No Access
Published Online: 03 May 2021
AIP Conference Proceedings 2339, 020254 (2021); https://doi.org/10.1063/5.0044595
Foamed concrete is a lightweight concrete innovation that utilizes foam materials to be added to concrete mixtures aimed at reducing the concrete’s density. This research uses foam percentage of 30%, 40%, 50%, and 60% of the total mixture’s volume. The percentage of fly ash substitution by 0%, 10%, 15%, and 20% of the total weight of cement. The purpose of this research is to analyze the effect of foam and fly ash percentage on the properties of foamed concrete. Tests include slump flow, setting time, density, and compressive strength. The maximum value of slump flow test result is on 30V-20FA mixture at 69.50 cm. The result of time setting test shows the fastest initial setting time and final setting time are 275 minutes and 600 minutes on 30V-0FA mixture. Meanwhile, the slowest initial setting time and final setting time are 405 minutes and 790 minutes on 50V-20FA. The lowest density is 901.27 kg/m3 on 60V-20FA mixture meanwhile the highest density value is 1,487.90 kg/m3. The optimum compressive strength value is 8.57 MPa on 30V-10FA mixture with 10% of fly ash percentage.
  1. 1. T. S. Manoj, P. M. Harsh, C. K. Ritin and J. Zala, Int. J. Adv. Eng. Res. Dev. 2, 313–319 (2015). Google Scholar
  2. 2. A. Neville, “Properties of Concrete” (5th ed. London Pearson Education Ltd, 2011). Google Scholar
  3. 3. S. Wei, C. Yiqiang, Z. Yunsheng and M. R. Jones, Constr. Build. Mater. 47, 1278–1291 (2014). https://doi.org/10.1016/j.conbuildmat.2013.06.027, Google ScholarCrossref
  4. 4. K. C. Brady and M. R. Jones, “Specification for Foamed Concrete” (United Kingdom: Old Woldngham Road Crowthorne Berkshire RG45 6AU, 2001). Google Scholar
  5. 5. J. H. Mohammed and A. J. Hamad, TJFE 37, 10–15 (2014). Google Scholar
  6. 6. P. Onprom, K. Chaimoon and R. Cheerarot, Adv. Mater. Sci. Eng. 1–11 (2015). https://doi.org/10.1155/2015/381704, Google ScholarCrossref
  7. 7. T. B. Min, Y. J. Woo and H. S. Lee, Materials 7, 4536–4554 (2014). https://doi.org/10.3390/ma7064536, Google ScholarCrossref
  8. 8. N. A. M Mortar, K. Hussin R. A. Razak, T. A. F. Meor, M Rosnita, “Compressive Strength of Fly Ash Geopolymer Concrete by Varying Sodium Hydroxide Molarity and Aggregate to Binder Ratio” (IOP Conference Series: Materials Science and Engineering, 2020), pp. 012037, Google Scholar
  9. 9. H. S. Lee, M. A. Ismail, Y. J. Woo, T. B. Min and H. K. Choi, Materials 7, 4536–4554 (2014). https://doi.org/10.3390/ma7064536, Google ScholarCrossref
  10. 10. M. D. Jalal, A. Tanveer, K. Jagdeesh and F. Ahmed, J. Civ. Eng. Res. 8, 1–14 (2017). Google Scholar
  11. 11. ASTM C 618, “Annual Books of ASTM Standards: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete” (USA: Association of Standard Testing Materials, 2005). Google Scholar
  12. 12. Jitchaiyaphum, Khamphee, Sinsiri, Theerawat and Prinya Chindaprasirt, Procedia Eng. 1157–1164 (2011). https://doi.org/10.1016/j.proeng.2011.07.145, Google ScholarCrossref
  13. 13. Kearsley and P. J. Wainwright, Cem. Concr. Res. 31, 105–112 (2000). https://doi.org/10.1016/S0008-8846(00)00430-0, Google ScholarCrossref
  14. 14. A. Yerramala, R. Chandurdu and B. Desai, Int. J. Eng. Sci. Technol. 4, 3657–3665 (2012). Google Scholar
  15. 15. N. A. M Mortar, K. Hussin, R. A. Razak, M. M. A. B. Abdullah, A. H. Hilmi, A. V. Sandu, “Properties and behavior of geopolymer concrete subjected to explosive air blast loading: a review” (Engineering Technology International Conference (ETIC), 2016), pp. 01019, Google Scholar
  1. © 2021 Author(s). Published by AIP Publishing.