	3.2	2	45	1	2.1	3	34	1	0	-1	65	1	σ	1
33	0	- 2	3	- 64	- 2	2	4	55	2	1	3	69	1	0	1
34	t	4	3	45	1	1	2	96	1	.0	3	5	43	57	100


Langkah pertama untuk mempelajari hubungan umur dan PJK adalah dengan membuat plot data seperti disajikan pada gambar berikut.

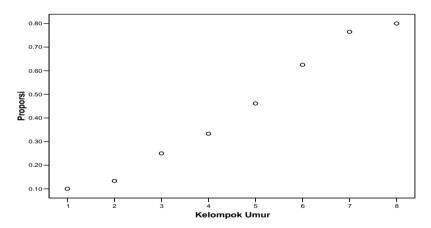

Graph, Legacy Dialog, Scatter Plot

Simple Scatter, Define

Pindahkan Usia ke *x*-axis

Pindahkan Kejadian PJK ke y-axis

Gambar Plot data Usia dan Kejadian PJK


Berdasarkan gambar ini diketahui, sebagian titik terletak pada garis y=1 dan sebagian lagi terletak pada garis y=0. Titik-titik yang terletak pada garis y=1 menggambarkan individu yang mengalami PJK positif dan titik-titik yang terletak pada garis y = 0menggambarkan individu yang mengalami PJK negatif.

Berdasarkan gambar di atas, dapat diketahui, bahwa individu yang mengalami PJK positif cenderung berasal dari mereka yang berusia lebih tua. Tetapi gambar ini tidak dapat menjelaskan model hubungan antara kedua variabel tersebut. Salah satu cara untuk dapat menjelaskan hubungan fungsional antara kedua veriabel tersebut adalah dengan membuat variabel umur menjadi variabel katagorik.

Sebelum membentuk model regresi, terlebih dahulu perlu diketahui hubungan kedua variabel tersebut secara visual grafik. Dengan menggunakan data pada prevalensi kejadian PJK, dapat dibuat plot data antara kelompok umur dan prevelensi (P). Angka prevelensi diperoleh dari hasil bagi antara jumlah individu yang mengalami PJK positif dengan total individu yang mengalami PJK positif dan Negatif pada masing-masing kelompok usia.

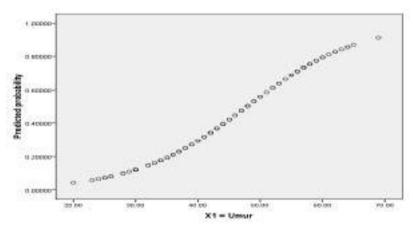
No	V alama ala Hanna	K	Kejadian PJK					
NO	Kelompok Umur	Positif	Negatif	Jumlah	Prevelensi			
1	20 - 29 th	1	9	10	0.10			
2	30 - 34 th	2	13	15	0.13			
3	35 - 39 th	3	9	12	0.25			
4	40 - 44 th	5	10	15	0.33			
5	45 – 49 th	6	7	13	0.46			
6	50 - 54 th	5	3	8	0.63			
7	55 - 59 th	13	4	17	0.76			
8	60 – 69 th	8	2	10	0.80			
	Jumlah	43	57	100				

Tabel Prevalensi Kejadian PJK Positif

Gambar Plot Data Kelompok Usia dan Prevelensi

Gambar ini memperlihatkan hubungan fungsional antara kelompok usia dan prevelensi individu yang mengalami kejadian PJK positif. Ada kecenderungan bahwa makin lanjut usia makin besar peluang terjadi PJK positif. Hubungan kedua variabel ini dapat dimodelkan dalam bentuk model regresi.

Model Regresi Logistik Biner


$$\pi(x) = P(y = 1|x) = \frac{e^{g(x)}}{1 + e^{g(x)}}$$

68 E. Roflin, I. A. Liberty, Pariyana, M. Reagan, & H. M. Uli

$$\ln \left[\frac{\pi(x)}{1 - \pi(x)} \right] = g(x) \text{ dengan } g(x) = \beta_0 + \beta_1 x$$

Disebut Model Logistik Biner Univariate, karena hanya memiliki satu variabel bebas.

Oleh karena x merupakan variabel numerik, maka harus dipenuhi asumsi bahwa antara g(x) dan x mempunyai hubungan linier. Gambar berikut memperlihatkan bahwa q(x) dan x memiliki hubungan linier.

Gambar Hubungan antara g(x) dan x

Analyze, Regression, Binary Logistic Pindahkan usia ke Covariate Pindahkan Kejadian PJK ke Dependent, Option Pilih 95% CI for exp(B)

Variables of the factories

								25,0% 213	n ≘aPiBr
		8	8E	Y-alc	11	Sα	Excill	_oner .	Jopen
eron P	<1	111	004	21,244	1	000	1117	1066	1.17
1-	Emsteri	5 339	1.124	21 415	1	DCG.	ats		

a Valiable of either to commit of

Hubungan usia dan kejadian PJK dapat digambarkan dalam bentuk model regresi logistik biner sebagai berikut.

$$\pi(x) = P(y = 1|x) = \frac{e^{g(x)}}{1 + e^{g(x)}}$$

dengan $g(x) = -5{,}309 + 0{,}111 x$

atau dapat ditulis
$$\pi(x) = \frac{Exp(-5,309+0,111x)}{1+Exp(-5,309+0,111x)}$$

Uji hipotesis untuk mengetahui signifikansi pengaruh usia terhadap kejadian PJK adalah sebagai berikut

Bentuk Uji

 H_0 : $\beta_1 = 0$ Usia berpengaruh tidak signifikan

 $H_1: \beta_1 \neq 0$ Usia berpengaruh signifikan

Kriteria Uji

Tolak hipotesis H_0 apabila $p_{value} < \alpha(5\%)$

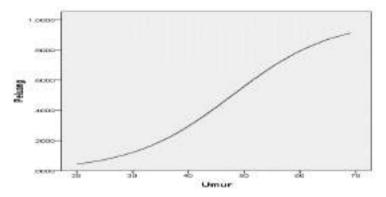
Hasil Uji

Berdasarkan tabel variable in equation diketahui

$$p_{value} = 0,000 < \alpha = 5\%$$

Kesimpulan

Usia berpengaruh signifikan terhadap kejadian PJK dengan $p_{value} = 0{,}000$


Besar peluang terjadi PJK positif untuk setiap usia dapat dihitung sebagai berikut.

$$\pi(x) = \frac{Exp(-5,309 + 0,111x)}{1 + Exp(-5,309 + 0,111x)}$$

Peluang terjadi PJK positif pada usia 40 tahun adalah $\pi(40) = 0.294711987 = 29,47\%$

Peluang terjadi PJK positif pada usia 50 tahun adalah $\pi(50)$ = 0.558876525 = 55.89%

Dengan cara di atas dapat dihitung peluang terjadi PJK positif untuk semua usia, seperti disajikan pada tabel berikut.

Gambar Peluang Terjadi PJK pada Setiap Usia

HASIL SPSS

Case Processing Summary

Unweighted Case	N	Percent	
Selected Cases	100	100.0	
	Missing Cases	0	.0
	Total	100	100.0
Unselected Case	s	0	.0
Total		100	100.0

a. If weight is in effect, see classification table for the total number of cases.

Tabel Case Processing Summary menjelaskan jumlah responden yang diperhitungkan di dalam model. Analisis menggunakan teknik apapun sebaiknya menghindari terjadinya data yang missing (missing value). Informasi tentang ada tidaknya data missing dapat dilihat pada tabel Case Processing Summary. Dalam kasus ini tidak terdapat missing value. Jumlah responden yang diperhitungkan dalam analisis atau diperhitungkan di dalam model sebanyak 100 orang (100%).

Oriai	Internal Value	
Negatif		0
Positif		1

Tabel Dependent Variable Encoding menjelaskan katagori variabel terikat. Tabel ini merupakan dasar pengkodean untuk variabel terikat. Internal value merupakan pengkodean oleh SPSS.

Kode 1 dianggap sebagai kategori sukses, dalam kasus ini terjadi PJK positif. Pengkodean oleh SPSS tidak selamanya sama dengan kode yang dimasukkan ketika entry data. Kode sukses yang dipakai adalah kode sukses menurut SPSS.

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	29.310	1	.000
	Block	29.310	1	.000
	Model	29.310	1	.000

Omnibus test of model coefficient memiliki pengertian yang sama dengan Uji F pada model regresi tunggal atau ganda, yaitu menjelaskan pengaruh simultan variabel bebas terhadap variabel terikat. Dalam kasus ini hanya terdapat satu variabel bebas, yaitu Usia, oleh karena itu statistik uji F sama gunanya dengan statistik uji t, yaitu untuk menguji signifikansi pengaruh usia terhadap kejadian PJK.

Bentuk Uji Hipotesis

 H_0 : $\beta_1 = 0$ Usia berpengaruh tidak signifikan

 $H_1: \beta_1 \neq 0$ Usia berpengaruh signifikan

Kriteria Uji

Tolak hipotesis H_0 apabila nilai $p_{value} < \alpha(5\%)$.

Pada tabel *Omnibus test of model coefficient* diketahui nilai *chisquare Model goodness of fit*= 29,310 atau nilai p_{value} = 0,000 yang berarti usia berpengaruh signifikan terhadap kejadian PJK

Model Summery

Sten	-5 log låskbood	Covid Shell R Square	Nogeherke R Square
T	107,359	254	341

a. Ecomotion commonted or harmon number 6 because parameter ecomotec stranged by less drain. 801

Nagelkarke R square merupakan koreksi dari Cox & Snell R square. Cox & Snell R square dan Nagelkarke R square memiliki pengertian yang sama dengan nilai R-squares pada Model Regresi Tunggal atau Ganda, yaitu menjelaskan besarnya kontribusi variabel bebas dalam menentukan perubahan variabel terikat.

Nagelkarke R square = 0,341 = 34,1% yang berarti bahwa kontribusi Usia dalam menentukan kejadian PJK hanya sebesar 34.1%, sementara sisanya sebesar 65.9% ditentukan oleh variabel lain yang tidak diperhitungkan di dalam model.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	.890	8	.999

Hosmerand Lemeshow Goodness-of-Fit Test menggambarkan kecocokan model dengan data.

Bentuk Hipotesis

 H_0 : Model menggambarkan data.

 H_1 : Model Tidak menggambarkan data

Kriteria uji

Tolak hipotesis Ho apabila $p_{value} < \alpha(5\%)$.

Berdasarkan tabel Hosmer and Lemeshow Test diketahui nilai $p_{value} = 0.999$ yang berarti model menggambarkan data dengan baik.

Y = Kejadian PJK

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Negatif	57	57.0	57.0	57.0
	Positif	43	43.0	43.0	100.0
	Total	100	100.0	100.0	

Berdasarkan tabel distribusi frekuensi diketahui individu yang mengalami kejadian PJK positif berjumlah 43 orang atau 43% dan jumlah individu yang mengalami kejadian PJK negatif adalah 57 orang atau 57%.

Clas	cific	ratio	n Ta	ы	-
Clas	SILI	Jaur	11 18	ш	IC -

				Pred	dicted
			Y = Keja	dian PJK	
	Observed		Negatif	Positif	Percentage Correct
Step 1	Y = Kejadian PJK	Negatif	45	12	78.9
		Positif	14	29	67.4
	Overall Percentage			74.0	

a. The cut value is .500

Classification table menjelaskan frekuansi dan persentase individu yang diprediksi secara benar mengalami kejadian PJK positif dan PJK negatif.

Berdasarkan hasil observasi, jumlah individu yang mengalami kejadian PJK positif sebanyak 43 orang. Berdasarkan hasil perhitungan SPSS, jumlah individu yang diprediksi secara benar mengalami kejadian PJK positif sebanyak 29 orang dari 43 orang atau (67,4%)

Berdasarkan hasil observasi, jumlah individu yang mengalami kejadian PJK negatif sebanyak 57 orang. Berdasarkan hasil perhitungan statistik (SPSS), jumlah individu yang diprediksi secara benar mengalami kejadian PJK negatif sebanyak 45 orang dari 57 orang atau (78,9%)

Overall Percentage sebesar 74% merupakan ukuran ketepatan model dalam mengklasifikasikan data hasil observasi.

6.2 Pengaruh Usia (2 Katagorik) Terhadap PJK

Misalkan penelitian bertujuan untuk menganalisis pengaruh usia terhadap kejadian Penyakit Jantung Koroner (PJK) menggunakan analisis logistik biner.

Pada contoh ini

y = kejadian jantung merupakan variabel katagorik biner, yaitu:

- y = 1 apabila terjadi PJK positif
- y = 0 apabila terjadi PJK negatif

x =Usia merupakan variabel katagorik, yaitu:

- x = 0 untuk usia 20 44 tahun
- x = 1 untuk usia 45 69 tahun

Data penelitian disajikan pada tabel berikut.

Usia	Kejadian PJK					
Osia	Positif	Negatif	Jumlah			
20 - 44 tahun	11	41	52			
45 - 69 tahun	32	16	48			
Jumlah	43	57	100			

HASIL SPSS

Analyze, Regression, Binary logistic

Pindahkan Usia pada Covariate

Pindahkan kejadian PJK pada Dependent, option

Pilih Ci for exp(B)

Dependent Variable Encoding

Oriai	Internal Value	
Negatif		0
Positif		1_

Tabel Dependent Variable Encoding menjelaskan katagori variabel terikat.

Berdasarkan tabel ini diketahui:

Bab 6 Analisis Regresi Logistik Biner

- y = 1 terjadi PJK positif
- y = 0 terjadi PJK negatif

Categorical Variables Codings

			Parameter coding
		Frequency	(1)
X3 = Kelompok Umur	20-44 th	52	.000
	45-69 th	48	1.000

Tabel Catagorical Variables Codings menjelaskan katagori variabel bebas.

Berdasarkan tabel ini diketahui

- x = 0 kelompok usia 20 44 tahun
- x = 1 kelompok usia 45 69 tahun

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	21.895	1	.000
	Block	21.895	1	.000
	Model	21.895	1	.000

Omnibus test of model coefficient memiliki pengertian yang sama dengan Uji F pada model regresi tunggal atau ganda, yaitu menjelaskan signifikansi pengaruh veriabel bebas secara simultan terhadap variabel terikat. Dalam kasus ini hanya terdapat satu variabel bebas, yaitu Usia, oleh karena itu statistik uji F sama maknanya dengan statistik uji t, yaitu untuk menguji signifikansi pengaruh usia terhadap kejadian PJK. Berdasarkan tabel ini diketahuinilai chi-square Model goodness of fit= 21,895 atau nilai $p_{\rm value}=0,000$ yang berarti usia berpengaruh signifikan terhadap kejadian PJK

Model Summary

Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
1	114.768	.197	.264

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Nagelkarke R square merupakan koreksi dari Cox & Snell R square. Cox & Snell R square dan Nagelkarke R square memiliki

pengertian yang sama dengan nilai R-squares pada Model Regresi Tunggal atau Ganda, yaitu menjelaskan besarnya kontribusi variabel bebas dalam menentukan perubahan variabel terikat.

Berdasarkan tabel ini diketahui Nagelkarke R square = 0,264 = 26,4% yang berarti bahwa kontribusi Usia dalam menentukan kejadian PJK hanya sebesar 26,4%, sementara sisanya sebesar 74,6% ditentukan oleh variabel lain yang tidak diperhitungkan di dalam model.

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Negatif	57	57.0	57.0	57.0
	Positif	43	43.0	43.0	100.0
	Total	100	100.0	100.0	

Y = Kejadian PJK

Berdasarkan tabel ini diketahui distribusi frekuensi responden berdasarkan kejadian PJK. Jumlah responden yang mengalami kejadian PJK positif sebanyak 43 orang atau 43%, dan jumlah responden yang mengalami kejadian PJK negatif adalah 57 orang atau 57%.

				Pre	dicted
			Y = Keja	idian PJK	
	Observed		Negatif	Positif	Percentage Correct
Step 1	Y = Kejadian PJK	Negatif	41	16	71.9
		Positif	11	32	74.4
	Overall Percentage	•			73.0

Classification Table³

a. The cut value is .500

Classification table menjelaskan frekuensi dan persentase individu yang diprediksi secara benar mengalami kejadian PJK positif dan PJK negatif

Berdasarkan hasil observasi, jumlah responden yang mengalami kejadian PJK positif sebanyak 43 orang; sedangkan berdasarkan hasil perhitungan statistika (SPSS), jumlah responden yang diprediksi secara benar mengalami kejadian PJK positif sebanyak 32 orang dari 43 orang atau74,4%.

Berdasarkan hasil observasi, jumlah responden yang mengalami kejadian PJK negatif sebanyak 57 orang; sedangkan bardasarkan hasil perhitungan Statistik (SPSS), jumlah responden yang diprediksi secara benar mengalami kejadian PJK negatif sebanyak 41 orang dari 57 orang atau 71,9%

Overall Percentage sebesar 73% merupakan ukuran ketepatan model dalam mengklasifikasikan data hasil observasi.

Dalam hal ini penulis belum menemukan pembatasan persentase kecocokan model. Berdasarkan cacatan Hosmer dan Lemshow dalam Agung (2001:160), bahwa tabel klasifikasi ini tidak perlu diperhatikan dalam praktik, sampai adanya penemuan baru tentang hal ini.

|--|

								95,954.00	h: F=P(F)
		R	4 F	19411	*1	849	Frank	1 October	Пура
Sen	23	2 009	457	19 (03	- 1	(00)	7.455	7(43	18,364
Ir.	Constant	-1 316	30	15 (13	1	(00	263		

a Varaberti erleiedin tiep Li:3

Kesimpulan

Hubungan Usia dan kejadian PJK digambarkan dalam model regresi logistik biner sebagai berikut

Tabel Hubungan Usia dan Kejadian PJK

Variabel	В	Exp(B)	p_value	95% C1 For Exp(B)
Usia(1)	2,009	7,455	0,000	(3.043 ; 18,264)
Konstanta	-1,316			

Berdasarkan tabel ini dapat diketahui bentuk model regresi logistik biner yang menggambarkan model hubungan usia dan kejadian PJK

$$\pi(x) = P(y = 1|x) = \frac{e^{-1,316 + 2,009 x}}{1 + e^{-1,316 + 2,009 x}}$$
$$\pi(x) = \frac{Exp(-1,316 + 2,009x)}{1 + Exp(-1,316 + 2,009x)}$$

OR = $\text{Exp}(\beta)$ = 7,455 yang berarti, bahwa risiko responden berusia 45 – 49 tahun menderita PJK adalah sebesar 7,455 kali lebih besar jika dibandingkan responden berusia 20 – 44 tahun,

dan secara statistika perbedaan risiko tersebut dinyatakan signifikan dengan $p_{value} = 0,000$ atau 95% Confidence interval for OR berkisar antara 3.043 - 18.264.

Artinya Peluang terjadi PJK positif pada kelompok usia 45-69 tahun adalah 7,455 kali jika dibandingkan dengan pada kelompok usia 20-44 tahun yang secara statistik dinyatakan, bahwa perbedaan tersebut berbeda signifikan dengan $p_{value} = 0,000$ dan 95% Confidence interval for Exp(B) antara 3,043 – 18,264.

Peluang terjadi PJK positif pada responden berusia 45 – 69 tahun dapat dihitung sebagai berikut

$$\pi(1) = \frac{Exp(-1,316+0,2009)}{1+Exp(-1,316+0,2009)} = \frac{Exp(0,693)}{1+Exp(0,693)} = 0,67 = 67\%$$

Peluang terjadi PJK positif pada responden berusia 20 - 44 tahun dapat dihitung sebagai berikut

$$\pi(0) = \frac{Exp(-1,316)}{1 + Exp(-1,316)} = 0.21 = 21\%$$

Variables in the Equipmen

								95,956.01	h: F:P(F)
		R	46	12311	*	849	Face	[One or	шде
Sen	*3	2 009	450	19:03	_	(00)	7.455	7(43	18 364
Ir.	Constant	-1 316	30	15 (13		(00	263		

a Vwiabejąj erleied roklep Li:3

 $OR = Exp(\beta) = 7,455$ dihitung menggunakan rumus berikut.

$$Exp(\beta) = \frac{\frac{\pi(1)}{1-\pi(1)}} / \frac{\pi(0)}{\frac{\pi(0)}{1-\pi(0)}}$$

$$\text{Exp}(\beta) = \frac{\text{exp}(\beta_0 + \beta_1)}{\text{exp}(\beta_0)} = \frac{e^{g(1)}}{e^{g(0)}}$$

$$Exp(\beta) = \frac{exp (-1,316+2,009)}{exp (-1,316)} = 7.455$$

 $OR = exp(\beta) = 7,455$ menggambarkan risiko terjadi PJK positif pada kelompok usia 45-69 tahun adalah 7,455 kali lebih besar jika dibandingkan dengan pada kelompok usia 20-44 tahun

 $OR = \exp(\beta) = 7,455$ menggambarkan perbandingan risiko terjadi PJK Postif pada kelompok usia 45-69 tahun dan risiko terjadi PJK positif pada kelompok usia 20-44 tahun.

6.3 Pengaruh Usia (8 Katagori) Terhadap PJK

Misalkan penelitian bertujuan untuk menganalisis pengaruh usia terhadap kejadian Penyakit Jantung Koroner (PJK) menggunakan analisis logistik biner.

Pada contoh ini

- y = kejadian PJK merupakan variabel katagorik biner, yaitu:
 - y = 1 apabila terjadi PJK positif
 - y = 0 apabila terjadi PJK negatif
- x = Usis merupakan variabel katagorik dengan 8 katagori sebagai berikut.
 - x = 0 untuk usia 20-29 tahun
 - x = 1 untuk usia 30-34 tahun
 - x = 2 untuk usia 35-39 tahun
 - x = 3 untuk usia 40-44 tahun
 - x = 4 untuk usia 45-49 tahun
 - x = 5 untuk usia 50-54 tahun
 - x = 6 untuk usia 55-59 tahun
 - x = 7untuk usia 60-69 tahun

Untuk keperluan analisis menggunakan analisis regresi biner, variabel usia (x) harus dibuat menjadi variabel biner atau dibuat koding sebagai berikut.

- $x_1 = 1$ untuk kelompok usia 30-34 tahun
- $x_1 = 0$ untuk kelompok usia lainnya
- $x_2 = 1$ untuk kelompok usia 35-39 tahun
- $x_2 = 0$ untuk kelompok usia lainnya

 $x_3 = 1$ untuk kelompok usia 40-44 tahun

 $x_3 = 0$ untuk kelompok usia lainnya

 $x_4 = 1$ untuk kelompok usia 45-49 tahun

 $x_4 = 0$ untuk kelompok usia lainnya

 $x_5 = 1$ untuk kelompok usia 50-54 tahun

 $x_5 = 0$ untuk kelompok usia lainnya

 $x_6 = 1$ untuk kelompok usia 55-59 tahun

 $x_6 = 0$ untuk kelompok usia lainnya

 $x_7 = 1$ untuk kelompok usia 60-69 tahun

 $x_7 = 0$ untuk kelompok usia lainnya

Hasil koding menggunakan SPSS adalah sebagai berikut.

					Par	ameter co	oro		
		[requesty	(1)	(2)	(9)	(4)	(9)	(8)	ற
23 • Kelampak Umur	30-39 LH	10	000	1111	- 1111	000	000	000	.000
	30-34 FH	15	1 000	***	***	000	000	000	.000
	35-39 TH	12	000	1	***	000	000	000	.000
	40-44 FH	113	000	•	1 111	000	000	000	.000
	45-43 FH	13	000	***	***	1 000	000	000	.000
	30-54 TH	9	000	•••	•••	000	1 000	000	.000
	55.59 FH	17	000	***	***	000	000	1 000	.000
	40-49 FH	10	000	•	***	000	000	000	1,000

Categorical Variables Codings

Data penelitian disajikan pada tabel berikut.

Tabel Hubungan Usia dan Kejadian PJK (Rasio Prevalensi)

No	V alama ala IImma	K	ejadian P.	P	RP	
INO	Kelompok Umur	Positif	Negatif	Jumlah	P	KP
0	20 - 29 th	1	9	10	0.10	1.00
1	30 - 34 th	2	13	15	0.13	1.33
2	35 - 39 th	3	9	12	0.25	2.50
3	40 - 44 th	5	10	15	0.33	3.33
4	45 – 49 th	6	7	13	0.46	4.62
5	50 - 54 th	5	3	8	0.63	6.25
6	55 - 59 th	13	4	17	0.76	7.65
7	60 – 69 th	8	2	10	0.80	8.00
	Jumlah	43	57	100	0.43	

Sebelum melakukan analisis regresi logistik biner, terlebih dahulu dilakukan analisis secara deskriptif. Hasil analisis deskriptif selanjutnya dibandingkan dengan hasil analisis logistik biner.

Analisis Deskriptif

Prevelensi (P)

 $P_0 = \frac{1}{10}$ = 0,10 menyatakan peluang terjadi PJK positif pada kelompok usia 20-29 tahun.

 $P_1 = \frac{2}{15}$ = 0,13 menyatakan peluang terjadi PJK positif pada kelompok usia 30-34 tahun

 $P_2 = \frac{3}{12}$ = 0,2 menyatakan peluang terjadi PJK positif pada kelompok usia 35-39 tahun

 $P_3 = \frac{5}{15}$ = 0,33 menyatakan peluang terjadi PJK positif pada kelompok usia 40-44 tahun

 $P_4 = \frac{6}{13}$ = 0,46 menyatakan peluang terjadi PJK positif pada kelompok usia 45-49 tahun

 $P_5 = \frac{5}{8} = 0.63$ menyatakan peluang terjadi PJK positif pada kelompok usia 50-54 tahun

 $P_6 = \frac{13}{17}$ = 0,76 menyatakan peluang terjadi PJK positif pada kelompok usia 55-59 tahun

 $P_7 = \frac{8}{10}$ = 0,80 menyatakanmenyatakan peluang terjadi PJK positif pada kelompok usia 60-69 tahun

Rasio Prevelensi (RP)

 $RP_1 = \frac{P_1}{P_0} = \frac{0.13}{0.10} = 1.33$ menyatakan peluang terjadi PJK positif pada kelompok usia 30-34 tahun adalah 1,33 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun

 $RP_2 = \frac{P_2}{P_0} = \frac{0.25}{0.10} = 2,50$ menyatakan peluang terjadi PJK positif pada kelompok usia 35-39 tahun adalah 2,50 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun

 $RP_3 = \frac{P_3}{P_0} = \frac{0.33}{0.10} = 3.33$ menyatakan peluang terjadi PJK positif pada kelompok usia 40-44 tahun adalah 3,33 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun

 $RP_4 = \frac{P_4}{P_0} = \frac{0.46}{0.10} = 4.62$ menyatakan peluang terjadi PJK positif pada kelompok usia 45-49 tahun adalah 4,62 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun

 $RP_5 = \frac{P_5}{P_0} = \frac{0.63}{0.10} = 6.25$ menyatakan peluang terjadi PJK positif kelompok usia 50-54 tahun adalah 6,25 kali iika dibandingkan dengan pada kelompok usia 20-29 tahun

 $RP_6 = \frac{P_6}{P_0} = \frac{0.76}{0.10} = 7,65$ menyatakan peluang terjadi PJK positif pada kelompok usia 55-59 tahun adalah 7,65 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun

 $RP_7 = \frac{P_7}{P_0} = \frac{0.80}{0.10} = 8,00$ menyatakan peluang terjadi PJK positif pada kelompok usia 60-69 tahun adalah 8,00 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun

Odds Rasio (OR)

Tabel Hubungan	Usia dan Ke	jadian PJK ((Odds Rasio)

No	V alama ala Hanne	Kejadian PJK				OR
INO	Kelompok Umur	Positif	Negatif	Jumlah	О	OK
0	20 – 29 th	1	9	10	0.11	1.00
1	30 - 34 th	2	13	15	0.15	1.38
2	35 - 39 th	3	9	12	0.33	3.00
3	40 - 44 th	5	10	15	0.50	4.50
4	45 – 49 th	6	7	13	0.86	7.71
5	50 - 54 th	5	3	8	1.67	15.00
6	55 - 59 th	13	4	17	3.25	29.25
7	60 – 69 th	8	2	10	4.00	36.00
	Jumlah	43	57	100	0.75	

Kecenderungan (Odds)

 $O_0 = \frac{1}{9} = 0.11$: menyatakan risiko terjadi PJK positif pada kelompok usia 20-29 tahun

 $O_1 = \frac{2}{13} = 0,15$: menyatakan risiko terjadi PJK positif pada kelompok usia 30-34 tahun

 $O_2 = \frac{3}{9} = 0.33$: menyatakan risiko terjadi PJK positif pada kelompok usia 35-39 tahun

 $O_3 = \frac{5}{10} = 0,50$: menyatakan risiko terjadi PJK positif pada kelompok usia 40-44 tahun

 $O_4 = \frac{6}{7} = 0.86$: menyatakan risiko terjadi PJK positif pada kelompok usia 45-49 tahun

 $O_5 = \frac{5}{3} = 1,67$: menyatakan risiko terjadi PJK positif pada kelompok usia 50-54 tahun

 $O_6 = \frac{13}{4} = 3,25$ menyatakan risiko terjadi PJK positif pada kelompok usia 55-59 tahun

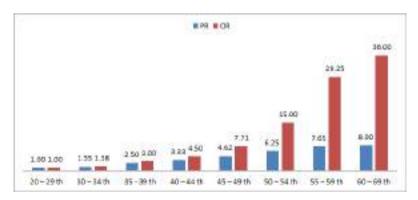
 $O_7 = \frac{8}{2} = 4.00$: menyatakan risiko terjadi PJK positif pada kelompok usia 60-69 tahun

Rasio Kecenderungan (OR)

 $OR_1 = \frac{o_1}{o_0} = \frac{0.15}{0.11} = 1.38$ menyatakan risiko terjadi PJK positif pada kelompok usia 30-34 tahun adalah 1,38 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun.

 $OR_2 = \frac{o_2}{o_0} = \frac{0.33}{0.11} = 3,00$ menyatakan risiko terjadi PJK positif pada kelompok usia 35-39 tahun adalah 3,00 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun.

 $OR_3 = \frac{O_3}{O_0} = \frac{0,50}{0,11} = 4,50$ menyatakan risiko terjadi PJK positif pada kelompok usia 40-44 tahun adalah 4,50 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun.


 $OR_4 = \frac{O_4}{O_0} = \frac{0.86}{0.11} = 7.71$ menyatakan risiko terjadi PJK positif pada kelompok usia 45-49 tahun adalah 7,71 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun.

 $OR_5 = \frac{O_5}{O_0} = \frac{1,67}{0.11} = 15,00$ menyatakan risiko terjadi PJK positif pada kelompok usia 50-54 tahun adalah 15,00 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun.

 $OR_6 = \frac{O_6}{O_0} = \frac{3,25}{0.11} = 29,25$ menyatakan risiko terjadi PJK positif pada kelompok usia 55-59 tahun adalah 29,25 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun.

 $OR_7 = \frac{O_7}{O_1} = \frac{4,00}{0,11} = 36,00$ menyatakanrisiko terjadi PJK positif pada kelompok usia 60-69 tahun adalah 36,00 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun.

Secara visual diperlihatkan, bahwa OR (Odds Rasio) lebih besar nilainya jika dibandingkan dengan RP (Rasio Prevalensi).

Gambar Perbandingan RP dan OR

Pada kasus kejadian penyakit yang sangat jarang terjadi, misalnya kematian Ibu pada saat melahirkan, maka OR akan mendekati RP, atau dapat dikatakan, bahwa OR merupakan pendekatan dari RP.

Bab 6 Analisis Regresi Logistik Biner

No	Kelompok	Ke	ematian Ibu		D	RP	0	OR
NO	Umur	Ya	Tidak	Jumlah	P	KP	0	OK.
1	10-19 th	23	1,667	1,690	0.0136	1.0000	0.0138	1.0000
2	20-34 th	34	1,789	1,823	0.0187	1.3704	0.0190	1.3775
3	35-49 th	58	950	1,008	0.0575	4.2279	0.0611	4.4250
	Jumlah	115	4,406	4,521				

Sumber: I Gusti Ngurah Agung (2001:62)

Angka Prevelensi (P) dan kecenderungan (O) hampir sama besar. Misalnya pada kempok usia 10-19 tahun $P_1=0.0136$ dan $O_1=0.0138$. Demikian juga rasio prevelensi (RP) dan rasio kecenderungan (OR) hampir sama besar. Misalnya $RP_2=1.3704$ dan $OR_2=1.3775$. Jadi pada kasus kejadian yang sangat jarang terjadi, nilai ORakan mendekati nilai RP.

HASIL SPSS

Case Processing Summary

Unweighted Case	Unweighted Cases*				
Selected Cases	Included in Analysis	100	100.0		
	Missing Cases	0	.0		
	Total	100	100.0		
Unselected Case	·s	0	.0		
Total		100	100.0		

a. If weight is in effect, see classification table for the total number of cases.

Tabel Case Processing Summary menjelaskan jumlah responden yang diperhitungkan di dalam model. Dalam hal ini jumlah responden yang diperhitungkan dalam analisis atau diperhitungkan di dalam model sebanyak 100 orang (100%).

Dependent Variable Encoding

Oriai	Internal Value
Negatif	0
Positif	1

Tabel Dependent Variable Encoding menjelaskan katagori variabel terikat y. y = kejadian PJK merupakan variabel katagorik biner.

- v = 1 PJK positif
- y = 0 PJK negatif

Cetegorical Variables Codings

					Par	ameter co	orq		
		Programmy	(1)	(2)	(2)	(4)	(%)	(9)	စ
XI • Kelampak Umur	30-38 LH	10	000	111	***	000	000	000	.000
	30-34 FH	15	1 000	***	•	000	000	000	.000
	35-39 TH	12	000	1 111	•	000	000	000	.000
	40-44 FH	111	000	***	1 111	000	000	000	.000
	45-49 FH	13	000	***	•	1 000	000	000	.000
	30-54 TH	9	000	•••	•••	000	1 000	000	.000
	55.59 FH	17	000	***	•	000	000	1 000	.000
	60-69 FH	10	000	***	***	000	000	000	1,000

Tabel Catagorical Variables Codings menjelaskan koding variabel bebas x.variabel bebas x terdiri atas 8 katagori, setelah dibuat koding atau dibuat dummy variable maka variabel bebas x dipecah menjadi 7 variabel katagorik biner sebagai bernikut.

 $x_1 = 1$ untuk kelompok usia 30-34 tahun

 $x_1 = 0$ untuk kelompok usia lainnya

 $x_2 = 1$ untuk kelompok usia 35-39 tahun

 $x_2 = 0$ untuk kelompok usia lainnya

 $x_3 = 1$ untuk kelompok usia 40-44 tahun

 $x_3 = 0$ untuk kelompok usia lainnya

 $x_4 = 1$ untuk kelompok usia 45-49 tahun

 $x_4 = 0$ untuk kelompok usia lainnya

 $x_5 = 1$ untuk kelompok usia 50-54 tahun

 $x_5 = 0$ untuk kelompok usia lainnya

 $x_6 = 1$ untuk kelompok usia 55-59 tahun

 $x_6 = 0$ untuk kelompok usia lainnya

 $x_7 = 1$ untuk kelompok usia 60-69 tahun

 $x_7 = 0$ untuk kelompok usia lainnya

		Chi-square	df	Sig.
Step 1	Step	28.702	7	.000
	Block	28.702	7	.000
	Model	28.702	7	.000

Omnibus Tests of Model Coefficients

Omnibus test of model coefficient memiliki pengertian yang sama dengan Uji F pada model regresi ganda, yaitu menjelaskan pengaruh variabel bebas terhadap variabel terikat secara simultan.

Bentuk Uji Hipotesis

- $H_0: \beta_1 = \beta_2 = \dots = \beta_7 = 0$ Tidak ada variabel bebas yang berpengaruh signifikan
- $H_1: \beta_i \neq 0$ untuk i=1,2,...,8Terdapat minimal satu variabel bebas yang berpengaruh signifikan

Kriteria Uji: Tolak hipotesis H_0 apabila nilai $p_{value} < \alpha(5\%)$

Pada tabel Omnibus test of model coefficient diketahui nilai chi-square Model goodness of fit adalah 28,702 atau $p_{value}=0,000$ lebih kecil dari $\alpha=5\%$, yang berarti secara simultan usia berpengaruh signifikan terhadap kejadian PJK, tetapi tidak diketahui kelompok usia yang mana yang berpengaruh signifikan terhadap kejadian PJK.

Model Summary

Co. A Soul R. Nan-Bode R.

Sten	-2 log if elfcod	Coo & Shell R Square	Nagelicerice R Square	
	107 461*	248	315	

a. Emmarkes reminared at between number 5 because parameter economic changed by lect drain 081

Nagelkarke R square merupakan koreksi dari Cox & Snell R square. Cox & Snell R square dan Nagelkarke R square memiliki pengertian yang sama dengan nilai R-squares pada Model Regresi Tunggal atau Ganda, yaitu menjelaskan besarnya kontribusi variabel bebas dalam menentukan perubahan variabel terikat.

Nagelkarke R square = 0,335 = 33,5% yang berarti kontribusi usia dalam menentukan kejadian PJK adalah sebesar 33,5%, sementara sisanya sebesar 66,5% ditentukan oleh variabel lain yang tidak diperhitungkan di dalam model.

Y = Kejadian PJK

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Negatif	57	57.0	57.0	57.0
	Positif	43	43.0	43.0	100.0
	Total	100	100.0	100.0	

Tebel distribusi frekuensi menjelaskan frekuensi responden yang mengalami kejadian PJK positif dan PJK negatif. Jumlah penderita PJK positif adalah 43 orang atau 43% dan PJK negatif berjumlah 57 orang atau 57%.

Classification Table^a

				Predicted		
				Y = Kejadian PJK		
	Observed			Negatif	Positif	Percentage Correct
Step 1	Y = Kejadian PJK	Negatif		48	9	84.2
		Positif		17	26	60.5
	Overall Percentage					74.0

a. The cut value is .500

Classification table menjelaskan banyaknya responden atau persentase responden yang diprediksi secara benar mengalami kejadian PJK positif dan PJK negatif.

Berdasarkan hasil observasi, jumlah responden yang mengalami kejadian PJK positif sebanyak 43 orang, sementara berdasarkan hasil perhitungan statistik (SPSS), Jumlah responden yang diprediksi secara benar mengalami kejadian PJK positif sebanyak 26 orang dari 43 orang atau (60,5%)

Berdasarkan hasil observasi, jumlah responden yang mengalami kejadian PJK negatif sebanyak 57 orang, sedangkan berdasarkan hasil perhitungan statistik (SPSS), jumlah responden yang diprediksi secara benar mengalami kejadian PJK negatif sebanyak 48 orang dari 57 orang atau (84,2%)

Overall Percentage sebesar 74% merupakan ukuran ketepatan model dalam mengklasifikasikan data hasil observasi.

Bab 6 Analisis Regresi Logistik Biner

								95,7% (1	(ci ExFIB
		P	: ;	WO H	-11	=16	Eσ:P	I rwer	1 100.0
910m	3.2			21076	7	100			
1-	3-2r fr	:	1.441	dts	- 1	4b.	1.85	LAI	10.00
	32141	1.099	1.347	77.6	1	178	1000	290	34 575
	82121	1.40#	1.194	1613	٠,۱	105	#400	430	16 - 71
	32(4)	200	1.192	20.0	٠, ١	101	7712	716	19 77
	1-2(5)	a 704	1 442	4.480	- 1	155	15 led	- 115	Ich at
	32IEI	3.276	1.193	79.5	1 I	105	29.290	2739	3680
	82171	3.484	1.814	7.767	,	10.	86,000	2.721	416 170
	-25000200	2197	1.)54	4.746	٠,١	131	111		

Variable(s) entered on step 1. No

Pada laporan penelitian, tabel variable in the equation disajikan sebagai berikut.

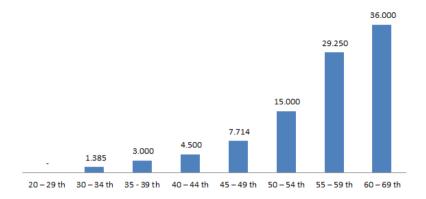
	Variabel	В	E-control	arrestes y	95% CI For Exp(B)		
	varianei	ь	Exp(B)	p_value	Lower	Upper	
X2(1)	Usia 30-34 talum	0,325	1,385	0,802	0,108	17,670	
X2(2)	Usia 35-39 talum	1,099	3,000	0,378	0,260	34,575	
X2(3)	Usia 40-44 talum	1,504	4,500	0,205	0,439	46,170	
X2(4)	Usia 45-49 tahun	2,043	7.714	0,087	0,746	79,771	
X2(5)	Usia 50-54 talum	3,708	15,000	0.035	1,215	185,198	
X2(6)	Usia 55-59 tahun	3,376	29,250	0,007	2,789	306,811	
C2(7)	Usia 60-69 talam	3,584	36,000	0,037	2,721	476,276	
x2(2)	Konstanta	-2 197					

Tabel Hubungan Usia dan Kejadian PJK

Hunungan usia dan kejadian PJK digambarkan dalam model regresi logistik biner sebagai berikut.

$$\pi(x) = P(y = 1|x) = \frac{e^{g(x)}}{1 + e^{g(x)}}$$

dengan


$$g(x) = \beta_0 + \beta_1 x_{2.1} + \beta_2 x_{2.2} + \beta_3 x_{2.3} + \beta_4 x_{2.4} + \beta_5 x_{2.5} + \beta_6 x_{2.6} + \beta_7 x_{2.7}$$

$$g(x) = -2,197 + 0,325x_{2.1} + 1,099x_{2.2} + 1,504x_{2.3} + 2,043x_{2.4} + 2,708x_{2.5} + 3,376x_{2.6} + 3,584x_{2.7}$$

Model ini menggambarkan peluang terjadi PJK positif menurut kelompok usia tertentu.

Estimasi parameter regresi β_i diperolah dengan memakai metode *Maximum Likelihood Estimation* (MLE).

- $OR_1 = \exp(\beta) = 1.38$ menyatakan risiko terjadi PJK positif pada kelompok usia 30-34 tahun adalah 1,38 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun. Secara statistik perbedaan tersebut tidak signifikan dengan $p_{value} = 0.802$ dan 95% confidence interval for $\exp(\beta)$ berkisar antara 0,108 – 17,670.
- $OR_2 = \exp(\beta) = 3,00$ menyatakan risiko terjadi PJK positif pada kelompok usia 35-39 tahun adalah 3,00 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun. Secara statistik perbedaan tersebut tidak signifikan dengan $p_{value} = 0.260$ dan 95% confidence interval for $\exp(\beta)$ berkisar antara 0,260 – 34,575.
- $OR_3 = \exp(\beta) = 4,50$ menyatakan risiko terjadi PJK positif pada kelompok usia 40-44 tahun adalah 4,50 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun. Secara statistik perbedaan tersebut tidak signifikan dengan $p_{value} = 0.205$ dan 95% confidence interval for $\exp(\beta)$ berkisar antara 0,439 – 46,170.
- $OR_4 = \exp(\beta) = 7,714$ menyatakan risiko terjadi PJK positif pada kelompok usia 45-49 tahun adalah 7,714 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun. Secara statistik perbedaan tersebut tidak signifikan dengan $p_{value} = 0.087$ dan 95% confidence interval for $\exp(\beta)$ berkisar antara 0,746 – 79,771.
- $OR_5 = \exp(\beta) = 15,00$ menyatakan risiko terjadi PJK positif pada kelompok usia 50-54 tahun adalah 15,00 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun. Secara statistik perbedaan tersebut signifikan dengan $p_{value} = 0.035$ dan 95% confidence interval for $Exp(\beta)$ berkisar antara 1,215 – 185,198.
- $OR_6 = \exp(\beta) = 29,25$ menyatakan risiko terjadi PJK positif pada kelompok usia 55-59 tahun adalah 29,25 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun. Secara statistik perbedaan tersebut signifikan dengan $p_{value} = 0.007$ dan 95% confidence interval for $\exp(\beta)$ berkisar antara 2,789 – 306,811.
- $OR_7 = \exp(\beta) = 36,00$ menyatakanrisiko terjadi PJK positif pada kelompok usia 60-69 tahun adalah 36,00 kali jika dibandingkan dengan pada kelompok usia 20-29 tahun. Secara statistik perbedaan tersebut signifikan dengan $p_{value} = 0.037$ dan 95% confidence interval for $\exp(\beta)$ berkisar antara 2,712 – 476,276.

Gambar $OR = \exp(\beta)$ dengan umur 20-29 tahun sebagai pembanding

Terlihat, bahwa makin tinggi umur makin besar resiko terjadi PJK positif.

6.4 Pengaruh LDL dan Obsitas Terhadap PJK

Misalkan penelitian bertujuan untuk menganalisis faktor risiko LDL dan obesitas terhadap kejadian Penyakit Jantung Koroner (PJK) menggunakan analisis regresi logistik biner.

Pada contoh ini

y = Kejadian PJK merupakan variabel katagorik biner.

- y = 1 PJK positif
- y = 0 PJK negatif

 x_1 = LDL merupakan variabel katagorik.

- $x_1 = 1$ apabila LDL tinggi
- $x_1 = 0$ apabila LDL normal

 x_2 = Obesitas merupakan variabel katagorik.

- $x_2 = 1$ apabila Obesitas
- $x_2 = 0$ apabila Non-Obesitas

Tujuan khusus penelitian adalah sebagai berikut.

1. Menganalisis pengaruh LDL terhadap Kejadian PJK.

92 E. Roflin, I. A. Liberty, Pariyana, M. Reagan, & H. M. Uli

- 2. Menganalisis pengaruh LDL dan IMT terhadap kejadian PJK tanpa memperhitungkan faktor interaksi (LDL*IMT)
- 3. Menganalisis pengaruh LDL dan IMT terhadap kejadian PJK dengan memperhitungkan faktor interaksi (LDL*IMT)

Data penelitian disajikan pada tabel berikut.

No	LDL	K	ejadian PJ	K	р	0	RP	OR	
INO	Kolesterol	Positif	Negatif	Jumlah	P	O	KP	OK	
1	Tinggi	70	130	200	0.350	0.538	1.273	1.420	
0	Normal	55	145	200	0.275	0.379			
	Jumlah	125	275	400	0.313	0.455			

Sumber I Gusti Ngurah Agung (2001:178)

INPUT SPSS

Data list free / x1 x2 y.

Weighted by freq.

Begin data

1 1 1 35

1 1 0 65

10120

10080

0 1 1 30

0 1 0 70

0 0 1 40

0 0 0 60

End data.

6.4.1 Pengaruh LDL terhadap PJK

Analisis untuk mengetahui pengaruh LDL terhadap kejadan PJK dapat dilakukan metode analisis deskriptif dan inferensial (analitik) menggunakan analisis regresi logistik biner.

Analisis Deskriptif

No	LDL	K	ejadian PJ	K	р	0	RP	OR	
INO	Kolesterol	Positif	Negatif	Jumlah	P	O	KP	OK	
1	Tinggi	70	130	200	0.350	0.538	1.273	1.420	
0	Normal	55	145	200	0.275	0.379			
	Jumlah	125	275	400	0.313	0.455			

Tabel Hubungan LDL dan Kejadian PJK

 $P_0 = 0,275$ menyatakan peluang terjadi PJK positif pada kelompok LDL normal

 $P_1 = 0.350$ menyatakan peluang terjadi PJK positif pada kelompok LDL tinggi

RP = 1,273 menyatakan peluang terjadi PJK positif pada kelompok LDL tinggi adalah 1,273 kali jika dibandingkan dengan pada kelompok LDL normal

Selisih prevelensi kejadian PJK positif pada kelompok LDL tinggi dan LDL normal $(P_1 - P_0)$ secara statistik dapat dinyatakan sebagai **Koefisien Asosiasi** *Bivariate* (I Gusti Ngurah Agung. 2001:77).

Koefisien Asosiasi *Bivariate* $KA = P_1 - P_0$ merupakan selisih dua binomial dengan variansi $Var(KA) = \frac{P_1(1-P_1)}{(A+B)} + \frac{P_0(1-P_0)}{(C+D)}$. (A+B) =Jumlah orang pada kelompok LDL tinggi dan (C+D) =Jumlah orang pada kelompok LDL normal. Untuk mengetahui signifikansi selisih dua prevelensi tersebut perlu dilakukan uji hipotesis.

Bentuk uji hipotesis

• H_0 : $\pi_1 - \pi_2 = 0$

Peluang terjadi PJK positif pada kelompok LDL tinggi dan kelompok LDL normal berbeda tidak signifikan

• $H_1: \pi_1 - \pi_2 \neq 0$

Peluang terjadi PJK positif pada kelompok LDL tinggi dan kelompok LDL normal berbeda signifikan

Uji hipotesis ini dapat dilakukan menggunakan statistik Chi-Kuadrat atau digunakan pendekatan distribusi normal, karena

distribusi normal dapat dipakai sebagai pendekatan distribusi binomial untuk ukuran sampel besar (n > 30) dengan $z = \frac{KA}{\sqrt{Var(KA)}}$

$$KA = P_1 - P_0 = 0.350 - 0.275 = 0.075$$

$$Var(KA) = \frac{P_1(1-P_1)}{(A+B)} + \frac{P_0(1-P_0)}{(C+D)} = \frac{(0.350)(0.650)}{200} + \frac{(0.275)(0.725)}{200} = 0.0021$$

$$z_{hitung} = \frac{KA}{\sqrt{Var(KA)}} = \frac{0.075}{\sqrt{0.0021}} = 1.6234$$

 Z_{tabel} dengan menggunakan $\alpha = 5\%$ adalah $Z_{0.025} = 1,96$, dengan demikian daerah penerimaan H_0 terletak antara [-1,96: :1,96

 Z_{hitung} = 1,6234 berada di daerah penerimaan H_0 dengan demikian peluang terjadi PJK positif pada kelompok LDL tinggi dan kelompok LDL normal berbeda tidak signifikan.

Hasil ini akan dibandingkan dengan hasil analisis menggunakan metode analisis regresi logistik biner.

Model regresi logistik biner yang menyatakan hubungan LDL dan kejadian PJK adalah sebagai berikut.

$$\pi(x) = P(y = 1|x) = \frac{e^{g(x)}}{1 + e^{g(x)}} \text{ dengan } g(x) = \beta_0 + \beta_1 x$$

HASIL SPSS

Variables in the Equation

		В	SE	Weld	4	9g.	Esp(B)
Slep 1=	X1(I)	.350	.217	2 609	1	106	1 120
<u>'</u>	Constant	980	.158	37,472	1	999	179

a Variable(s) entered on step 1 X1

Berdasarkan tabel variable in equation diketahui

$$g(x) = -0.969 + 0.350 x_1.$$

Peluang terjadi PJK positif pada kelompok x tertentu dapat dihitung mengunakan model berikut.

$$\pi(x) = \frac{\exp(-0.969 + 0.350 x_1)}{1 + \exp(-0.969 + 0.350 x_1)}$$

 P_1 = Peluang terjadi PJK positif pada kelompok LDL tinggi adalah $P(y=1|x=1)=\frac{\exp\left[(-0.969+0.350)\right]}{1+\exp\left[(-0.969+0.350)\right]}=0.350$

 P_0 = Peluang terjadi PJK positif pada kelompok LDL normal adalah $P(y=1|x=0)=\frac{\exp{\mathbb{E}[-0.969)}}{1+\exp{\mathbb{E}[-0.969)}}=0,275$

Rasio Prevalensi
$$RP = \frac{P_1}{P_0} = \frac{P(y=1|x=1)}{P(y=1|x=0)} = 1,273$$

Peluang terjadi PJK negatif pada kelompok LDL tinggi adalah $P(y=0|x=1)=1-\pi(1)=\frac{1}{1+\exp{(-0.969+0.350)}}=0,650$

Peluang terjadi PJK negatif pada kelompok LDL normal adalah $P(y=0|x=0)=1-\pi(1)=\frac{1}{1+\exp{(-0.969)}}=0.725$

Statistik Wald digunakan untuk menguji signifikansi perbedaan peluang terjadi PJK positif pada kelompok x = 1 dan x = 0.

Berdasarkan tabel *variable* in equation diketahui nilai statistik Wald adalah 2,609 dengan derajat kebebasan df = 1 dan $p_{value} = (\text{sig}) = 0,106$ yang berarti peluang terjadi PJK positif pada kelompok LDL tinggi dan kelompok LDL normal berbeda tidak signifikan.

Koefisien variabel bebas $x_1 = 0.350$ merupakan koefisien asosiasi antara indikator x_1 dan g(x), yang dihitung sebagai selisih nilai g(x) untuk $x_1 = 1$ dan $x_1 = 0$. Hal ini dapat dibuktikan sebagai berikut.

$$g(x) = -0.969 + 0.350 x_1$$

 $x_1 = 1 \text{ maka } g(1) = -0.969 + 0.350 = -0.619$
 $x_1 = 0 \text{ maka } g(0) = -0.969$
 $g(1) - g(0) = -0.619 - (-969) = 0.350$

 $OR = \exp(\beta)$ dapat dihitung sebagai berikut

$$OR = \exp(\beta) = \frac{\exp(\beta_0 + \beta_1)}{\exp(\beta_0)} = \frac{\exp(-0.969 + 0.350)}{\exp(-0.969)} = 1.420$$

OR = 1,420 menunjukkan besarnya risiko terjadi PJK positif pada kelompok LDL tinggi adalah 1,420 kali jika dibandingkan

dengan pada kelompok LDL normal, dengan nilai $p_{value} = 0.106$ berarti perbedaan tersebut tidak signifikan.

6.4.2 Pengaruh LDL dan Obesitas terhadap PJK (Faktor Utama)

Uji hipotesis untuk mengetahui signifikansi pengaruh LDL dan Obesitas terhadap kejadian PJK dapat dihitung secara manual menggunakan tabel silang atau menggunakan analisis regresi logistik biner. Data penelitian disajikan tabel berikut.

Faktor Risiko		K	ejadian PJ	K	р	0	RP	OR	
, P)	OB(11)	P.Delo	Posetf	Negatif	Jumlah	P	1000	N.P.	UK
XI = IDI.	1	Tingge	70	130	200	0.350	0.538	1.273	1.420
	0	Normal	55	145	200	0.275	0.379		
		Jumlah	125	275	400	0.313	0.455	-5179352F	- cross
X2=IMT	1	Obesitas	65	135	200	0.325	0.481	1,083	1.123
	.0	Normal	60	140	200	0.300	0.429		
		Jumlah	125	275	400	0.313	0.455		

Tabel Rasio Prevalence dan Odds Rasio

Pada contoh ini, ditetapkan kelompok LDL normal dan obesitas normal sebagai pembanding.

Analisis pengaruh LDL terhadap kejadian PJK telah dijelaskan di atas. Berikut dijelaskan pengaruh obesitas terhadap kejadian PJK.

 $P_0 = 0,300$ menyatakan peluang terjadi PJK positif pada kelompok obesitas.

 $P_1 = 0.325$ menyatakan peluang terjadi PJK positif pada kelompok Normal

RP = 1,083 menyatakan peluang terjadi PJK positif pada kelompok obesitas adalah 1,083 kali jika dibandingkan dengan pada kelompok non-obsitas (normal)

$$KA = P_1 - P_0 = 0.325 - 0.300 = 0.025$$

$$Var(KA) = \frac{P_1(1-P_1)}{(A+B)} + \frac{P_0(1-P_0)}{(C+D)} = \frac{(0.325)(0.675)}{200} + \frac{(0.300)(0.700)}{200} = 0.00688$$

$$z_{hitung} = \frac{KA}{\sqrt{Var(KA)}} = \frac{0.025}{\sqrt{0.00688}} = 0.30151$$

 Z_{tabel} dengan menggunakan $\alpha = 5\%$ adalah $Z_{0,025} = 1,96$, dengan demikian daerah penerimaan H_0 terletak antara [-1,96::1,96]

 $Z_{hitung} = 0.30151$ berada di daerah penerimaan H_0 , dengan demikian peluang terjadi PJK positif pada kelompok obesitas dan kelompok non-obesitas (normal) berbeda tidak signifikan.

HASIL SPSS

Analyze, regression, Binary Logistic

Pindahkan kejadian PJK ke Dependent

Pindahkan IMT dan LDL ke Covariate

Cocariate

Pindahkan IMT dan LDL ke Catagorical Covariate

Pilih Fist, Change, Continue

Klik Option

Pilih CI For Exp(B), Hosmer Lemeshow goodness of fit, Continu Ok

Vanageousee Despite

								95,3% (1)	o ExPoli
		*	38	70.40	σ	6	E+c(E)	2000	19920
Heb	+1.10	.9'	27.0	7811		106	1.420	5.78	7113
	12.10	117	317	292	1	500	1124	709	1719
	Combatt	21,025	194	78 °P.	1	100	Ja.		

a Vanablaja enlaredan (leb 1.11, 12.

Hubungan LDL, obesitas, dan kejadian PJK dapat dinyatakan dalam model regresi logistik biner sebagai berikut.

$$\pi(x) = P(y = 1|x) = \frac{e^{g(x)}}{1 + e^{g(x)}}$$

dengan $g(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$.

98 E. Roflin, I. A. Liberty, Pariyana, M. Reagan, & H. M. Uli

 $OR = \exp(\beta)$ untuk LDL adalah 1,420 yang berarti risiko terjadi PJK positif pada kelompok LDL tinggi adalah 1,420 kali jika dibandingkan dengan pada kelompok LDL normal, tetapi secara statistika bedanya tidak signifikan dengan $p_{value} = 0,106$. Dengan kata lain, LDL berpengaruh tidak signifikan terhadap kejadian PJK, atau LDL bukan faktor risiko PJK.

 $OR = \exp(\beta)$ untuk obesitas adalah 1,124 yang berarti risiko terjadi PJK positif pada kelompok obesitas adalah 1,124 kali jika dibandingkan dengan pada kelompok non-obesitas (normal), tetapi secara statistika bedanya tidak signifikan dengan p_{value} = 0,588. Dengan kata lain, obesitas berpengaruh tidak signifikan terhadap kejadian PJK, atau obesitas bukan faktor risiko PJK.

Besarnya peluang terjadi PJK positif dapat dihitung sebagai berikut.

$$\pi(x) = P(y = 1|x) = \frac{e^{-1,029 + 0,351x_1 + 0,117x_2}}{1 + e^{-1,029 + 0,351x_1 + 0,117x_2}}$$

Peluang terjadi PJK positif pada kelompok LDL tinggi dan obesitas adalah

$$P(y = 1 | x_1 = 1, x_2 = 1) = \frac{\exp(-1,029 + 0,351 + 0,117)}{1 + Exp(-1,029 + 0,351 + 0,117)} = 0.363$$

Peluang terjadi PJK positif pada kelompok LDL tinggi dan nonobesitas (normal) adalah

$$P(y = 1 | x_1 = 1, x_2 = 0) = \frac{\exp(-1,029 + 0,351)}{1 + Exp(-1,029 + 0,351)} = 0.337$$

Peluang terjadi PJK positif pada kelompok LDL normal dan obesitas adalah

$$P(y = 1 | x_1 = 0, x_2 = 1) = \frac{\exp(-1,029 + 0,117)}{1 + Exp(-1,029 + 0,117)} = 0.287$$

Peluang terjadi PJK positif pada kelompok LDL normal dan nonobesitas (normal) adalah

$$P(y = 1 | x_1 = 0, x_2 = 0) = \frac{\exp(-1,029)}{1 + \exp(-1,029)} = 0.263$$

6.4.3 Pengaruh LDL dan Obesitas terhadap PJK (Faktor Interaksi)

PROSEDUR SPSS

Analyze, Regression, Binary Logistic

Pindahkan Kejadian PJK ke Dependent

Pindahkan IMT dan LDL ke Covariatre

Buat interksi IMT * LDL, Covariate

Pindahkan IMT dan LDL ke Catagorical Covariate

Pilih Fist Change untuk IMT dan LDL

Continu

Klik Option

Klik Option

Pilih CI For Exp(B), Hosmer Lemeshow goodness of fit, Continu Ok

Variables in the Equation

			at.	735	٦.	N1	sīd.	HOME:	(n[>(j))
;m	216. 2300	(a) (6)	:::	5235 5330	- :	032 012	2 54	147	2 000
	210 (1432 1 10 (141)		444 270	. 100 (13 (1		000	.44		

an Amathetic et level conteque (Cl. 20), 2 (10)

Model regresi logistik biner yang memuat faktor utama x_1 dan x_2 dan faktor interaksi $(x_1 * x_2)$ adalah sebagai berikut

$$\pi(x) = P(y = 1|x) = \frac{e^{g(x)}}{1 + e^{g(x)}}$$

dengan

$$g(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 (x_1 * x_2)$$

$$g(x) = -1,386 + 0,981x_1 + 0,767x_2 - 1,209(x_1 * x_2)$$

Model untuk non-obesitas ($x_2 = 0$) adalah

$$g(x) = \beta_0 + \beta_1 x_1$$
$$g(x) = -1,386 + 0,981x_1$$

Model untuk obesitas ($x_2 = 1$) adalah

$$g(x) = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)x_1$$
$$g(x) = -0.619 - 0.228x_1$$

Model untuk LDL normal ($x_1 = 0$) adalah

$$g(x) = \beta_0 + \beta_2 x_2$$
$$g(x) = -1.386 + 0.767x_2$$

Model untuk LDL tinggi ($x_1 = 1$) adalah

$$g(x) = (\beta_0 + \beta_1) + (\beta_2 + \beta_3)x_2$$
$$g(x) = -0.405 - 0.442x_2$$

 p_{value} untuk faktor interaksi $(x_1 * x_2)$ adalah 0,006 yang berarti faktor interaksi berpengaruh signifikan terhadap kejadian PJK. Karena itu faktor utama x_1 dan x_2 tidak boleh dikeluarkan dari model walaupun pengaruhnya tidak signifikan.

 $OR = \exp(\beta)$ untuk LDL adalah 2,667 yang berarti risiko terjadi PJK positif pada kelompok LDL tinggi adalah 2,667 kali jika dibandingkan dengan pada kelompok LDL normal dan secara statistika bedanya dinyatakan signifikan dengan $p_{value} = 0,002$. Dengan kata lain LDL berpengeruh signifikan terhadap kejadian PJK, atau LDL merupakan faktor risiko terjadi PJK.

 $OR = \exp(\beta)$ untuk obesitas adalah 2,154 yang berarti risiko terjadi PJK positif pada kelompok obesitas adalah 2,154 kali jika dibandingkan dengan pada kelompok non obesitas dan secara statistika bedanya dinyatakan signifikan dengan $p_{value} = 0.019$. Dengan kata lain, obsetitas berpengaruh signifikan terhadap kejadian PJK, atau obesitas merupakan faktor risiko terjadi PJK.

Perhatikan terdapat kasus yang menarik untuk dibahas pada contoh ini.

- a. Pada model pertama yang hanya memuat faktor utama diperoleh kesimpulan, bahwa
 - LDL berpengaruh tidak signifikan terhadap kejadian PJK dengan $p_{value}=0.106$
 - Obesitas berpengaruh tidak signifikan terhadap kejadian PJK dengan $p_{value} = 0.588$
- b. Pada model kedua yang memuat faktor utama dan faktor interaksi diperoleh kesimpulan, bahwa
 - Interaksi LDL dan obesitas berpengaruh signifikan terhadap kejadian PJK dengan $p_{value} = 0.006$
 - LDL berpengaruh signifikan terhadap kejadian PJK dengan $p_{value} = 0.002$
 - Obesitas berpengaruh signifikan terhadap kejadian PJK dengan $p_{value} = 0.019$

Berdasarkan temuan tersebut, peneliti harus memahami secara teori tentang hubungan antar variabel penelitiannya. Apabila diduga, bahwa obesitas berpengaruh terhadap LDL, maka sudah sewajarnya diperhitungkan pengaruh faktor interaksi (LDL dan obestitas) terhadap kejadian PJK.

Pertanyaan berikutnya adalah "apakah terdapat perbedaan risiko LDL terhadap kejadian PJK pada kelompok obesitas dan non-obesitas".

Pertanyaan tersebut dapat dijawab dengan melakukan analisis pengaruh LDL terhadap kejadian PJK pada kelompok responden yang obesitas dan non-obesitas.

Pada Kelompok Non-Obesitas

HASIL SPSS

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1*	X1(1)	228	.303	.569	1	.451	.796
	Constant	619	.210	8.718	1	.003	.538

a. Variable(s) entered on step 1: X1.

Hubungan LDL dan kejadian PJK pada kelompok non-obesitas dinayatakan dalam model regresi logistik biner sebagai berikut

$$\pi(x) = P(y = 1|x) = \frac{e^{-0.61900 - 0.22800x}}{1 + e^{-0.61900 - 0.22800x}}$$

Pada kelompok non-obesitas, $OR = \exp(\beta) = 0.796$ menunjukkan, bahwa risiko terjadi PJK positif pada kelompok LDL tinggi adalah 0,796 kali jika dibandingkan dengan pada kelompok LDL normal. Atau sebaliknya risiko terjadi PJK Postif pada kelompok LDL normal adalah 1,256 kali jika dibandingkan dengan pada kelompok LDL tinggi. Tetapi secara statistika perbedaan risiko tersebut dinyatakan tidak signifikan dengan $p_{value} = 0,451$. Dengan kata lain, pada kelompok non-obesitas LDL tidak berpengaruh signifikan terhadap kejadian PJK, atau LDL bukan merupakan faktor risiko terjadi PJK.

Pada Kelompok Obesitas

HASIL SPSS

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1ª	X1(1)	.981	.323	9.235	1	.002	2.667
	Constant	-1.386	.250	30.749	1	.000	.250

a. Variable(s) entered on step 1: X1.

Hubungan LDL dan kejadian PJK pada kelompok obesitas dinayatakan dalam model regresi logistik biner sebagai berikut:

$$\pi(x) = P(y = 1|x) = \frac{e^{-1,386+0,981x}}{1 + e^{-1,386+0,981x}}$$

Pada kelompok obesitas, $OR = Exp(\beta) = 2,667$ menunjukkan, bahwa risiko terjadi PJK positif pada kelompok LDL tinggi adalah 2,667 kali lebih besar jika dibandingkan dengan pada kelompok LDL normal. Secara statistika perbedaan risiko tersebut dinyatakan signifikan dengan $p_{value} = 0,002$. Dengan kata lain, pada kelompok obesitas LDL berpengaruh signifikan terhadap kejadian PJK, atau LDL merupakan faktor risiko terjadi PJK.

Bab 6 Analisis Regresi Logistik Biner

Kesimpulan, setelah dikontrol oleh obesitas, diketahui bahwa:

- Pada responden obesitas, LDL tinggi merupakan faktor risiko terjadi PJK dengan OR = 2,667 dan $p_{value} = 0,002$.
- Pada responden non-obsitas DLD Tinggi bukan merupakan faktor risiko terjadi PJK dengan OR = 0,796 dan $p_{value} = 0,451$.

ANALISIS FAKTOR RISIKO TB SECARA PARSIAL

7.1 Jenis Kelamin

J enis kelamin merupakan faktor risiko terhadap kejadian TB di kota Palembang. Pria berisiko menderita TB lebih besar jika dibandingkan dengan wanita. Pria yang menderita TB berjumlah 60% sedangkan wanita berjumlah 38,2%. Risiko pria menderita TB lebih tinggi jika dibandingkan wanita. Risiko pria menderita TB sebesar OR = 2,429 kali lebih tinggi jika dibandingkan dengan wanita, dan secara statistika dinyatakan signifikan dengan nilai $p_{value} = 0,000$ atau 95% confidence interval for OR berkisar antara 1,681 - 3,509.

Tabel Hubungan Jenis Kelamin dengan Kejadian TB

Jenis Kelamin		Kejadian TB	n value	OR	95% CI OR		
Jenis Kelanini	Ya	Tidak	Jumlah	p_value	OK	9370 CI UK	
Pria	60.0%	40.0%	260	0,000	2,429	(1,681 ;3,509	
Wanita	38.2%	61,8%	220				

Hubungan antara jenis kelamin dan kejadian TB dinyatakan dalam model regresi logistik biner sebagai berikut.

$$P(y = 1|x) = \frac{e^{-0.482 + 0.887x}}{1 + e^{-0.482 + 0.887x}}$$

x = jenis kelamin

= 1 untuk pria

= 0 untuk wanita

SINTAX SPSS

Logistic regression variables y

/method=enter x1

/contrast (x1)=indicator

/print = ci(95)

/criteria=pin(0.05) pout(0.10) iterate(20) cut(0.5).

HASIL SPSS

Dependent Variable Encoding

Original	Internal Value
Non TB Paru	0
TB Paru	1

Categorical Variables Codings

			Palamejer coding
		Frequency	(1)
K1 = Jama Kelamin	Pna	260	1 000
	Wanda	220	800

Variables in the Equation

								95,9401	Mr F (P)P)
		A	9.5	wag a	·r	9)	Fruiti	1 Augus	11700-
Sien	71 H	837	188	22,014	_	000	3 429	. 68,	3709
1-	Constant	+482	139	12,056	_	901	618		

a Manable so enleted on step 1 ×

7.2 Usia

Usia bukan merupakan faktor risiko terhadap kejadian TB di Kota Palembang. Penderita TB berusia > 30 tahun berjumlah 51,7% sedangkan penderita TB berusia ≤ 30 tahun berjumlah 45,2%. Risiko responden berusia > 30 tahun menderita TB lebih tinggi jika dibandingkan dengan responden berusia ≤ 30 tahun.

Risiko responden berusia > 30 tahun menderita TB sebesar OR = 1,295 kali lebih besar jika dibandingkan dengan responden berusia \leq 30, tetapi secara statistika dinyatakan tidak signifikan dengan $p_{value} = 0,214$ atau 95% confidence interval for OR berkisar antara 0,861 – 1,948.

Tabel: Hubungan Usia dengan kejadian TB

Usia		- valua	OR	95% CI OR		
Osia	Ya	Tidak	Jumlah	p_value	OK	95% CI OK
<= 30 Tahun	45.2%	54.8%	126			
> 30 tahun	51.7%	48.3%	354	0.214	1.295	(0,861; 1,948)
PRIA						
<= 30 Tahun	57.6%	42.4%	59			
> 30 tahun	60.7%	39.3%	201	0,672	1.136	(0,630 ; 2,046)
WANITA						
<= 30 Tahun	34.3%	65.7%	67			
> 30 tahun	39.9%	60.1%	153	0,437	1,268	(0,697; 2,309)

Penderita TB pada pria berusia > 30 tahun berjumlah 60,7% sedangkan pada wanita berusia > 30 tahun berjumlah 39,9%. Risiko pria berusia > 30 tahun menderita TB adalah OR = 1,136 kali jika dibandingkan dengan pria berusia \leq 30 tahun, tetapi secara statistik bedanga tidak segnifikan dengan $p_{value} = 0,672$. Risiko wanita berusia > 30 tahun menderita TB adalah OR = 1,268 kali jika dibandingkan dengan wanita berusia \leq 30 tahun, tetapi secara statistik bedanga tidak segnifikan dengan $p_{value} = 0,437$.

Hubungan antara usia dan kejadian TB dinyatakan dalam model regresi logistik biner sebagai berikut.

$$P(y = 1|x) = \frac{e^{-0.191 + 0.259x}}{1 + e^{-0.191 + 0.259x}}$$

Model pria:
$$P(y = 1|x) = \frac{e^{0.307 + 0.127x}}{1 + e^{0.307 + 0.127x}}$$

Model wanita:
$$P(y = 1|x) = \frac{e^{-0.649 + 0.238x}}{1 + e^{-0.649 + 0.238x}}$$

x = usia

= 1 untuk usia > 30 Tahun

= 0 untuk ≤30 tahun

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/METHOD=ENTER x2e

/CONTRAST (x2e)=Indicator(1)

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Dependent Variable Encoding

Original	Internal Value
Non TB Paru	0
TB Paru	1

Calegorical Variables Cadings

			Paramejer coding
		Frequency	(1)
K3e = Melampok Usia	<= 30tahun	126	800
	► 30 laton	354	1800

Marketes in the Equation

								95,0%((v E vP Bi
		E	8E	Wald	ď	Sa	E:013)	- PK-	Ubger
900	1)011	269	109	1.516	_	200	1.095	661	1.046
-	Carelani	121	179	1.134		246	128		

a Natiatreco elletet di signiti. Že

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 1

/METHOD=ENTER x2e

/CONTRAST (x2e) = Indicator(1)

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Categorical Variables Codings

			Pajamejer coding
		Frequency	ויו
K3e = Kelompak Usra	⊶ 30 tahun	59	400
	• 30 Jahun	201	1800

variable: -- me for vaca-

								95,7% (1)	(ci ExFIB
		В	SE.	YOM	11	54E	EaB.	LEMME	Loger
41011	4,000	127	30+	179	1	473	11(6	630	2010
1-	Candani	700	263	1 302	1	247	1000		

a Valoridado eláricolo (de) il $\lambda_{\rm c}^2 \tau$

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 2

/METHOD=ENTER X2E

/CONTRAST (X2E)=INDICATOR(1)

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Categorical Variables Codings

			Pajamejer coding
		Frequency	ויו
K2e = Kelompak Usra	🕶 30 tahun	67	800
	• 30 Jahun	153	1800

vareies:	4.74	Fig.	101
----------	------	------	-----

								95,0% 0.11	or EXP BI
		8	SE.	79214	41 .	Sig	Excillo	Lwei .	Utası
400	s)ela	- 06) 16	505		4)?	1 346	÷9°	2,000
-	Tanerari	(45	257	8 358		012	500		

a Valiable soelije ek on den ilinde

7.3 Pendidikan

Pendidikan merupakan faktor risiko terhadap kejadian TB di kota Palembang, Risiko responden berpendidikan SD menderita TB lebih tinggi jika dibandingkan dengan responden berpendidikan SMP. SMA. dan PT.

Penderita TB dengan pendidikan SD berjumlah 60,0% sedangkan yang berpendidikan SMP, SMA, dan PT berjumlah 47,7%. Risiko responden berpendidikan SD menderita TB sebesar OR = 1,645 kali lebih besar jika dibandingkan dengan responden berpendidikan SMP, SMA, dan PT dan secara statistika dinyatakan signifikan dengan $p_{value} = 0.036$ atau 95% confidence interval for OR berkisar antara 1,032 - 2,622.

Tabel: Hubungan Pendidikan dan Kejadian TB

Pendidikan		Kejadian TB			OR	95% CI OR	
Pendidikan	Ya	Tidak	Jumlah	p_value	OK		
Dasar (SD)	60.0%	40.0%	90	0.036	1,645	(1,032 ; 2,622)	
Menengah (SMP, SMA, PT)	47.7%	52.3%	390				
PRIA							
Dasar (SD)	65.2%	34.8%	46	0,427	1,310	(0,673; 2,546)	
Menengah (SMP, SMA, PT)	59.9%	40.1%	214				
WANITA							
Dasar (SD)	54.5%	45.5%	44	0,014	2,320	(1,187 ; 4,535)	
Menengah (SMP, SMA, PT)	34.1%	65.9%	176				

Penderita TB pada pria berpendidikan SD berjumlah 65,2% sedangkan pada wanita berpendidikan SD berjumlah 54,5%. Wanita berbendidikan SD berisiko menderita TB lebih besar jika dibandingkan dengan pria berpendidikan SD.

Risiko wanita berpendidikan SD menderita TB adalah OR = 2,320 kali lebih besar jika dibandingkan dengan wanita berpendidikan SMP, SMA, dan PT, dan secara statistik bedanya signifikan dengan $p_{value} = 0.014$. Sedangkan risiko pria berpendidikan SD menderita TB adalah OR = 1,310 kali lebih besar jika dibandingkan dengan pria berpendidikan SMP, SMA, dan PT, tetapi secara statistik bedanya tidak signifikan dengan $p_{value} = 0.427$.

Hubungan antara pendidikan dan kejadian TB dinyatakan dalam model regresi logistik biner sebagai berikut.

$$P(y = 1|x) = \frac{e^{-0.092 + 0.498x}}{1 + e^{-0.092 + 0.498x}}$$

Model pria:
$$P(y = 1|x) = \frac{e^{0.359 + 0.270x}}{1 + e^{0.359 + 0.270x}}$$

Model wanita:
$$P(y = 1|x) = \frac{e^{-0.659 + 0.842x}}{1 + e^{-0.659 + 0.842x}}$$

x = pendidikan

= 1 untuk pendidikan dasar SD

= 0 untuk pendidikan menengah atas (SMP, SMA, PT)

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/METHOD=ENTER X3A

/CONTRAST (X3A)=INDICATOR

/PRINT = CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Dependent Variable Encoding

Original	Internal Value
Non TB Paru	0
TB Paru	1

Categorical Variables Collings

			Paremeter coding
		Frequency	(I)
X39.= Pendidéan	Dasar	90	I DDD
	Nanangah Alas	300	DDD

Vanades la una Equation

								95,0% (1)	(or ENP(B)
		8	16	99200	qı	Siu	670787	Lawer	Uduá
Step	×3 2 01)	498	238	4 381	- 1	006	1645	1 032	2622
1-	Constant	- 092	101	830	1	363	912		

a variable(s) entered on step 1, A.D.

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 1

/METHOD=ENTER X3A

/CONTRAST (X3A)=INDICATOR

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Categorical Variables Codings

			Parameter coding
		Frequency	Ξ
314 - Pentildikan	Dasar	46	1 000
	Menengah ^o las	214	800

Variables in the Complete

								95(3.0)	o DODE
		2	4.6	wag	q.	811	Fn Æl	1046	Ng pasa
Sicp	CATI	370	559	504	_	417	1010	675	3.540
.,	Constant	759	39	8 575	1	010	1.402		

^{\$170 (4004) 1} evre 30 on 305 (1.5.3).

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 2

/METHOD=ENTER X3A

/CONTRAST (X3A)=INDICATOR

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Categorical Variables Coderos

			Peremeter coding
		Frequency	(1)
>)#=Pendolsan	[1959]	11	1,000
	Menengan Alas	176	.000

Variables in the Equipment

								95,954.01	M: F:P(F)
		R	4F	19411	#1	849	Frank	1 One at	шде
Sen If	23 4 (1)	642	343	6 (58	- 1	(14	; 327	1 197	- 535
Ir.	Constant	- 659	150	17 (87	- 1	(00	517		

a Varabejtjierleied roitlep Lic 34

7.4 Status Gizi

Status gizi merupakan faktor risiko terhadap kejadian TB di kota Palembang. Risiko responden dengan status gizi kurang menderita TB lebih tinggi jika dibandingkan dengan responden dengan status gizi sehat.

Penderita TB dengan status gizi kurang berjumlah 78,6% sedangkan yang berstatus gizi sehat berjumlah 42,7%. Risiko responden dengan status gizi kurang menderita TB sebesar OR = 4,926 kali lebih besar jika dibandingkan dengan responden dengan status gizi sehat, dan secara statistika dinyatakan signifikan dengan $p_{value} = 0,000$ atau atau 95% confidence interval for OR berkisar antara 2,919 - 8,314.

Status Gizi		Kejadian TB				95% CL OR
	Ya	Tidak	Jumlah	p_value	OR	95% CI OK
Gizi Kurang	78.6%	21.4%	273	0.000	4.926	(2,919 ; 8,314)
Gizi Sehat	42.7%	57.3%	109			
PRIA						
Gizi Kurang	91.5%	8.5%	59	0.000	10.482	(4,026 ; 27,295)
Gizi Sehat	50.7%	49.3%	201			
WANITA						
Gizi Kurang	59.0%	41.0%	39	0,004	2.828	(1,392 ; 5,744)
Gizi Sehat	33.7%	66.3%	181			_ · · · · · · · · ·

Tabel Hubungan Status Gizi dan Kejadian TB

Penderita TB pada pria dengan status gizi kurang berjumlah 91,5%; sedangkan pada wanita dengan statis gizi kurang berjumlah 59,0%. Pria dengan status gizi kurang lebih rentan menderita TB jika dibandingkan dengan wanita dengan status gizi kurang.

Risiko pria dengan status gizi kurang menderita TB adalah OR = 10,482 kali lebih besar jika dibandingkan dengan pria dengan status gizi sehat, dan secara statistik bedanya dinyatakan signifikan dengan $p_{value}=0,000$. Sedangkan risiko wanita dengan status gizi kurang menderita TB adalah OR = 2,828 kali lebih besar jika dibandingkan dengan wanita dengan status gizi sehat, dan secara statistika bedanya dinyatakan signifikan dengan $p_{value}=0,004$

Hubungan antara status gizi dan kejadian TB dinyatakan dalam model regresi logistik biner sebagai berikut.

$$P(y=1|x) = \frac{e^{-0.295+1.595x}}{1 + e^{-0.295+1.595x}}$$

Model pria: $P(y=1|x) = \frac{e^{0.030+2.530x}}{1 + e^{0.030+2.530x}}$

Model wanita:
$$P(y = 1|x) = \frac{e^{-0.677 + 1.040x}}{1 + e^{-0.677 + 1.040x}}$$

x = status gizi

= 1 untuk status gizi kurang

= 0 untuk status gizi sehat

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/METHOD=ENTER X4A

/CONTRAST (X4A)=INDICATOR

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Dependent Variable Encoding

Original	Internal Value
Non TB Paru	0
TB Paru	1

Calegorical Variables College

			Parameter coung
		Frequency	m
×4a = Slakis Gel	See Mulang	98	1 000
	Ger Tidak Pulang	382	000

Vanalies at the Few View

								95,0% 0.11	OF EXP BI
		8	SE.	74214	41 .	Sig .	Excillo	Lwei .	Utası
900	AB-17	1.696	247	15,559		0)0	49.6	200	4 (14
_	Tanerari	:45	130	0150		034	744		

a Validite welle ekunden Lida

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 1

/METHOD=ENTER X4A

/CONTRAST (X4A)=INDICATOR

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Categorical Variables Codings

			Parameter (00mg
		Frequency	70
Maa Slalus (42)	(-grP),reng	59	1,000
	(ver Tintak Hurang	201	.000

Variables in the Especial

								96,0% (1)	(in ExAIB
		Ε.	SE.	Yalt	ĭ	Sig	Edd3	LIMH	Locei
6161	44.200	2 360	466	20,167	-	0)0	10463	41.38	27.394
1- 1	Constant	D33	141	DIS	l 1	232	1000	l	l

a Virtables, edeed on strb. Titla

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 2

/METHOD=ENTER X4A

/CONTRAST (X4A)=INDICATOR

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Caregorica Variance (artinge

			Parameter casing
		Frequency	Ξ
Cata Supperar	i) probag	3)	1.000
	Ola Titol Kalang	161	cdt

Yarlanks in the Equation

								95,954.01	h: F=P(F)
		R	4 F	19411	*	849	Frank	[One at	Пурел
Sen	(48)")	1,040	76?	9 ;GB		(04	; 823	1 (93	1.744
Ir.	Constant	- 677	153	18 515	1	(00	503		

a Varabergrerieret in sjep Lista.

7.5 Status Ekonomi

Status ekonomi bukan merupakan faktor risiko terhadap kejadian TB di kota Palembang. Penderita TB dengan dengan penghasilan rerata per bulan ≤ Rp 2.500.000 (status ekonomi tidak cukup) berjumlah 46,2% sedangkan yang berpenghasilan > Rp 2.500.000 (status ekonomi cukup) berjumlah 54,7%. Risiko responden dengan status ekonomi tidak cukup menderita TB lebih rendah jika dibandingkan dengan responden dengan status ekonomi cukup.

Risiko responden dengan status ekonomi tidak cukup menderita TB adalah sebesar OR = 0,713 kali jika dibandingkan dengan responden dengan status ekonomi cukup, tetapi secara statistika bedanya tidak signifikan dengan dengan $p_{value} = 0.067$ atau atau 95% confidence interval for OR berkisar antara 0,497 - 1,023. Sebaliknya dapat dikatakan, bahwa risiko responden dengan status ekonomi cukup menderita TB adalah sebesar OR = 1,402 kali lebih tinggi jika dibandingkan dengan responden dengan status ekonomi tidak cukup, tetapi secara statistika bedanya tidak signifikan dengan $p_{value} = 0.067$ atau atau 95% confidence interval for OR berkisar antara 0,977 - 2,013

Kejadian TB Status Ekonomi p_value 95% CLOR Ya Jumlah Tidak Tidak Cukup ≤ Rp 2.500.000 per bulan Cukup > Rp 2.500.000 per bulan 46.2% 53.8% 54.7% 45.3% 0,067 1,402 (0,977; 2,013 Tidak Cukup ≤ Rp 2.500.000 per bulan 39.4% (0,640 ; 1,733) Cukup > Rp 2.500.000 per bulan WANITA Tidak Cukup ≤ Rp 2.500.000 per bulan 70 2% 29 8% Cukup > Rp 2.500.000 per bulan 0,004 2.255 (1,295; 3,929) 49.0%

Tabel Hubungan Status Ekonomi dengan Kejadian TB

Pria dengan penghasilan rerata ≤Rp 2.500.000,- lebih rentan menderita TB jika dibandingkan dengan wanita dengan dengan penghasilan rerata ≤ Rp 2.500.000. Penderita TB pria dengan penghasilan < Rp 2.500.000 berjumlah 60.6% sedangkan wanita dengan penghasilan ≤Rp 2.500.000 berjumlah 29.8%.

Risiko pria dengan penghasilan ≤ Rp 2.500.000 menderita TB adalah sebesar OR = 1,053 kali lebih besar jika dibandingkan dengan pria dengan penghasilan > Rp 2.500.000, tetapi secara statistika perbedaannya tidak signifikan dengan $p_{value} = 0.839$. Sebaliknya Risiko wanita dengan penghasilan > Rp 2.500.000 menderita TB adalah sebesar 2,255 kali lebih besar jika dibandingkan dengan wanita dengan penghasilan ≤ Rp 2.500.000, dan secara statistika perbedaannya dinyatakan signifikan dengan $p_{value} = 0.004.$

Hubungan antara status ekonomi dan kejadian TB dinyatakan dalam model regresi logistik biner sebagai berikut.

$$P(y = 1|x) = \frac{e^{0.187 - 0.338x}}{1 + e^{0.187 - 0.338x}}$$

Bab 7 Analisis Faktor Risiko TB Secara Parsial

Model pria:
$$P(y = 1|x) = \frac{e^{0.377 + 0.052x}}{1 + e^{0.377 + 0.052x}}$$

Model wanita:
$$P(y = 1|x) = \frac{e^{-0.042 - 0.813x}}{1 + e^{-0.042 - 0.813x}}$$

x =status ekonomi

= 1 untuk Status ekonomi tidak cukup

= 0 untuk Status ekonomi cukup

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/METHOD=ENTER X5

/CONTRAST (X5)=INDICATOR(1)

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Dependent Variable Encoding

Original	Internal Value
Non TB Paru	0
TB Paru	1

Caregoria variante Cologe

			Parameter COQ Cu
		Freegan.	m
-C - Status Ekonomi	FidakCovp	.!at	LLD
	referen	214	

Marketes in the Equation

								95,0%((o e o Bi
		E	8E	Wald	ď	Sα	E:013)	-DK:	Ubasi
900	750	9;6	164) %5		067	1.100	917	203
_	Carelani	151	121	150	1	201	(GE		

a Natiative, so effected at sales $1/\sqrt{5}$

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 1

/METHOD=ENTER X5

/CONTRAST (X5)=INDICATOR

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

116 E. Roflin, I. A. Liberty, Pariyana, M. Reagan, & H. M. Uli

Caragerica Variaties Certings

			1919(1) (1) (30 (1)
		F WEDWIE	91
>5 - Styles Electronic	To see joining	3-	1001
	ւաքար	.11	OUL

variates a mercurion

								95,0% 0.11	MEXP BI
		8	SE.	74214	. نه ا	ξig	Excillo	Lwei .	Utası
200	17.11	(60	244)41		9)9	1043	591	. ())
_	Constant	177	137	4 350		044	1.450		

a Valiable welle ekonden (2)

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 2

/METHOD=ENTER X5

/CONTRAST (X5)=INDICATOR(1)

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Conspension Variations Continues

			19:30:00 at CXX 00
		T MEDMILE	q.
25 - States Electronic	To seke ja kong	24	(0)
	ւաքար	WE .	1 001

Variables in the Compiler

								92/3/01/	o DODE
		2	4.6	Widg	q:	8.1	Fn Æl	1046	No.
Flep	49(1)	E11:	160	6247	_	004	2292	1 235	1925
.,	Conspan-	650	96	18 477	- 1	000	43		

 ^{20 (20/4):} Levres 30 dec (10%) 1/15

7.6 Kebiasaan Merokok

Kebiasaan merokok merupakan faktor risiko terhadap kejadian TB di kota Palembang. Risiko pria perokok menderita TB lebih besar jika dibandingkan dengan pria bukan perokok.

Pria perokok yang menderita TB berjumlah 68,6% sedangkan pria bukan perokok menderita TB berjumlah 46,5%. Risiko pria perokok menderita TB sebesar OR = 2,505 kali lebih besar jika dibandingkan dengan pria bukan perokok, dan secara statistika dinyatakan signifikan dengan $p_{value} = 0,000$ atau atau 95% confidence interval for OR berkisar antara 1,497 – 4,191.

Tabel Hubungan Kebiasaan Merokok dan Kejadian TB pada Pria

Kebiasaan Merokok		Kejadian TB		p value	OR	95% CLOR
	Ya	Tidak	Jumlah	P_value	OK	9370 CI OK
Pria Perokok	68,6%	31.4%	159	0,000	2,505	(1,497 ; 4,191)
Pria Bukan Perokok	46,5%	53.5%	101			

Hubungan antara kebiasaan merokok dan kejadian TB pada pria dinyatakan dalam model regresi logistik biner sebagai berikut.

$$P(y = 1|x) = \frac{e^{-1,139+0,918x}}{1 + e^{-1,139+0,918x}}$$

x =kebiasaan merokok

= 1 untuk pria Perokok

= 0 untuk pria Bukan Perokok

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 1

/METHOD=ENTER X6

/CONTRAST (X6)=INDICATOR

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Dependent Variable Encoding

Original	Internal Value
Non TB Paru	0
TB Paru	1

Categorical Variables Cedings

			Palameter coding
		Frequency	ılı
>6=Ketiasaan Neiokok	Perokok	159	1000
	Bukan Perokok	101	000

Marketon Hiller Equation

								95(%)	(o E oP Bi
		E	8E	Wald	ď	Sα	E:013)	-DK:	Ubger
900	7601	916	260	1220	-	000	2,606	1.497	1 191
_	Carelani	109	194	464	1	400	476		

a. Nati ali eggi etilete it pluşleri. 176

7.7 Kontak Serumah

Kontak serumah merupakan faktor risiko terhadap kejadian TB di kota Palembang. Responden yang tinggal serumah dengan penderita TB atau memiliki kontak serumah dengan penderita TB berpeluang lebih besar menderita TB jika dibandingkan dengan reponden vang tidak tinggal serumah dengan penderita TB (tidak memiliki kontak serumah dengan penderita TB).

Penderita TB yang memiliki kontak serumah dengan penderita TB berjumlah 94,9% sedangkan yang tidak memiliki kontak serumah dengan penderita TB berjumlah 43,7%. Risiko responden vang memiliki kontak serumah dengan penderita TB menderita TB sebesar OR = 24,043 kali lebih besar jika dibandingkan dengan responden yang tidak memiliki kontak serumah dengan penderita TB, dan secara statistika dinyatakan signifikan dengan 0,000atau atau 95% confidence interval for OR berkisar antara 7,407 -78.040.

Kejadian TB Kontak Serumah 95% CI OR p_value Tidak Jumlah Positif / Ada 94.9% 0,000 24,043 (7,407 ; 78,040) Negatif / Tidak Ada 43.7% 56.3% 421 Positif / Ada 94 7% 5 3% 38 0,000 15 300 (3,596; 65,104) Negatif / Tidak Ada 54.1% 45.9% 222 Positif / Ada 95.2% 4.8% 21 0,000 42.187 (5,539; 321,307) Negatif / Tidak Ada

Tabel Hubungan Kontak Serumah dengan Kejadian TB

Wanita yang memiliki kontak serumah dengan penderita TB jauh lebih rentan menderita TB jika dibandingkan dengan pria vang memiliki kontak serumah dengan penderita TB. Penderita TB pria yang memiliki kontak serumah dengan penderita TB berjumlah 94,7% sedangkan wanita yang memiliki kontak serumah dengan penderita TB berjumlah 95,2%.

Risiko wanita yang memiliki kontak serumah dengan penderita TB akan menderita TB adalah sebesar OR = 42,187 kali lebih besar jika dibandingkan dengan wanita yang tidak memiliki kontak serumah dengan penderita TB, dan secara statistika perbedaannya dinyatakan signifikan dengan $p_{value} = 0,000$. Risiko pria yang memiliki kontak serumah dengan penderita TB akan menderita TB adalah sebesar OR = 15,300 kali lebih brsar jika dibandingkan dengan pria yang tidak memiliki kontak serumah dengan penderita TB, dan secara statistika perbedaannya dinyatakan signifikan dengan $p_{value} = 0,000$.

Hubungan antara kontak serumah dan kejadian TB dinyatakan dalam model regresi logistik biner sebagai berikut.

$$P(y = 1|x) = \frac{e^{-0.253 + 3.180x}}{1 + e^{-0.253 + 3.180x}}$$

Model pria:
$$P(y = 1|x) = \frac{e^{0.163 + 2.728x}}{1 + e^{0.163 + 2.728x}}$$

Model wanita:
$$P(y = 1|x) = \frac{e^{-0.746 + 3.742x}}{1 + e^{-0.746 + 3.742x}}$$

x =kontak serumah

= 1 apabila ada kontak serumah

= 0 apabila tidak ada kontak serumah

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/METHOD=ENTER X7

/CONTRAST (X7)=INDICATOR(1)

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Dependent Variable Encoding

Original	Internal Value
Non TB Paru	0
TB Paru	1

Designation Amounts Comings

			haraniski ridno
		715 2021:5	ıl
Control Serious	tejul Ticak	1:1	(0)
	Pasniya	- 13	100)

Canadaco In the Especia

								35,15 CT	hi F¹PiA·
		4	9.6	91.24	ar .	91	Fgq85	1040	10gain
Sen If	:7(")	318)	601	38 022	- 1	300	(4)43	3.408	78 041
l'	Constant	- 253	096	6 6 3 7	l 1	310	176		

a Variable is i enterer on sten 1 %?

HASIL SPSS PRIA

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 1

/METHOD=ENTER X7

/CONTRAST (X7)=INDICATOR(1)

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Caregorica Variables Contras

			Farameler C Wood
		Fro pasing	0
Contacted Columbia	Negati Ticas	. 22	пь
	Predria	33	1300

Variations in the Equation

								45,15 01	hi F¶iA.
		4	98	91.24	ar .	91	Fay85	1040	1/grain
Sten If	:7(")	2723	775	13 631	1	700	15 (00	1,548	65 101
Ir.	Constant	163	- 35	1 456	ı	328	1.176		

a Vocablejsjienlerer on sien 1 %7

HASIL SPSS WANITA

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 2

/METHOD=ENTER X7

/CONTRAST (X7)=INDICATOR(1)

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Categoricas Variables Cominas

			Manager racing
		Frequency	1'1
Common School	Magaci (Mae	199	0)(
	Evaller	.1	an.

Variables in the Equation

								95,7% (1)	Mr F (PIP)
		A	9 F	waga	ır	9)	FaulBi	1 (144)	117700
Sien	97.11	3.743	1 (36	17.050	_	000	43.181	5 5 3 3	321 307
1-	Constant	- 746	152	24 186	- 1	000	474		

a Manable so enleted on step 1,327.

7.8 Family Size

Family size merupakan faktor risiko terhadap kejadian TB di kota Pemabnag. Family size merupakan ukuran kepadatan penghuni rumah. Family size dikatakan cukup apabila jumlah penghuni dalam satu rumah ≤ 4 anggta keluarga, dan dikatakan padat apabila jumlah penghuni rumah > 4 anggta keluarga.

Responden yang tinggal di rumah yang padat penghuni (> 4 penghuni) perpeluang lebih tinggi akan mendertita TB jika dibandingkan dengan responden yang tiggal di rumah yang jarang penghuni (≤ 4 penghuni). Penderita TB yang tinggal di rumah yang padat penghuni berjumlah 54,6% sedangkan yang tinggal di rumah yang jarang penghuni berjumlah 43,4%.

Risiko responden yang tinggal di rumah yang padat penghuni menderita TB sebesar OR = 1,569 kali lebih besar jika dibandingkan dengan yang tinggal di rumah yang jarang penghuni, dan secara statistika dinyatakan signifikan dengan $p_{value} = 0,016$ atau atau 95% confidence interval for OR berkisar antara 1,088 - 2,264

Family Size		Kejadian TB		n unlun	OR	95% CI OR
ranny size	Ya	Tidak	Jumlah	p_value	OK	93% CI OK
Padat (> 4 anggta keluarga)	54.6%	45.4%	284	0,016	1,569	(1,088 ; 2,264)
Cukup (<= 4 anggta keluarga)	43.4%	56.6%	196			
PRIA						
Padat (> 4 anggta keluarga)	64.3%	35.7%	157	0,079	1.574	(0,949; 2,612)
Cukup (<= 4 anggta keluarga)	53.4%	46.6%	103			
WANITA						
Padat (> 4 anggta keluarga)	42.5%	57.5%	127	0,123	1.553	(0,888; 2,718)
Cukup (<= 4 anggta keluarga)	32.3%	67.7%	93			

Tabel Hubungan Family Size dengan Kejadian TB

Pria yang tinggal di rumah yang padat penghuni (> 4 penghuni) lebih berisiko menderita TB jika dibandingkan dengan wanita yang tinggal di rumah yang padat penghini (> 4 penghuni). Penderita TB pria yang di rumah yang padat penghuni berjumlah 64,3% sedangkan wanita yang tinggal di rumah yang padat penghuni berjumlah 42,5%.

Risiko pria yang tinggal di rumah yang padat penghuni menderita TB adalah sebesar OR = 1,574 kali lebih besar jika dibandingkan dengan pria yang tinggal di rumah yang jarang penghini (≤ 4 penghuni), tetapi secara statistika perbedaannya tidak signifikan dengan $p_{value} = 0,079$. Risiko wanita yang tinggal di rumah yang padat penghuni menderita TB adalah sebesar OR = 1,574

1,553 kali lebih besar jika dibandingkan dengan wanita yang tinggal di rumah yang jarang penghini (≤ 4 penghuni), tetapi secara statistika perbedaannya tidak signifikan dengan $p_{value} =$ 0.0123

Hubungan antara family size dan kejadian TB dinyatakan dalam model regresi logistik biner sebagai berikut.

$$P(y = 1|x) = \frac{e^{-0.267 + 0.450x}}{1 + e^{-0.267 + 0.450x}}$$

Model pria:
$$P(y = 1|x) = \frac{e^{0.136 + 0.454x}}{1 + e^{0.136 + 0.454x}}$$

Model wanita:
$$P(y = 1|x) = \frac{e^{-0.742 + 0.440x}}{1 + e^{-0.742 + 0.440x}}$$

x = family size

= 1 apabila family size padat > 4 penghuni

= 0 apabila family size cukup≤ 4 penghuni

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/METHOD=ENTER X8A

/CONTRAST (X8A)=INDICATOR(1)

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Dependent Variable Encoding

Original	Internal Value
Non TB Paru	0
TB Paru	1

Caropericar Variation Centres

			Colorete coding
		Fignator	I II
CRAIN FRANK, SQN	0.000	1)+	010
	Field	244	1436

Variables on the Equation

								95,15, (1	(or EXP(B)
		3	8.E.	Yeald	41	ξig.	EXPE	Laner	Japer
ŠKμ 1 [®]	364(11	450	147	5803	1	016	1 559	. 088	2.294
1"	0.08090	267	134	20	1	062	726		

s Vanable(s) enjered or silen 1 ×34

HASIL SPSS PRIA

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 1

/METHOD=ENTER X8A

/CONTRAST (X8A)=INDICATOR(1)

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Calegracia Variante Compa

			Falanyy codeg
		300,000	וי
x)==(amy)gy	(1814	103	200
	Fate	150	

Variances in the Equation :

						<u>*6.0% (1% C>0.0)</u>			w C>OBI
		F	ä	1940		4.	Fige4)	[Cum	1 kg pas
Slep	*CAth	464	363	1 332	_	679	1.574	145	: 613
.,	(onstant	106	193	175	_	291	1.46		

a volvado (s) o gesco do stapiti kên

HASIL SPSS WANITA

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 2

/METHOD=ENTER X8A

/CONTRAST (X8A)=Indicator(1)

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Congress of Automate Challege

			haranski rijeg
		friguatis	ıl
PART Family Size	, that	- 13	(0)
	24.4	*::7	100)

Variables on the Equation

								95,0% CT	(r) EXF(B)
		3	SE.	'Yald	41	SIE	Eco(E)	Lower	Unter
SML	384011	440	285	2.380	1	100	1 553	888	2118
1-	-2004DW	742	222	11.106		001	376		

z Varwhierst enlered or siep 1, 28+

7.9 Imunisasi BCG

Imunisasi BCG merupakan faktor risiko terhadap kejadian TB di kota Palembang. Responden yang tidak melakukan imunisai BCG berpeluang menderita TB Paru lebih besar jika dibandingkan dengan peluang reponden yang melakukan imunisasi BCG cukup. Penderita TB yang tidak memiliki riwayat imunisasi BCG berjumlah 59,5%, sedangkan yang memiliki riwayat imunisasi BCG berjumlah 43,2%.

Risiko responden yang tidak melalukan imunisasi BCG menderita TB sebesar OR = 1,931 kali lebih besar jika dibandingkan dengan responden vang melakukan imunisasi BCG, dan secara statistika dinyatakan signifikan dengan $p_{value} = 0,000$ atau 95% confidence interval for OR berkisar antara 1,336 - 2,790

Imunisasi BCG		Kejadian TB				95% CLOR	
imunisasi BCG	Ya Tidak		Jumlah	p_value	OR	95% CI OK	
Negatif / tidak imunisasi BCG	59,5%	40,5%	200	0,000	1,931	(1,336 ; 2,790)	
Positif / imunisasi BCG	43,2%	56,8%	280				
PRIA							
Negatif / tidak imunisasi BCG	66.1%	33.9%	124	0,055	1.636	(0,990 ; 2,703)	
Positif / imunisasi BCG	54.4%	45.6%	136				
WANITA							
Negatif / tidak imunisasi BCG	48.7%	51.3%	76	0,021	1.958	(1,109 ; 3,458)	
Positif / imunisasi BCG	32.6%	67.4%	144	1 1		., ., .	

Tabel Hubungan Imunisasi BCG dengan Kejadian TB

Pria yang tidak melakukan imunisasi BCG lebih rentan menderita TB jika dibandingkan dengan wanita yang tidak melakukan imunisasi BCG. Penderita Tb pria yang tidak melakukan imunisasi BCG berjumlah 66,1%, sedangkan wanita yang tidak melakukan imunisasi BCG berjumlah 48,7%.

Risiko pria yang tidak melakukan imunisasi BCG menderita TB adalah sebesar OR = 1,636 kali lebih besar jika dibandingkan dengan pria yang melakukan imunisasi BCG, tetapi perbedaannya tidak signifikan dengan $p_{value} = 0.055$. Risiko wanita yang tidak melakukan imunisasi BCG menderita TB adalah sebesar OR = 1,958 kali lebih besar jika dibandingkan dengan wanita yang melakukan imunisasi BCG, dan perbedaannya signifikan dengan $p_{value} = 0.021.$

Hubungan antara imunisasi BCG dan kejadian TB Paru dinyatakan dalam model regresi logistik biner sebagai berikut.

$$P(y = 1|x) = \frac{e^{-0.273 + 0.658x}}{1 + e^{-0.273 + 0.658x}}$$

Model pria:
$$P(y = 1|x) = \frac{e^{0.177 + 0.492x}}{1 + e^{0.177 + 0.492x}}$$

Model wanita:
$$P(y = 1|x) = \frac{e^{-0.725 + 0.672x}}{1 + e^{-0.725 + 0.672x}}$$

x = imunisasi BCG

= 1 apabila tanpa imunisasi BCG

= 0 apabila dengan imunisasi BCG

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/METHOD=ENTER X9

/CONTRAST (X9)=INDICATOR

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Dependent Variable Encoding

Original	Internal Value
Non TB Paru	0
TB Paru	1

Caregorical Variations Codespo

			Faterral St CO Josep
		Frequency	ılı
a har manusaks BC N	Nagasi Tara wayasaka BCO	AT	Tabo
	Positi Phonistry 904	;ar	000

Vallaigus in ma Equation

								95,0% 0.1	lai EXPOBS
		В	8.E.	Wald	ď	āM.	E(BE)	Lovei	Upper
SMC	<9(11	668	168	12.255	1	000	1 931	1.336	2790
1"	2005000	20	125	6127	, ,	0.24	761	l	

a Variable(s) interest on step 1.39

HASIL SPSS PRIA

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 1

/METHOD=ENTER X9

/CONTRAST (X9)=INDICATOR

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Calcons Ical Variation Colinea

Variation in the Execution

								45,15 01	hi FTPiA
		4	9.5	91.20	ar .	91	Egy St	1040	10gain
Sen	:9(1)	19?	25	3 639	- 1	750	1 (36	940	2701
I*	Constant	173	172	1 056	l 1	304	1 194		

a Morafleisi enlerer on sien 1 %5

HASIL SPSS WANITA

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 2

/METHOD=ENTER X9

/CONTRAST (X9)=Indicator

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Calegorical Variables Cathogs

			Facilità Jales
		[1	11 -
XXII marioso ECC	Heart 'Tds- murecolC : :	-1	1,000
	POSTE MONEY CONT.	166	000

Variation in the Equation

								95,(%.)	(o e o Bi
		E	8E	Wald	ď	Sα	E:013)	2016	Ubger
900	201.1	672	.000	5 369	- 1	001	1.696	1.1(9)) 156
_	Carelani	725	179	16801	1	DK4	125		

a Natialize, profile to the legic to 29.

Berdasarkan hasil analisis diketahui, bahwa usia dan status ekonomi bukan merupakan faktor risiko TB di kota Palembang; sementara jenis kelamin, pendidikan, status gizi, kebiasaan merokok, kontak serumah, family size, dan imunisasi BCG merupakan faktor risiko TB. Secara rinci disimpulkan sebagai berikut.

1. Jenis kamin merupakan fakror risiko TB. Pria berisiko TB 2,429 kali jika dibandingkan dengan wanita dengan $p_{value} = 0.000$

- 2. Usia bukan merupakan faktor risiko TB. Responden berusia \leq 30 tahun berisiko TB 1,295 kali jika dibandingkan dengan responden berusia > 30 tahun dengan $p_{value} = 0,214$
- 3. Pendidikan merupakan faktor risiko TB. Responden berpendidikan Sekolah Dasar (SD) berisiko TB 1,645 kali jika dibandingkan dengan responden berpendidikan SMP, SMA, dan PT, dengan $p_{value}=0.036$
- 4. Status gizi merupakan faktor risiko TB. Responden dengan status gizi kurang (kurus) berisiko 4,926 kali jika dibandingkan dengan responden dengan status gizi sehat, dengan $p_{value}=0.000$
- 5. Kebiasaan merokok merupakan faktor risiko TB. Pria yang memiliki kebiasaan merokok berisiko 3,162 kali jika dibandingkan dengan pria yang tidak memiliki kebiasaan merokok, dengan $p_{value} = 0,000$
- 6. Status sosial ekonomi bukan merupakan faktor risiko TB. Responden dengan penghasilan kurang dari Rp. 2.500.000 berisiko 0,713 kali jika dibandingkan dengan responden berpenghasilan lebih dari Rp. 2.500.000 dengan $p_{value} = 0,067$
- 7. Kontak serumah merupakan faktor risiko TB. Responden yang memiliki kontak serumah dengan penderita TB berisiko 24,043 kali jika dibandingkan dengan responden yang tidak memiliki kontak serumah dengan penderita TB paru, dengan $p_{value}=0,000$
- 8. Family size atau kepadatan penghuni rumah merupakan faktor risiko TB. Responden yang tinggal di rumah dengan penghuni lebih dari 4 orang berisiko 1,569 kali jiia dibandingkan dengan responden yang tinggal di rumah dengan penghuni kurang dari 4 orang, $p_{value} = 0,016$
- 9. Imunisasi BCG merupakan faktor risiko TB. Responden yang tidak melakukan imunisasi BCG berisiko 1,931 kali jika dibandingkan dengan responden yang melakukan imunisasi BCG, dengan $p_{value} = 0,000$.

ANALISIS FAKTOR RISIKO TB SECARA SIMULTAN

nalisis faktor risiko TB secara simultan dilakukan untuk memperoleh variabel yang dominan merupakan faktor risiko TB di kota Palembang dilakukan menggunakan analisis regresi logistik biner dengan metode Backward LR.

Berdasarkan hasil analisis diketahui, bahwa dari 9 (sembilan) variabel faktor risiko, hanya terdapat 4 (empat) variabel yang dominan berisiko terhadap kejadian TB di kota Palembang, yaitu kontak serumag, status gizi, kebiasaan merokok, dan imunisasi BCG.

Kontak serumah merupakan faktor risiko yang paling dominan berpengaruh terhadap kejadian TB di kota Pelembang dengan OR = 29,069 atau 95% confidence interval for OR antara 8,755 -96,521. Berarti responden yang memiliki kontak serumah dengan penderita TB berisiko menderita TB 29,069 kali lebih besar jika dibandingkan dengan responden yang tidak memiliki kontak serumah dengan penderita TB.

Variabel kedua yang dominan berisiko terhadap kejadian TB adalah Status Gizi dengan OR = 5,388 atau 95% confidence interval for OR antara 3,078 – 9,431. Berarti responden dengan status gizi kurang (kurus) berisiko menderita TB 5,388 kali lebih besar jika dibandingkan dengan responden dengan status gizi sehat.

Variabel ketiga yang berisiko dominan terhadap kejadian TB di kota Palembang adalah kebiasaan merokok dengan OR = 2,821 atau 95% confidence interval for OR antara 1,796 - 4,433. Berarti responden yang memiliki kebiasaan merokok berisiko menderita TB 2,821 kali lebih besar jika dibandingkan dengan responden yang tidak memiliki kebiasaan merokok.

Variabel keempat yang berisiko dominan terhadap kejadian TB di kota Palembang adalah imunisasi BCG dengan OR = 1,718 atau 95% confidence interval for OR antara 1,120 – 2,637. Berarti responden yang tidak melakukan imunisasi BCG berisiko menderita TB 1,718 kali lebih besar jika dibandingkan dengan responden yang melakukan imunisasi BCG.

Tabel: Faktor Risiko Dominan Terhadap Kejadian TB

Variabel	Beta	p_value	OR	95% CI for OR
Constanta	-1.398			
Kontak Serumah (Ya)	3.370	0,000	29.069	(8,755; 96,521)
Status Gizi (Kurang)	1.684	0.000	5.388	(3,078; 9,431)
Kebiasaan Merokok (Ya)	1.037	0,000	2.821	(1,796 ; 4,433)
Imunisasi BCG (Tidak)	0,541	0,013	1.718	(1,120 ; 2,637)

Faktor risiko tersebut di atas berbeda menurut jenis kelamin. Pada pria, dari 9 variabel faktor risiko terdapat 4 variabel yang dominan berisiko terhadap kejadian TB di Kota Palembang, sedangkan pada wanita terdapat 3 variabel yang dominan berisiko terhadap kejadian TB di Kota Palembang. Secara rinci variabel faktor risiko tersebut disajikan pada tabel berikut.

Tabel: Faktor Risiko Dominan Terhadap Kejadian TB

Variabel	Beta	p value	OR	95% CI for OR
PRIA		100000000000000000000000000000000000000	-0.0	
Constanta	-0.984			
Kontak Serumah (Ya)	2.969	0.000	19.467	(4,409; 85,955)
Status Gizi (Kurang)	2.348	0.000	10.465	(3,910 ; 28,011)
Kebiasaan Merokok (Ya)	0.766	0.011	2.151	(1.196 : 3.866)
Imunisasi BCG (Tidak)	0.610	0,040	1.840	(1.028 : 3.294)
WANITA	-			
Constanta	-1,436			
Kontak Serumah (Ya)	4.081	0,000	59.197	(7,596; 461,357
Status Gizi (Kurang)	1.317	0,001	3.733	(1.765 : 7,897)
Status Ekonomi (Cukup)	-0.858	0.007	2,359	(1,265 : 4,400)

Pada pria, terdapat 4 variabel yang dominan berisiko terhadap kejadian TB di kota Palembang, yaitu kontak serumah, status gizi, kebiasaan meokok, dan imunisasi BCG.

Kontak serumah merupakan faktor risiko yang paling dominan berpengaruh terhadap kejadian TB Pria di Kota Pelembang dengan OR = 19,467 atau 95% confidence interval for OR antara 4,409 – 85,955. Berarti responden yang memiliki kontak serumah

dengan penderita TB berisiko menderita TB 19,467 kali lebih besar iika dibandingkan dengan responden yang tidak memiliki kontak serumah dengan penderita TB.

Variabel kedua yang dominan berisiko terhadap kejadian TB pria di kota Palembang adalah status gizi dengan OR = 10,465 atau 95% confidence interval for OR antara 3,910 - 28,011. Berarti responden dengan status gizi kurang (kurus) berisiko menderita TB 10,465 kali lebih besar jika dibandingkan dengan responden dengan status gizi sehat.

Variabel ketiga yang berisiko dominan terhadap kejadian TB pria di kota Palembang adalah kebiasaan merokok dengan OR = 2,151 atau 95% confidence interval for OR antara 1,196 - 3,866. Berarti responden yang memiliki kebiasaan merokok berisiko menderita TB 2,151 kali lebih besar jika dibandingkan dengan responden yang tidak memiliki kebiasaan merokok.

Variabel keempat yang berisiko dominan terhadap kejadian TB pria di kota Palembang adalah imunisasi BCG dengan OR = 1.848 atau 95% confidence interval for OR antara 1,028 – 3,294. Berarti responden vang tidak melakukan imunisasi BCG berisiko menderita TB 1,846 kali lebih besar jika dibandingkan dengan responden yang melakukan imunisasi BCG.

Pada wanita, terdapat 3 variabel yang dominan berisiko terhadap kejadian TB di kota Palembang, yaitu kontak serumah, status gizi, dan status ekonomi.

Kontak serumah merupakan faktor risiko yang paling dominan berpengaruh terhadap kejadian TB wanita di kota Pelembang dengan OR = 59,197 atau 95% confidence interval for OR antara 7,596 – 461,357. Berarti responden yang memiliki kontak serumah dengan penderita TB berisiko menderita TB 59,197 kali lebih besar iika dibandingkan dengan responden yang tidak memiliki kontak serumah dengan penderita TB.

Variabel kedua yang dominan berisiko terhadap kejadian TB wanita adalah status gizi dengan OR = 3,733 atau 95% confidence interval for OR antara 1,765 - 7,897. Berarti responden dengan status gizi kurang berisiko menderita TB 3,733 kali lebih besar jika dibandingkan dengan responden dengan status gizi sehat.

Variabel ketiga yang dominan berisiko terhadap kejadian TB wanita adalah status ekonomi dengan OR = 2,359 atau 95% confidence interval for OR antara 1,265 – 4,400. Berarti wanita dengan yang berpenghasilan lebih dari Rp 2.500.000 (status ekonomi cukup) berisiko menderita TB 2,359 kali lebih besar jika dibandingkan dengan wanita dengan penghasilan kurang dari Rp 2.500.000,-

HASIL SPSS

LOGISTIC REGRESSION VARIABLES Y

/METHOD=BSTEP(LR) X1 x2e X3A x4a X5 X6 X7 X8A X9

/CONTRAST (X1)=Indicator

/CONTRAST (x2e)=Indicator

/CONTRAST (X3A)=Indicator

/CONTRAST (x4a)=Indicator

/CONTRAST (X5)=Indicator

/CONTRAST (X6)=Indicator

/CONTRAST (X7)=Indicator(1)

/CONTRAST (X8A)=Indicator(1)

/CONTRAST (X9)=Indicator

/PRINT = CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Case Processing Swamary

Unweigned Case	Unwarened Cases*			
Selected Cases	Included in Analysis	480	100.0	
	Missing Cases	0	0	
	Total	480	100.0	
Omenced Case	•	0	0	
Total		480	100 D	

al III weight is in effect, sice classification table for the total number of cases.

Dependent Variable Encoding

Original	Internal Value
Non TB Paru	0
TB Paru	1

Bab 8 Analisis Faktor Risiko TB Secara Simultan

Categorical Variables Codings

			Paremeter coding
		Frequency	(1)
X9 = Imunisasi BCG	Negatif (Tidak imunisasi BCO	200	1 000
	Posibf/Imunisasi BCG	280	.000
X7e = Kelampak Usia	c= 30 lahun	126	1 000
	> 30 fahun	354	.000
X3A = Pendidikan	Dasar	90	1 000
	Menengah Atas	390	000
X4a = Slatus Gizi	Glzi Kurang	98	1 000
	Ojz Tidak Kurang	382	000
X5 = Status Ekonomi	Tidak Cukup	766	1 000
	сикир	214	000
X6 = Kebiasaan Merokok	Perokak	159	1 000
	Bukan Perokok	321	000
XXA = Family Size	Cultup	196	.000
	Padat	284	1 000
X7 = Kontak Serumah	Negatif / Tidak	421	000
	Posibí Ya	59	1 000
XI = Jenis Kelamin	Pria	260	1 000
	Wanita	220	.000

Carameter in the Equation

								35,0% C	for EXP(S)
		6	16	wad	ď	Эu	EquitSh	LOAR	Uupa
OK11 IF	>1(1)	413	594	2.05	_	113	1313	168	2639
ı-	22 6 (1)	- 181	265	717	1	6.0	RAIT	571	1.481
	234(1)	1))	324	100		712	1 105	181	2 107
	adm(1)	1717	294	34342	- 1	000	1.740	3,200	10,298
	×500	· 152	27.1	221	1	0.7	6/4	312	1 493
	26(1)	744	541	9.274	- 1	P17	: 117	1195	2 PM1
	27(1)	33%	611	30.234	1	000	29.245	660	47.400
	284(1)	336	221	1255	1	071	1497	386	2.287
	79117	592	201	2.789	1	1.0	149:	190	24.1
	Constant	-12%	711	17.24P	1	De d	351		
Sien	21(1)	338	274	2040	1	157	1485	362	2,572
•	52e(1)	- 139	364	272	1	60.2	871	519	1.462
	22761	1.757	291	35 083	1	000	1.798	3,240	,0.300
	25(1)	1/41	351	450	1	501	045	517	1,000
	>6(1)	777	295	6907	1	009	1175	1 218	3887
	27(1)	3370	611	30 168	1	000	29,073	8.32	36,766
	28 % ()	336	221	3244	1	072	1485	366	2.285
	24(1)	401	253	2410		1:1	1438	300	2,496
	Congani	ा शह	311	18 977		DC (I	267		
Sien	21(1)	4)1	274	2070	1	150	1497	765	2579
-	sda(L)	1.7%	284	35 639		000	1 601	3'87	987
	(5(1)	+ 127	251	201		419	9(9	(1)	1 367
	>6(1)	781	245	7 027		D/S	: 195	1776	3,905
	27(1)	3 337	611	30 50 9		000	25 590	8 795	48.406
	284(1)	4)7	214	3465		000	1,503	179	2 305
	>9179	430	254	2.661		091	1 507	432	2,909
	Constant	-1.251	246	27 179		1000	24F		
Sien	21(1)	338	274	2038	1	157	1485	762	2570
1	sda(L)	1.716	284	35 4 20	1	000	1,563	3,91	9.788
	26115 26115	7/1	293	0 Kaq	1	0.9	1102	1217	3603
	27(1)	2227	MI	201427	1	16.4	25.411	P 74G	47 P. 3
	284(1)	411	214	7545	1	000	1,505	483	3.3.4
	29(1)	521	214	5 859	1	017	1 694	1 196	2 587
	 obsaul 	11.072	201	42700		0.0	206		
SIAN Sa	>1%(1)	1824	2:35	24761	1	DCG	4 290	0.171	9421
	26(1)	1.037	231	20,236	1	000	(821	1196	4.433
	27(1)	3370	613	30 397	1	000	29 065	8755	36.521
	28 % ()	412	214	2575	1	0:9	1500	185	3.3.4
	29(1)	511	213	G 148	1	DII	1710	1120	2,827
	Constant	-1 338	212	43357	ı	000	247		

a Manatreysten Kreuton step 1, A1, 524, 334, 544, 35, A6, 47, 344, 38

HASIL SPSS PRIA

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 1

/METHOD=ENTER x2e X3A x4a X5 X6 X7 X8A X9

/CONTRAST (X6)=Indicator

/CONTRAST (X7)=Indicator(1)

/CONTRAST (X8A)=Indicator(1)

/CONTRAST (X5)=Indicator

/CONTRAST (X9)=Indicator

/CONTRAST (x4a)=Indicator

/CONTRAST (X3A)=Indicator

/CONTRAST (x2e)=Indicator

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Case Processing Summary

Unweighted Case	N	Percent	
Selected Cases	bickided in Analysis	260	54.3
	Messing Cases	٥	a
	Tolal	260	54.2
Unselected Case:	i .	220	45.8
Total		480	lad a

a II wayyirils in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original	Internal Value
Non TB Paru	0
TB Paru	1

Caregorical Variables Codings

			Parameter coding
		Freddency	ſD
%9 = Imures asi BCG	Negatir) Tidak imunisasi BCG	134	1 000
	Positi/Jimunicasi BCG	136	000
x3A= Penaldikan	Dasai	48	1 000
	Menengah Alas	214	000
×4a= Status Ger	Gizi Kurang	59	1 000
	Gizl Tidak Kulang	201	000
X6 = Stabus Ekonomi	Тідак Сикцю	147	1 000
	t ukup	118	000
%6 = Kebiasaan Nerokok	Perokok	150	1 000
	Bukan Perokak	101	000
X8A= Family Size	Cukup	103	000
	Padal	167	1 000
%7 = Konlak Seiumah	Negatir) Tidak	222	000
	Posterva	38	1 000
X2e = Kelompok Usia	r= 30 lahun	59	1 000
	> 30 lahun	201	000

Varantes in the Equation

								95,0% (1)	(in EAFIB
		Ε.	SE.	Walt	r	Sig	Edd3	LIMH	Upper
Sign.	229CD	.,215	166	8.7	-	444	791	-50	1.401
'-	274(1)	273	452	273		530	756	:11	1.235
l	>4 a (1)	2417	416	4 774		d1p	11.14	4156	A 755
l	N5(1)	943	J11	1005		ЛР	1 480	BER .	1194
l	SEIT;	775	313	6 105		013	2170	1176	4 300
	27(1)	7971	787	15,207		ann	19719	# FRE	26 902
l	28 4 (1)	741	11.3	1 [64]		IRP	1 (71	FIC	2.498
	(1)25	D23	179	9 D9G		025	3 346	1.10	4 235
l	Cunterl	-1452	467	9853		017	.44		
sier 24	4500	+364	453	339		570	768	710	1,367
-	54 4 (1)	2 369	510	21.515		030	10 172	3 524	39.024
	2°(1)	247	160	807		17.1	1 (77	rp-	1.167
l	28(1)	773	110	6 191		ale	2.71	1.80	4 320
	×2[1]	297)	702	10.209	'	0)0	19197	4 -65	87 (5)
l	46%	397	7(1	. 9.3		135	1 278	FIS	2,467
	8510	907	321	5 889		015	2.461	1.89	5)90
l	Constant	-1.522	147	11.591		411	-18		
4161 7#	44.20	2300	903	21,305	'	0)0	10 -67	3 64 1	27 39+
l "	35(1)	465)(7	1 (407	'	506	1 (9)	77(3.764
l	×0).	772	30.2	26.7		015	2179	1.2	7.155
l	27(1)	2997	783	15400		030	19 546	4.481	89 197
l	XEA(!)	374	11.0	1591		717	1.261	FII	7.415
	3011	69.0	170	4.70#	'	01.7	2.420	1 1 7 7 (4 100
	(0.00044)	1 967	243	10,000	'	0)0	.00		
96	44 9(1)	5 321	505	2,500	'	0)0	10 -9)	3+64	27,300
1	8500	467	766	1.60		232	1195	779	7.96*
	SEIT)	744	3(1	6176		013	2105	1168	3:05
	3700	100)	761	14.661	'	0.00	20 (2)	4 45.	90.814
l	8(1)	67))69	5 68)	'	01.2	2407	1169	1)51
	-)10(124)	-1 35)	2(5	1 (35	'	0)+	.59		
Elek P	>4 = (1)	2,543	àL,	2 P/C		410	10 464	2310	.471
-	SEIT)	765	209	6546		Q11	2151	1196) %t
l	37(1)	3,963	758	16.361		030	19 467	4 409	85 755
l	8(1).	61)	207	1,210	'	040	1 640	113	0.994
	Crostari	994	275	12 020	ı	930	274		

a 3 distribute si entered on stell = (3e, 434, 4a, 2), (3), (7, 284, 29)

HASIL SPSS WANITA

LOGISTIC REGRESSION VARIABLES Y

/SELECT=X1 EQ 2

/METHOD=BSTEP(LR) x2e X3A x4a X5 X6 X7 X8A X9

/CONTRAST (X6)=Indicator

/CONTRAST (X7)=Indicator(1)

/CONTRAST (X8A)=Indicator(1)

/CONTRAST (X5)=Indicator

/CONTRAST (X9)=Indicator

/CONTRAST (x4a)=Indicator

/CONTRAST (X3A)=Indicator

/CONTRAST (x2e)=Indicator

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Case Processing Summary

Unwalghtad Case	N	Percent	
Selected Cases	Included in Analysis	220	458
	Missing Cases	a	a
	Total	220	458
Unselected Case	5	260	54 3
Total		480	1000

a lifweight is in effect, see classification lable for the total number of cases.

Dependent Variable Encoding

Original	Internal Value
Non TB Paru	0
TB Paru	1

Categorical Variables Codings

			Parameter coding
		Frequency	OI.
X9 = Imunisasi BCG	Negabi) Tidak imunisasi BCG	76	1000
	Positi() Imunisasi 800	144	000
X3A = Pendidikan	Dasar	44	1000
	Nenengah Alas	175	000
X4a = Status Gizi	Cizi Kurang	39	1000
	Oizi Tidak Kurang	191	.000
X5 = Status Exonomi	Tidak Cukup	174	1000
	culaip	96	.000
X7 = Kordak Serumah	Negab[/Tidak	199	000
	Positif Ya	21	1000
XBA = Family Size	Cultur	93	000
	Padel	127	1000
x2e = Kelompok Usia	= 30 tahun	67	1000
	- 30 tahun	153	900

Bab 8 Analisis Faktor Risiko TB Secara Simultan

Variations in the Equation

								95,0% (7)	orez-tea
		8	8 E	World	nti	540	E-p(B)	Lower	Unger
SMC	(2911)	100	360	071	1	792	1 106	525	2029
1*	<3201)	466	478	951	1	329	1 594	625	4 0 6 9
	(4.911)	1.798	406	10.224	1	901	3663	1663	8119
	<501	- NY8	476	2465	- 1	116	52R	71R	1177
	47(1)	4 064	1.055	14 853	- 1	000	58316	7,368	459941
	kRA(I)	277	175	1 215	- 1	286	1451	752	2796
	49(1)	- 008	367	001	- 1	981	993	465	2120
	2005/100	-1 005	2(6	4 69 1	- 1	027	350		
SMC	(2911)	102	376	071	1	767	1 107	529	2015
7	< 3411.	405	277	971	- 1	322	1,797	0.72	4011
	(4.911)	1.297	200	10575	1	901	3658	1.674	7993
	45(11	- 6%	369	2675	1	102	629	247	1134
	47(1)	4 067	1.053	14 695	- 1	000	58 (50	7 392	458089
	<8 -9 01)	3.5	334	1,743	1	266	1451	764	2793
	Constant	-1.039	476	5 9 4 1	- 1	015	554		
Slet 3	<34(1)	435	458	903	- 1	342	1 545	670	3790
7	(4.)[7)	1000	000	11 (7)	١ ،	001	3749	1.771	0007
	4501	- 602	368	2.651	- 1	107	571	248	1137
	47(1)	4 009	1.049	14 8)2	- 1	000	99773	1.266	423259
	<8 2 01)	366	138	1175	1	278	1.427	750	2713
	_ unstant	- 996	326	6.545	1	U1.2	969		
SMC	44311)	1352	366	12.244	- 1	000	3865	1813	8 240
•	45(11	- 639	319	6 894	1	000	- 622	231	809
	47(1)	4 009	1.049	14 741	- 1	000	59 166	7 186	479002
	48 4 (1)	339	335	1.015	- 1	311	1398	734	2,626
	Constant	. 78)	116	6.044	1	014	458		
Siec	(day))	1317	362	11874	- 1	001	3733	1.765	7897
7	4501	000)10	7.201	٦.	007	424	227	790
	47(1)	4 081	1 048	15174	1	000	50 197	i 596	461 357
	Constant	-57	241	5751	1	dla	501		

al variables) america on stap 1, 92e, 934, 94a, 95, 97, 984, 98

DISKUSI DAN PEMBAHASAN

9.1 Jenis Kelamin

Pada studi ini diketahui jumlah penderita TB berjenis kelamin pria lebih banyak dibandingkan penderita TB yang berjenis kelamin wanita, dimana didapatkan ada 156 penderita TB berjenis kelamin pria, dan 84 penderita TB berjenis kelamin wanita. Hal ini selaras dengan temuan di berbagai studi yang menyatakan bahwa rasio penderita TB berdasarkan jenis kelamin pria berbanding wanita secara global berkisar antara 1:6 atau 1:7 selama empat tahun terakhir.

Temuan studi ini juga sesuai dengan data sebaran demografi penderita TB berdasarkan data terakhir dari Global Tuberculosis Report 2019. Global Tuberculosis Report 2019 melaporkan bahwa penderita TB kebanyakan berjenis kelamin pria (5,7 juta penderita), sementara sisanya adalah perempuan (3,2 juta penderita).

Dari hasil analisis statistik, didapatkan bahwa jenis kelamin merupakan faktor risiko terhadap kejadian TB di kota Palembang. Pria diketahui berisiko secara signifikan untuk menderita TB lebih besar (OR=2,429) jika dibandingkan dengan Wanita (p_{value} = 0,000). Pada studi ini didapatkan hasil penderita TB pria sebanyak 60% sedangkan wanita sebesar 38,2%. Kedua temuan ini sesuai dengan hasil dari mayoritas studi epidemiologi TB yang mengungkapkan bahwa mayoritas penderita TB adalah laki-laki dengan jumlah persentase bervariasi dari 55-71%.

Perbedaan angka kejadian antara pria dan wanita diduga disebabkan karena adanya perbedaan biologis antara keduanya sehingga pada akhirnya mempengaruhi kerentanan penyakit. Hal lainnya yang mungkin menyebabkan perbedaan angka kejadian TB antara pria dan wanita adalah adanya perbedaan kemampuan mengakses layanan kesehatan antara dua jenis kelamin tersebut di beberapa negara berkembang akibat adanya perbedaan budaya. Secara umum, pria diduga lebih berisiko menderita TB karena populasi pria memiliki lebih banyak kesempatan untuk kontak dengan penderita TB lalu terinfeksi akibat perbedaan peran sosial di masyarakat dan tingginya aktivitas sosial yang dimiliki.²

9.2 Usia

Dari hasil studi ini didapatkan bahwa usia responden rerata adalah 43,33 tahun dengan usia termuda 16 tahun dan usia tertua 79 tahun. TB paling banyak dijumpai pada kelompok responden berusia 35 – 39 tahun (70,0%), diikuti oleh kelompok usia 30 – 34 tahun (61,5%), kelompok usia 45 – 49 tahun (61,2%), kelompok usia 60 – 64 dan 70 – 74 tahun masing-masing sebanyak 57,1%; dan kelompok usia 65 – 69 sebanyak 55,0%.

Kejadian TB sesungguhnya dapat terjadi pada semua orang dari segala umur, termasuk anak-anak. Namun kriteria inklusi studi ini adalah minimal berusia 15 tahun, sehingga usia termuda yang didapatkan pada studi ini adalah 16 tahun.

Penderita TB pada studi ini paling banyak dijumpai pada kelompok responden berusia 35 – 39 tahun (70,0%). Ini sejalan dengan temuan studi-studi sebelumnya yang menunjukkan bahwa banyak penderita TB yang merupakan populasi dewasa muda dengan usia kebanyakan di rentang 15-44 tahun.

Dari hasil analisis, didapatkan bahwa usia bukan merupakan faktor risiko terhadap kejadian TB di Kota Palembang. Namun demikian, didapatkan bahwa responden yang berusia > 30 tahun berisiko menderita TB lebih tinggidibandingkan dengan responden berusia ≤ 30 tahun, meski tidak signifikan secara statistik. Kelompok usia ini mengalami risiko lebih tinggi terkena infeksi TB diduga karena populasi ini merupakan populasi usia produktif. Mereka yang dalam usia produktif umumnya memiliki peran dan kontak sosial yang tinggi serta aktif di masyarakat. Sehingga risiko lebih besar menderita TB pada kelompok usia ini diduga berkaitan dengan jumlah kontak sosial yang lebih sering di masyarakat.

9.3 Pendidikan

Kebanyakan penderita TB pada studi ini memiliki tingkat pendidikan tamat SD yaitu sebanyak berjumlah 60,0% sedangkan yang berpendidikan SMP, SMA, dan PT berjumlah 47,7%. Berdasarkan hasil analisis statistik, didapatkan bahwa pendidikan merupakan faktor risiko TB. dimana responden berpendidikan SD berisiko secara signifikan untuk menderita TB sebanyak 1,645 kali lebih tinggi jika dibandingkan dengan responden yang berpendidikan SMP, SMA, dan PT ($p_{nalyo} = 0.036$).

Pendidikan adalah bagian dari status sosiodemografi seorang individu. Sejak dulu, kejadian TB diketahui memiliki permasalahan yang berakar pada aspek sosial dan ekonomi. Berdasarkan literatur, masvarakat vang hidup dalam keterbatasan sosio-ekonomi diketahui rentan untuk terinfeksi TB. Kerentanan ini diyakini amat terkait dengan tingkat pengetahuan dan pemahaman individu dan masyarakat, yang pada akhirnya akan mempengaruhi aksesibilitas individu tersebut ke layanan kesehatan.21 Temuan studi ini juga sejalan dengan beberapa studi terdahulu yang menunjukkan bahwa penderita TB dengan tingkat pendidikan rendah memiliki risiko menderita TB dua kali lipat lebih tinggi dibandingkan mereka yang berpendidikan baik.

9.4 Status Gizi

Penderita TB di studi ini kebanyakan memiliki status gizi buruk (78,6%), sementara sisanya memiliki status sehat dan lebih. Banyak studi-studi terdahulu menunjukkan bahwa status gizi yang buruk atau kondisi malnutrisi, baik defisiensi mikronutrien maupun makronutrien, dapat meningkatkan risiko TB. Secara patofisiologi, seseorang dengan gangguan gizi diketahui dapat mengalami gangguan sistem imun, berupa penurunan respons imun. Penurunan respons imun inilah yang kemudian memudahkan infeksi Mtb ke dalam tubuh seseorang sehingga akhirnya menderita TB.

Hal ini sejalan dengan temuan analisis statistik pada studi ini yang menyatakan bahwa responden dengan status gizi kurang berisiko untuk menderita TB sebanyak 4,926 kali lebih besar jika dibandingkan dengan responden dengan status gizi sehat. Risiko ini pun signifikan secara statistika dimana $p_{value} = 0,000$.

Risiko menderita TB pada individu dengan status gizi kurang berbeda pada pria dan wanita. Penderita TB dengan status gizi kurang berjenis kelamin pria ditemukan lebih banyak dan lebih rentan secara statistik dibandingkan dengan wanita.

Secara teori dan telah dibuktikan pula pada studi sebelumnya, bahwa status gizi kurangdan TB dapat saling mempengaruhi. Status gizi buruk atau malnutrisi diketahui dapat meningkatkan risiko seseorang terinfeksi TB, sementarakejadian TB pun dapat menyebabkan terjadinya status gizi kurang pada penderitanya. Adanya penurunan nafsu makan sebagai salah satu gejala klinis TB dan perubahan metabolisme pada penderitanya dapat menyebabkan terjadinya perubahan status gizi penderita TB menjadi status gizi buruk atau keadaan malnutrisi. Maka dari itu kejadian malnutrisi atau status gizi buruk sering kali sangat dijumpai di antara penderita TB. Namun dengan pengobatan TB yang tepat diharapkan status gizi penderita dapat berangsur-angsur membaik.

9.5 Status ekonomi

Pada penelitian ini didapatkan hasil bahwa risiko responden dengan status ekonomi tidak cukup menderita TB lebih rendah jika dibandingkan dengan responden dengan status ekonomi cukup. Responden yang tergolong berpenghasilan tidak cukup berjumlah 266 orang (55,4%) dengan jumlah penderita TB sebanyak 123 orang 46,2%) dan sisanya yaitu responden yang berpenghasilan cukup berjumlah214 orang (44,6%) dengan jumlah penderita TB sebanyak 117 orang (54,7%).

Dalam berbagai penelitian, TB dikenal sebagai penyakit yang seringkali dihubungkan dengan status ekonomi rendah atau tidak cukup. Beberapa penelitian menemukan bahwa peningkatan insiden kasus infeksi TB terkait dengan pengangguran, kurangnya pendidikan dan migrasi yang semuanya disebabkan oleh kemiskinan, yang merupakan penanda status sosial ekonomi. Namun, hingga saat ini data yang tersedia untuk hubungan status sosial ekonomi dengan TB di negara berkembang masih sangat terbatas.

Dalam penelitian ini, status ekonomi diklasifikasikan menjadi tidak cukup dan cukup berdasar pendapatan rerata tiap bulannya. Dimana kelompok tidak cukup berpenghasilan rerata tiap bulan ≤ 2,5 juta, sebaliknya kelompok ekonomi cukup adalah yang berpenghasilan rerata tiap bulannya > 2,5 juta. Sedangkan faktor lain seperti jumlah pengangguran dan tingkat pendidikan tidak dimasukkan sebagai faktor untuk menentukan status ekonomi responden.

9.6 Kebiasaan Merokok

Pada penelitian ini, didapatkan bahwa kebiasaan merokok merupakan faktor risiko terhadap kejadian TB Paru di kota Palembang, dengan responden yang memiliki kebiasaan merokok berjumlah 150 orang (33,1%) dan seluruhnya adalah Pria, tidak terdapat responden wanita yang memiliki menjadi perokok aktif. Dari 159 pria perokok aktif terdapat sebanyak 109 orang (68,6%) yang didiagnosis menderita TB. Dimana yang dimaksud kebiasaan merokok adalah perokok aktif, yaitu seseorang yang memiliki kebiasaan merokok sehari-hari, atau pernah menjadi perokok aktif walupun selama satu tahun terakhir sudah tidak merokok aktif lagi.

Hal ini sejalan dengan berbagai penelitian sebelumnya yang menyatakan bahwa merokok meningkatkan kejadian TB klinis dan merupakan penyebab separuh kematian TB laki-laki dan seperempat dari semua kematian laki-laki di usia paruh baya dengan risiko berkembangnya TB Paru itu sendiri meningkat seiring dengan dosis dan lamanya merokok. 1,31

9.7 Kontak Serumah

Kontak serumah adalah kontak dengan penderita TB yang tinggal serumah dengan responden. Dalam penelitian ini, didapatkan bahwa kontak serumah merupakan faktor risiko terhadap kejadian TB di kota Palembang. Responden yang tinggal serumah dengan penderita TB atau memiliki kontak serumah dengan penderita TB berpeluang lebih besar menderita TB jika dibandingkan dengan reponden yang tidak tinggal serumah dengan penderita TB (tidak memiliki kontak serumah dengan penderita TB). Dengan wanita yang memiliki kontak serumah dengan penderita TB jauh lebih rentan menderita TB jika dibandingkan dengan pria yang memiliki kontak serumah dengan penderita TB.

Hasil pada penelitian ini sejalan dengan beberapa teori dari berbagai penelitian terdahulu bahwa dengan meningkatnya jumlah anggota dalam rumah tangga khususnya orang dewasa di rumah dapat meningkatkan risiko TB dua kali lipat yang telah dibenarkan oleh banyak penelitian. Hal tersebut terutama berhubungan dengan kondisi perumahan kurang terawat dengan tipe rumah tertutup, kurang jumlah ruangan dan jendela/ruangan serta material yang buruk yang digunakan dalam konstruksi yang berakibat pada kepadatan dan ventilasi yang buruk sehingga meningkatkan risiko untuk terjadinya penularan TB paru.

9.8 Family Size

Dalam penelitian ini didapatkan bahwa *Family size* merupakan faktor risiko terhadap kejadian TB di kota Palembang. Penderita TB yang tinggal di rumah yang padat penghuni berjumlah 54,6% sedangkan yang tinggal di rumah yang jarang penghuni berjumlah 43,4%. Responden yang tinggal di rumah yang padat penghuni (> 4 penghuni) perpeluang lebih tinggi akan menderita TB jika dibandingkan dengan responden yang tiggal di rumah yang jarang penghuni (≤ 4 penghuni).

Hasil ini didukung oleh berbagai penelitian yang sudah dilakukan sebelumnya dimana didapatkan bahwa hasil bahwa pada anak-anak yang berasal dari rumah tangga yang padat signifikan lebih berisiko untuk ditemukan kasus infeksi TB. Family size merupakan salah satu manifestasi kemiskinan dan bisa menjadi faktor yang kejadian TB. Fakta bahwa tingkat TB berhubungan dengan kondisi keluarga/rumah tangga yang padat umumnya dihubungkan dengan patofisiologi penularan efektif bakteri ini di rumah tangga melalui droplet yang kecil.

9.9 Imunisasi BCG

Imunisasi BCG diketahui dengan cara melakukan pemeriksaan secara fisik untuk mengetahui ada tidaknya *scar* imunisasi BCG pada bagian lengan atas responden. Jika ditemukan *scar* imunisasi

BCG maka berarti mereka telah diberi imunisasi yaksin BCG dan sebaliknya jika tidak ditemukan scar BCG maka berarti mereka tidak pernah diberi imunisasi vaksin BCG. Dalam penelitian ini didapatkan responden yang melakukan imunisasi vaksin BCG berjumlah 280 orang dengan jumlah penderita TB sebanyak 212 orang.

Responden vang tidak melakukan imunisasi vaksin BCG berjumlah 200 orang (41,7%) dengan jumlah penderita TB sebanyak 119 orang (59,5%). Dari data tersebut setelah dianalisis maka didapatkan hasil bahwa imunisasi BCG merupakan faktor risiko terhadap kejadian TB di kota Palembang. Responden yang tidak melakukan imunisasi BCG berpeluang menderita TB lebih besar jika dibandingkan dengan peluang reponden yang melakukan imunisasi BCG cukup. Dengan pria yang tidak melakukan imunisasi BCG lebih rentan menderita TB jika dibandingkan dengan wanita vang tidak melakukan imunisasi BCG.

Hal tersebut sesuai dengan beberapa penelitian terdahulu dimana dilakukan eksperimen diberikan yaksin BCG pada hewan untuk kemudian diamati hubungannya saat terpapar dengan bakteri TB. Sedangkan untuk studi eksperimental pada manusia hingga saat ini masih dalam proses penelitian lebih lanjut untuk mengetahui hubungan spesifiknya.

BAB 10 SIMPULAN

B erdasarkan hasil analisis diketahui, bahwa jenis kelamin, pendidikan, status gizi, kebiasaan merokok, kontak serumah, family size, dan imunisasi BCG merupakan faktor risiko TB di Kota Palembang, sementara usia dan status ekonomi bukan merupakan faktor risiko TB di kota Palembang seperti dijabarkan berikut:

- 1. Jenis kelamin merupakan faktor risiko TB. Pria berisiko TB 2,429 kali jika dibandingkan dengan wanita dengan $p_{value} =$ 0.000.
- 2. Usia bukan merupakan faktor risiko TB. Responden berusia ≤ 30 tahun berisiko TB 1,295 kali jika dibandingkan dengan responden berusia > 30 tahun dengan $p_{value} = 0.214$.
- 3. Pendidikan merupakan faktor risiko TB. Responden berpendidikan Sekolah Dasar (SD) berisiko TB 1,645 kali jika dibandingkan dengan responden berpendidikan SMP, SMA, dan PT, dengan $p_{value} = 0.036$.
- Status gizi merupakan faktor risiko TB. Responden dengan status gizi kurang (kurus) berisiko 4,926 kali jika dibandingkan dengan responden dengan status gizi sehat, dengan $p_{value} =$ 0.000.
- 5. Kebiasaan merokok merupakan faktor risiko TB. Pria yang memiliki kebiasaan merokok berisiko 3,162 kali jika dibandingkan dengan pria yang tidak memiliki kebiasaan merokok, dengan $p_{value} = 0.000$.
- 6. Status sosial ekonomi bukan merupakan faktor risiko TB. Responden dengan penghasilan kurang dari Rp. 2.500.000 berisiko 0,713 kali jika dibandingkan dengan responden berpenghasilan lebih dari Rp. 2.500.000 dengan $p_{value} = 0.067$.
- 7. Kontak serumah merupakan faktor risiko TB. Responden yang memiliki kontak serumah dengan penderita TB berisiko 24,043

- kali jika dibandingkan dengan responden yang tidak memiliki kontak serumah dengan penderita TB paru, dengan $p_{value} = 0.000$.
- 8. Family size atau kepadatan penghuni rumah merupakan faktor risiko TB. Responden yang tinggal di rumah dengan penghuni lebih dari 4 orang berisiko 1,569 kali jiia dibandingkan dengan responden yang tinggal di rumah dengan penghuni kurang dari 4 orang, $p_{value} = 0,016$.
- 9. Imunisasi BCG merupakan faktor risiko TB. Responden yang tidak melakukan imunisasi BCG berisiko 1,931 kali jika dibandingkan dengan responden yang melakukan imunisasi BCG, dengan $p_{value} = 0,000$.
- 10. Berdasarkan hasil analisis faktor risiko TB secara simultan diketahui, bahwa dari 9 (sembilan) variabel faktor risiko, hanya terdapat 4 (empat) variabel yang dominan berisiko terhadap kejadian TB di kota Palembang, yaitu kontak serumah, status gizi, kebiasaan merokok, dan imunisasi BCG.

DAFTAR PUSTAKA

DAFTAR PUSTAKA ILMU KEDOKTERAN

- AK. IH K. Environmental Risk Factors and Social Determinants of Pulmonary Tuberculosis in Pakistan. Epidemiol Open Access. 2015:05(03), doi:10.4172/2161-1165.1000201
- AW Sudoyo; B Setiyohadi; I Alwi; M Simadibrata; S Setiati. Buku Ajar Ilmu Penyakit Dalam Edisi IV Jilid III.: 2006.
- Baker M, Das D, Venugopal K, Howden-Chapman P. Tuberculosis associated with household crowding in a developed country. J Epidemiol Community Health. 2008;62(8):715-721. doi:10.1136/jech.2007.063610
- Berhe G, Enguselassie F, Aseffa A. Assessment of risk factors for development of active pulmonary tuberculosis in Northern part of Ethiopia: A matched case control study. In: Ethiopian Medical Journal. : 2013.
- Daniel TM. The history of tuberculosis. Respir Med. 2006. doi:10.1016/j.rmed.2006.08.006
- Darrah PA, Zeppa JJ, Maiello P, et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature. 2020:577(June 2019), doi:10.1038/s41586-019-1817-8
- Deye, N., Vincent, F., Michel, P., Ehrmann, S., Da Silva, D., Piagnerelli, M., ... Laterre, P.-F. (2016). Changes in cardiac arrest patients TTM temperature management after the 2013 TTM trial: Results from an international survey. Annals of Intensive 6(1). http://doi.org/10.1186/s13613-015-0104-6, Al-Hussaini, M.,& Mustafa, S. (2016). Adolescents TTM knowledge and awareness of diabetes mellitus in Kuwait. Alexandria Journal of Medicine, 52(1) 61-66. http://doi.org/10.1016/j.ajme.2015.04.001, Pollach, G., Brunkhorst, F., Mipando, M., Namboya, F., Mndolo, S., & Luiz, T. (2016). The first digit law" A hypothesis on its possible impact on medicine and development aid. Medical Hypotheses, 97 102-106. http://doi.org/10.1016/j.mehy.2016.10.021,etal.Factorsinfluencingcom pliance to prevention of motherto-child transmission guidelines in Western Kenya. Ann Glob Heal. 2014.

- Dijkman K, Sombroek CC, Vervenne RAW, et al. Prevention of tuberculosis infection and disease by local BCG in repeatedly exposed rhesus macaques. Nat Med. 2019;25(2):255-262. doi:10.1038/s41591-018-0319-9
- Gambhir HS, Kaushik RM, Kaushik R, Sindhwani G. Tobacco smoking-associated risk for tuberculosis: A case-control study. Int Health. 2010;2(3):216-222. doi:10.1016/j.inhe.2010.07.001
- Grobler L, Nagpal S, Sudarsanam TD, Sinclair D. Nutritional supplements for people being treated for active tuberculosis. Cochrane Database Syst Rev. 2016;(6).
- Hirpa S, Medhin G, Girma B, et al. Determinants of multidrug-resistant tuberculosis in patients who underwent first-line treatment in Addis Ababa: A case control study. BMC Public Health. 2013;13(1):1-9. doi:10.1186/1471-2458-13-782
- J.P. C, D.N. M. The relationship between malnutrition and tuberculosis: Evidence from studies in humans and experimental animals. Int J Tuberc Lung Dis. 2004.
- Kehinde AO, Baba A, Bakare RA, Ige OM, Gbadeyanka CF, Salako AO. Risk factors for pulmonary tuberculosis among health-care workers in Ibadan, Nigeria. Afr J Med Med Sci. 2010;39(2):105-112. http://europepmc. org/abstract/MED/21117406.
- Kementerian Kesehatan Republik Indonesia. Kebijakan Program Penanggulangan Tuberkulosis Indonesia. Modul Kebijak Penanggulangan TB 2017. 2017.
- Kirenga BJ, Ssengooba W, Muwonge C, et al. Tuberculosis risk factors among tuberculosis patients in Kampala, Uganda: Implications for tuberculosis control. BMC Public Health. 2015. doi:10.1186/s12889-015-1376-3
- Kurniawati F, Sulaiman SAS, Gillani SW. Study on drug-resistant tuberculosis and tuberculosis treatment on patients with drug resistant tuberculosis in chest clinic outpatient department. Int J Pharm Pharm Sci. 2012.
- Lin H, Murray M, Cohen T, Colijn C, Ezzati M. Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China: a time-based, multiple risk factor, modelling study. Lancet. 372(2008):1473-1483. doi:10.1016/S0140-6736(08)61345-8
- Lönnroth K, Williams BG, Cegielski P, Dye C. A consistent log-linear relationship between tuberculosis incidence and body mass index. Int J Epidemiol. 2010. doi:10.1093/ije/dyp308
- Middelkoop K, Bekker LG, Liang H, et al. Force of tuberculosis infection

- among adolescents in a high HIV and TB prevalence community: A cross-sectional observation study. BMC Infect Dis. 2011;11. doi:10.1186/1471-2334-11-156
- Mulu W, Mekonnen D, Yimer M, Admassu A, Abera B. Risk factors for multidrug resistant tuberculosis patients in amhara national regional state. Afr Health Sci. 2015;15(2):368-377. doi:10.4314/ahs.v15i2.
- Mumpe-Mwanja D, Verver S, Yeka A, et al. Prevalence and risk factors of latent tuberculosis among adolescents in rural eastern uganda. Afr Health Sci. 2015. doi:10.4314/ahs.v15i3.20
- Musher DM. How contagious are common respiratory tract infections? N Engl J Med. 2003. doi:10.1056/NEJMra021771
- Narasimhan P, Wood J, Macintyre CR, Mathai D. Risk factors for tuberculosis. Pulm Med. 2013;2013. doi:10.1155/2013/828939
- Perhimpunan Dokter Paru Indonesia. Tuberkulosis Pedoman Diagnosis & Penatalaksanaan. Perhimpunan Dokter Paru Indonesia.
- Semenza JC, Giesecke J. Intervening to reduce inequalities in infections in Europe. Am J Public Health. 2008. doi:10.2105/AJPH.2007.120329
- Sethi S, Mewara A, Dhatwalia SK, et al. Prevalence of multidrug resistance in Mycobacterium tuberculosis isolates from HIV seropositive and seronegative patients with pulmonary tuberculosis in north India, BMC Infect Dis. 2013. doi:10.1186/1471-2334-13-137
- Shimeles E. Enguselassie F. Aseffa A. et al. Risk factors for tuberculosis: A case-control study in Addis Ababa, Ethiopia. PLoS One. 2019;14(4):1-18. doi:10.1371/journal.pone.0214235.
- Van Soelen N, Du Preez K, Van Wyk SS, et al. Does an isoniazid prophylaxis register improve tuberculosis contact management in South African children? PLoS One.2013;8(12):278-285. doi:10.1371/journal.pone.0080803
- WERDHANI, RETNO ASTI Departemen Ilmu Kedokteran Komunitas, Okupasi dan KF. Patofisiologi, Diagnosis, Dan Klafisikasi. Chem Phys Lipids. 2014. doi:10.1016/j.chemphyslip.2013.12.004
- World Health Organization. WHO TB Report. WHO Libr Cat Data World. 2019:7.
- World Health Organization. WHO | Global Tuberculosis Report 2019.; 2020. doi:1037//0033-2909.I26.1.78
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis Treatment.: 2019.
- Wong MK a., Yadav RP, Nishikiori N, Eang MT a. The association between household poverty rates and tuberculosis case notification rates in Cambodia, 2010. West Pacific Surveill response J WPSAR.

- 2013. doi:10.5365/WPSAR.2013.4.1.002
- Zignol M, Dara M, Dean AS, et al. Drug-resistant tuberculosis in the WHO European Region: An analysis of surveillance data. Drug Resist Updat. 2013;16(6):108-115. doi:10.1016/j.drup.2014.02.003

DAFTAR PUSTAKA ILMU STATISTIKA

- ALLEN L. Webster. 1998. Applied Statistics for Business and Economic: An Essentials Version. Third Edition. Irwin McGrow-Hill, Boston.
- ARY, Donal, Lucy Cheser Jacobs dan Ashgar Razavieh, (1982), *Pengantar Penelitian dalam Pendidikan*, diterjemahkan oleh Arief Furchan, Surabaya: Usaha Nasional.
- BABBIE, Earl R. 1973. *Survey Research Method*. California: Wodsworth Publishing Company, Inc.
- BISHOP, Yovone MM, Stephen E. Fienberg, Paul W. Holland. 1975. Discrete Multivariate Analysis: Theory and Practice. Cambridge. Massachusetts: The Mit Press.
- BLALOCK, H.M., Jr. 1972. Causal Models in the Social Sciences. London: Macmillan.
- BOLCH, Ben W. 1974. *Multivariate Statistical Methods for Economics*. Englewood Cliffs: Prentice Hall.
- BOOT, John C.G. Edwin B. Cox. 1974. Statistical Analysis for Managerial Decissions. Tokyo: Mc Graw-Hill Kogakusha.
- BRYMAN, Allan; Duncan Cramer. 1990. *Quantitative Analysis for Social Scientists*. London: Routledge.
- BRONSON. Richard. 1983. *Theory and Problems of Operations Research*. Singapore : Mc. Graw-Hill.
- BUDIMAN Candra, 2002. *Pengantar Statistika Kesehatan*, Jakarta, Penerbit Buku Kedokteran, EGC
- BUNGIN, Burhan, (2005), Metodologi Penelitian Kuantitatif, Jakarta: Kencana
- CHALMER, Bruce J. 1987. *Understanding Statistics*. New York. Marcel dekker Inc.
- CHURCHMAN, C. West; Russel L Ackoff; E Leonard Arnoff. 1960. *Introduction to Operations research*. New York: Jonh Wiley.
- COCHRAN, William G. 1964. Design and Analysis of Sampling. Dalam Snedecor op cit.
- COCHRAN, William G. 1959. Sampling Technique. New York: John Wiley.
- 152 E. Roflin, I. A. Liberty, Pariyana, M. Reagan, & H. M. Uli

- CORNELIUS Trihendradi, 2007, Kupas Tuntas Analisis Regresi: Strategi jitu Melakukan Analisis Hubungan Causal, Yogyakarta, Penerbit ANDI.
- CROWDER, M.J.; Kimber AC; Smith RL; Sweeting TJ. 1991. Statistical Analysis of Reliability Data. London. TJ Press Ltd, Padstow, Cornwall.
- DAVID G, Kleinbaum Mitchel Klein, 2002, Logistic Regression A Self-Learning text, USA, Spinger
- DAVID, W., Hosmer, Jr., 1989, Applied Logistic Regression, New York, John Wiley & Son
- DOWDY, Shirley: Stanley Warden. 1983. Statistics for Research. New York : John Wiley & Son
- DRAPER, N.R; Smith, H. 1992. Analisa Regresi Terapan, edisi kedua, Terjemahan. Jakarta. PT Gramedia Pustaka Utama.
- FIENBERG, Stephen e. 1978. The Analysis of Cross-Clasified Catagorical Data. Cambridge Mass: The Mit Press.
- FRAENKEL, Jack R. and Norman E. Wallen, (1993), How to Design and Evaluate Research in Education, Singapore: McGraw-Hill.
- FURQON, (1997), Statistika Terapan untuk Penelitian, Bandung: Alfabeta
- GIBBON, Jean Dickinson. 1971. Nonparametric Statistical Inference. New York: Mc Graw-Hill
- GUILFORD, JP; Banjamin fruchter. 1973. Fundamental Statistics in Psychology and Education. Tokyo: Mc Graw-Hills Kogakusha.
- HAGUL, Peter, Chris Manning dan Masri Singarimbun. 1989. Penentuan Variabel Penelitian dan Hubungan Antar Variabel, dalam Masri Singarimbun dan Sofian Effendi (ed), Metode Penelitian Survei. Jakarta: LP3ES.
- HARING and Lounsbury. 1972. Introduction to Scientific Geographic Research. Iowa: WM.C. Brown Company Publishers.
- HILDEBRAND, David K; James D Laing; Howard Rosenthal. 1977. Prediction Analysis of Cross Clasifications. New York: John Wiley.
- I GUSTI NGURAH AGUNG, 2001, Statistika Analisis Hubungan Kausal Berdasarkan Data Katagorik, Jakarta, PT Raja Grafindo Persada.
- JOSEPH F.Hair, JR. Rolph E. Anderson, Ronald L. Tatham, William C. Black. 1998. Multivariate Data Analysis. Fifth Edition. Prentice-Hall International, Inc. United States of America.
- KERLINGER, Fred N; Elazer J Pedhazur. 1973. Multiple Regression in Behavioral Research. New York: Rinehart and Winston.
- KERLINGER, (2004), Asas-Asas Penelitian Behavioral (diterjemahkan oleh Landung R. Simatupang), Yogyakarta: Gadjah Mada University Press.

- KREJCIE, R.V. and Morgan. D.W. 1070. *Determining Sample Side for Research Activities*. Educational and Psychological Measurement.
- SABRI Luknis, Sutanto Priyo Hastono, 2008, *Statistik Kesehatan*, Jakarta, PT. Grafindo Persada
- MACHIN, D., & Campbell, M.J., (1989), Statistical Tables for The Design of Clinical Trials, London: Blackwell Scientific Publication.
- MANTRA, Ida Bagus dan Kasto. 1989. Penentuan Sampel dalam Masri Singarimbun dan Sofian Effendi (ed), Metode Penelitian Survei, Jakarta: LP3ES.
- MENDENHALL William; James E. Reinmuth. 1988. *Statistik Untuk Manajeman dan Ekonomi*. Edisi Keempat, jilid Dua. Terjemahan. Jakarta. Penerbit Erlangga.
- MURRAY R. Spiegel, I Nyoman Susila, Ellen Gunawan. 1996. Seri Buku Schaum: Teori dan Soal-Soal Statistik.. Penerbit Erlangga. Jakarta
- NETER, john; Wasserman W. 1974. Applied Linea Models: Regression, Analysis of variance, and Experimental Designs. London. Richard D. Irwin Inc.
- NEIL H. Timm. 1975. Multivariate Analysis With Application in Educations and Psychology. California. Book/Cole Publishing Company.
- PEDHAZUR, Elazar. 1982. *Multiple Regression in Behavioral Research*. New York: Holt, Rinehart and Winston.
- POLET A., Nasrullah. 1994. *Penggunaan Metode Statistika untuk Ilu Hayati*. Gajahmada University Press. Yogyakarta.
- ROBERT R. Sokal, F. James Rohlf. 1996. *Pengantar Biostatistika*. Edisi Kedua, Terjemahan olah Nasrullah, Gajahmada University Press.
- SAPIYUDIN Dahlan, 2001, Statistik untuk Kedokteran dan Kesehatan: Deskriptif, Bivariate, Multivariate Dilengkapi Aplikasi dengan Menggunakan SPSS, Jakarta, Penerbit Salemba Medika.
- SEIGEL, Sidney. 1956. Nonparametric Statistics for the Behavioral Sciences. New York: Mc Graw-Hill.
- SIEGEL, Sidney. 1990. *Statistika Nonparametrik*. Jakarta. PT Gramedia Pustaka Utama.
- SINGARIMBUN, 1989. Metode dan Proses Penelitian dalam Masri Singarimbun dan Sofian Effendi (ed), Metode Penelitian Survei. Jakarta: LP3ES.
- SINGARIMBUN, Masri dan Sofyan Efendi (Editor), (1989), Metode Penelitian Survai, Jakarta: LP3ES.
- SINGGIH Santoso. 2001. Buku Latihan SPSS Statistik Parametrik. Jakarta,
- 154 E. Roflin, I. A. Liberty, Pariyana, M. Reagan, & H. M. Uli

- Elex Media Komputindo.
- SINGGIH Susanto . 2002. SPSS Versi 10: Mengolah Data Statistik Secara Profesional. Elex Media Komputindo. Jakarta.
- SINGGIH Susanto . 2002. Buku Latihan SPSS: Statistik Multivariat. Elex Media Komputindo. Jakarta.
- SLAMET, Y, (1993), Analisis Kuantitatif untuk Data Sosial, Solo: Dabara Publisher
- SNEDECOR, George W. 1964. Statistical Methods Applied to Experiments in Agriculture and Biology. Ames: Iowa: The iowa State University Press
- SUJANA, (1992), Metoda Statistika, Bandung, Penerbit Tarsito
- SUJANA.1988. Metoda Statistika. Bandung, Penerbit Transito.
- SUJANA, Nana dan R. Ibrahim, (2004), Penelitian dan Penilaian Pendidikan, Bandung: Sinar Baru Algensindo.
- SUKMADINATA, Nana Syaodih, (2005), Metode Penelitian Pendidikan, Bandung: Kerjasama PPs Universitas Pendidikan Indonesia dengan Remaja Rosda Karya.
- SUPRANTO J. 1989. Statistik: Teori dan Aplikasi. Edisi Kelima. Jilid Satu. Jakarta. Penerbit Erlangga.
- SURACHMAD, Winarno, (1998), Pengantar Penelitian Ilmiah; Dasar, Metode, dan Teknik, Bandung, Penerbit Tarsito.
- SUROSO, 1987, Statistika untuk Biologi, Farmasi, Kedokteran, dan Ilmu yang Bertautan, Bandung, Penerbit ITB
- SURYABRATA, Sumardi. 1989. Metodologi Penelitian. (cetakan kelima). Jakarta: CV. Rajawali.
- SURYABRATA, Sumadi, (2004), Metodologi Penelitian, Jakarta: Radja Grafindo Persada.
- SURYATNA Rafi'i. 1986. Metode Statistika Analisis untuk Penarikan Kesimpulan, Penerbit Binacipta.
- TASSI Philippe. 1989. Methodes Statistiques. Paris, Economica.
- WALPOLE, Ronald E. (1983), Introduction to Statistics, New York: Macmillan Publishing

Eddy Roflin lahir di Cirebon. Lulus Sarjana Matematika FMIPA Unpad 1984 dan Magister Ilmu Ekonomi Program Pascasarjana FE Unsri 2007. Tahun 1987 - 1989 mengikuti pendidikan pada bidang Statistika Matematika di Universitas Paris XI Paris Perancis. Sejak tahun 1985 sebagai Dosen di Prodi Matematika FMIPA Unsri. Sejak Maret 2015 pindah sebagai Dosen Biostatistika di FK Unsri. Pengalaman penelitian: (1) Determinan Kesehatan, Pola Pencegahan, dan Pengobatan ISPA Pada Balita di Daerah Rawan ISPA di Kota Palembang, 2016; (2) Efektivitas Imunisasi BCG dalam Mencegah Kejadian Tuberkulosis Paru di Kota Palembang (2016); (3) Determinan dan Hambatan serta Dampak Klinis Ketidakpatuhan Berobat Pasien Hiertensi: Sebuah Perspektif Kohort Studi (2017), (4) Self Monitoring dan Faktor Risiko Kardiovaskuler pada Pasien Prehipertensi: Sebuah Perspektif Kohort Studi (2018), (5) Pengaruh Perubahan Aktivitas Fisik Terhadap Profil Kardiometabolik Pasien Prehipertensi (2019), (6) Skrening Tuberculosis Menggunakan Metode Multi-Objective Gradient Evolution-Based Support Vector Machine And C5.0 Decision Tree. Pengalaman menulis buku: (1) Biostatistika, Penerbit Simetri, Juli 2010, ISBN (13)978-979-19544-1-9 (2010); (2) Formula Alternatif Model Tranfer Dana Alokasi Umum: Upaya Mengatasi Kesenjangan Fiskal dalam Era Otonomi Daerah, Hasil Penelitian S2, Penerbit Simetri, Februari 2011, ISBN (13)978-979-19544-3-3. (2011); (3) Analisis Deskriptive Dalam Penelitian Epidemiologi, Unsri Press, 2015, ISBN: 979-587-560-4 (2015); (4) Analisis Regresi Dalam Penelitian Epidemiologi, Unsri Press, 2015, ISBN 979-587-564-7 (2015); (5) Biostatistia Kedokteran, Unsri Press, ISBN: 979-587-663-5 (2015); (6) Faktor Risiko Tuberkulosis di Kota Palembang, Hasil Penelitian Satek 2020.

