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Abstract—Myocardial infarction (MI) may be a minor event
in a type of chronic disease, even undetectable, However, it can
also be a major disaster that causes sudden death. The
multivariance in ECG signals for different patients causes the
interpretation of existence MI is a difficult task. The various
conventional method is proposed to diagnose MIof ECG signals.
The conventional classifier algorithm uses a shallow feature
learning architecture based on the hand-crafted feature. This
paper is only a preliminary study so that this paper contains
only brief analysis and plan. However, it can present other
point-of-view to process cardiac rhythm that associated in
timesteps based on deep learning approach. Basically, a shallow
feature learns as well as deep learning. However, the advantage
and characteristics of deep learning will make classifier learn
tumatically without having to involve human intervention.
Long short-term memory (LSTM) as deep learning classifier is
proposed to the binary classification of MI and healthy control
patients. The public ECG signals dataset of Physionet is used to
support our research. In the evaluation of binary classification,
balanced accuracy (BAcc) and Matthew's Correlation
Coefficient (MCC) metrics are used to analyze imbalance
sequential data of 4.57 Imbalance Ratio (IR). The overall, 3
hidden LSTM layers as classifier show good performance in
imbalanced data to classify MI with precision, sensitivity, F1
score, BAce, and MCC is 0.91, 0.91, 0.90, 0.83, and 0.75
respectively.

Keywords—myocardial infarction, recurrent neural network,
long short-term memory, ECG

I. INTRODUCTION

Cardiovascular disease (CVD) is the leading global cause
of death in low- and middle- income countries [1]. It estimated
to be the first-leading killer in 2020 [2]. The result of Basic
Health Research at the Indonesian Ministry of Health in 2013
explained that the most common CVD in adults is coronary
heart discase. The estimated prevalence of coronary heart
disease in Indonesia is around 883.447 or 0.5 percent [3].
Among several types of coronary heart disease, myocardial
infarction (MI) is the most dangerous form of coronary heart
discase with the highest mortality rate [4]. MI occurs due to a
lack of oxygen demand in the cardiac muscle tissue which
requires the high supply of oxygen, which reduces the supply
of oxygen to the area. To pump blood throughout the body,
oxygen is needed by the cardiac muscles. If cardiac muscle
activity increases, oxygen demand also increases [3].
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MI can be mnoscd via an electrocardiogram (ECG)
examination [5]. ECG is the cardiac electric activity recording
electrodes placed on the surface of the human body [6].
ECQG signals have five different waveforms for each cardiac
cycle; P wave, QRS complex, and T wave [7][8]. In normal
patients, the five waveforms show the appropriate shape, no
morphol@y [9][10]. However, in patients with MI, ECG
changes can be observed typically of the ST interval length,
ST elevation and changes in[waveform [11]. Interpretation
of patients with MI with the ST interval length, ST elevation
and changes in T waveform via ECG signals are a difficult
task [12]. It is due to the significant variation of ECG signals
morphological for different patients under different physical
conditions [13].

The variety of conventional algorithms have been
proposed to automatically interpret MI from ECG signal
recordings [ 14]-[19]. These algorithms use a machine learning
approach. The main drawback of machine learning results is
the use of heuristic engineered features with shallow feature
learning architectures [20]. In the steps to overcome the lack
of it, this study gives other perspectives to analyze ECG signal
that associated in timesteps based on deep learning approach.
In recent years, a deep leamning algorithm has shown a
superior classification compared to conventional methods
belong to a machine learning approach [21]. Deep learning
learns features automatically and their own computational
methods, without conventional hand -crafted features [20].

Some deep learning techniques used for ECG signal
processing include convolutional neural networks [22],
stacked autoencoderdf3], deep belief network [24], deep
Boltzmann machine [25], recurrent neural network [26][27],
and long short-term memory [28]-[30] by entering different
data characteristics, such as signal morphology, time-series,
EBd scquential data in ECG. Among these algorithms, the
recurrent neural network with long short-term memory
(LSTM) architecture as a classifier works to process
sequential data [28]-[30]. This sequential data in line with the
nature of sequential ECG signals which assume that inputs
and outputs depend on each other with or without a concrete
notion of time [31]. The characteristic of the LSTM algorithm
does not assume [1D (independent and identically distributed)
data.

To produce a good analysis of classifier performance, this
study uses balanced accuracy and Matthew’s Correlation
Coefficient due to the data ratio imbalanced; major (MI) and




minor (healthy control) classes. These metrics are terminology
amﬁ‘ivaﬁuns from a confusion matrix in the diagnostic test.

This paper is organized as follows. Section 2 describes the
material in our proposed method and classification problem.
Section 3 explains the experimentation of some validation
model in a classifier. Section 4 discms the results of the
classifier performance. The last, section 5 shows the
conclusions of this work.

II. MATERIAL AND METHOD

A a Preparation

The Physionet PTB Diagnostic ECG Database (PTBDB)
containsg érecords from 290 patients [32]. Each ECG signal
has been digitized at 1000 samples per second in PTBDB. In
ECG signafii#-processing, the initial process of segmentation
to achievigilj fixed window size of 4 seconds. Each window
includes at least four heartbeats at a normal heart rate, as
shown in Fig. 1. The length of each kind of ECG signal is
different. The range of the MI ECG signal length from 480000
to 1800180 samples (480 - 1800 seconds). For the length of
the ECG signal in the normal heart with a range from 1455000
to 1800180 samples (1455 - 1800 seconds).

(a) Healthy Control

0 00 1000 1500 2000 500 3000 00 4000

(b) Myocardial Infarction
Fig. 1. ECG Signal Morphological

B. Recurrent Neural Network

Recurrent Neural Network (RNN) has "memory" namely
state (s,) that captures information about all input elements
(x,) to output ¥, [33]. Output vector h, is used to compute
error with loss function. In standard RNN, also known as
vanilla RNN, has the same forward pass and backward pass
process as other artificial neural networks. In the
backpropagation process, the term being backpropagation
through time (BPTT) [34]. The forward pass (black arrow)
and backward pass (dotted line) can be illustrated in Fig. 2.
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Fig. 2. Forward and Backward pass in standard RNN [35]
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Singh et al., proposed RNN technique for Arrhythmia
Classification [35]. Theoretically, a standard RNN can handle
input long-term dependencies, but in practice, learning issue
appears due to vanishing or exploding gradients problems in
backward pass [36]. In backward pass, more derivation is
often calculated, resulting in smaller number and even close
to the value 0 (zero). It often disappear when it reaches the
initial layers. A total error in all imesteps T, in weight W the
error is given by the (1):

0F _ 1 9B
w = Lt=17 ()

The overall error gradient in (1) can be calculated by the chain
rules is given by (2):

JE _ sy OF dyr dhy dhy (2)
aw =14y, dh, dhy oW

Differentiation of h, and hy, in (2) is a derivative of a hidden
state that stores memory at time ¢, which is related to the

hidden state at the previous time k. This phase involves the

dahy

Jacobians 7 for the entire time t and one-time k:

dhy _ dhe dhe-a Ahgsr _ t dhy
Ahy  Bhpoy Ohpy T Bhy [iciees an 3)
k t=1 t=-2 k i=1

dh;

The Jacobian matrix displays the eigen decomposition

given by WTdiag[f'(h,_,)]. the eigenvalues are produced
Mg ng Where 2] > %] ... |%,| and corresponds to
eigenvectors vy, ¥y, ..., V. If the largest eigenvalue produced
is larger than 1, »;< 1, there will be vanishing gradient, on
the contrary, if the largest value is smaller than 1, ;> 1, then
there will be an exploding gradient. To overcome vanishing
and expl@g gradient problems on standard RNN, this study
pmws Long Short-Term Memory (LSTM) architecture.

C. Long Short-Term Memory Model

Long Short-Term Memory (LSTM) is a specific type of
RNN architecture, which is used to solve vanishing or
exploding gradient problems [37][38]. LSTM architecture
improves the performance of a standard RNN model by
entering a gate mechanism for handling timestep information
from input sequences at long intervals. Using this gating
mechanism, LSTM overcomes vanishing or exploding
gradientsfvherein there is no gate in a standard RNN [33].
The gate mechanism controls the amount of information, from
the previous timestep, which contributes to the current output.
The LSTM gate mechanism implements three components;
(1) inputs, (2) forget, and (3) output gate [33].

Forw Pass

A forward@ss is calculated as input x with a length T by
starting ¢ = 1 and recursively by applying an @@Hate
equation while adding t. The scripts {, f and o refer to the
input, f@ket, and output gates from the block, respectively.
Script ¢ refers to one ofthe € memory cells. At time t, LSTM
receives a new input in the form of vector x* (including bias),
and the output of the vector h*~1in the previous timesteps (see
Fig. 3, which & denotes elementwise product Hadamard).
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Fig.3.. Forward pass in L§TM
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Weights from cell ¢ to input, forget, and output gates are
annotated w;, Wy, w,, respectively. The equations are given
by:

at = tanh(W.x* + U ht™1) 4
i = a(Wxt + URY) = a(ih) (5)
[t =o(Wpx' + Uph*) = o(f9) ()
o' = a(W,x* + U,ht=1) = a(a") (7

Ignoring the non-linearities:

at we ur
e || _ |wi Ut xt
= f"t “lwr Ul Lpt-1
Bt we e

=Ww.I* (8

Then, the memory cell values upd§Bd by combining a’
and the contents of the previous cell ¢'~'. The combination is
based on the magnitude of the gate input i dan forget gate f*:

el = itoat +fl®ct—l [9)

In the end, the LSTM cell calculates the output value by
passing an updated cell value through non-linearity:

h" = 0" @ f(chH (10)

Backward Pass

Backward pass computes starting from t = T, and
recursively calculating the derivative unit in each timestep. As
standard RNN, all status and activations are initialized to zero
att = 0,and all § =0att = T + 1. The output of the
forward pass in (10), in differentiation, is given by:

Sht = 2£ (11

aht
Then, applying the chain rule:

AE  9E  aR!

e L [ t
e = ot = R (D) (12)

where,

do* = 8h' @ f(c") (13)

An update memory cell in the backward pass process
based on the forward pass in (9), in differentiation, is given
by:

5t = 2= (14)
E  9E ad
;:E-¥=ac§-a§ (15)
where,
§i' = 6 ®a (16)

Computation of input and gate in the backward pass phase
based on forward pass in (8), then to get §z° the parameter
sat, ﬁff,éff, and 86" are needed as following:

§at = da* ©(1 — tanh?(a")) (1n
St =680 Q- (18)
Sft =8fOf O -f9 (19)
56t = 50'@0'®(1 — of) (20)
Then, produces:
5zt = [6dt,8it, 6,867 (21)

In calculating the forward pass in (8) where z° = W.I",
using the parameter §z°, then §1* = W' - §z°, so:

It = [hf_:] (22)

where §h'™? can be taken from §1° and produces:
SWE =82t - (I)T (23)

Differentiation in the backward pass from (8) to (23) can
be represented in Fig. 4.
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Fig. 4. Backward pass in LSTM




III. EXPERIMENTAL

The amount of ECG signal data is divided by 80% for the
training set and 20% for the testing set. In the training set, 10%
1s used for the validation set. Total of 12.359 ECG rhythm that
has been segmented each window sized in 4 se@ilis. The
amount of total data is separated randomly. The number of
sequential data for the class of MI is 10.144 and the healthy
control class is 2.215 of the total.

The stages of the learning phase in neural networks are
validation. Evaluation parameters used in the validation
process in the binary classification process between the class
of MI and healthy control are using confusion matrix, which
contains information about the actual classification and
predictions made by the classification system. The validation
phase starts from standard RNN, one to three hidden LSTM
layers model.

In this study, hyper-parameters are used to optimize the
performance of the LSTM architecture. Adam optimization
with 0.001 learning rate, cach classifier was trained for 50
epochs, and a batch size of 512 samples. All classifiers were
trained on NVIDIA GeForce RTX 2080.

IV. EVALUATION PERFORMANCE

This study evaluates binary classification with balanced
accuracy (BAcc) and Matthew's Correlation Coefficient
(MCC) for classification in imbalanced data. The equations
are given by:

BAcc = % (24)

(TP xTN)—(FP x FN)

Mcczvrm

(25)

The data in the classification process are divided into two
different classes, namely positive (P) as Myocardial Infarction
and negative (N) as Healthy control. This classification
produces four types of res; two types of classifications that
are true (or true), namely true positive (TP) and true negative

;and two types of false (or false) classifications, namely
false positive (FP) and false negative (FN). The 2x2 table
formulated with these four results is called a confusion matrix
[10]. The basic evaluation steps of confusion matrix produce
the following equations:

L. TP
Sensitivity (Recall) = T (26)
Precision = ——& (27)

(TP+FP)
F1Score = 2= Precisions= Recall (28]

(Precision+Recall)

V. RESULT AND ANALYSIS

In this section, we discuss the four models (standard RNN,
1 hidden LSTM, 2 hidden LSTM, and 3 hidden LSTM layers)
results that have been tested on the testing set. The results are
represented in Table L.

TABLE L PERFORMANCE RESULTS OF BINARY CLASSIFICATION IN

TESTING SET

Performance
Model Class
Precision itivi FI Score

Standard | Healthy Control 0.00 0.00 0.00
RNN MI 0.83 1.00 0.91

avg/total 0.68 0.83 0.75
1 hidden | Healthy Control 091 0.39 0.71
LSTM MI 091 0.99 0.94
layer avg/total 0.91 091 0.90
2 hidden | Healthy Control 085 0.65 0.73
LSTM MI 092 097 0.94
layers avg/total 0.90 0.91 0.90
3 hidden | Healthy Control 0.94 0.68 0.74
LSTM MI 090 0.99 0.94
layers avg/total 0.91 091 0.90

Table I shows that the results of the classification
performance in healthy control class are lower than the MI
class in each model. It is not strange considering the amount
of healthy control data fBilable is less than the MI of the total
data. It can result in an increase in the number of false
positives (FP) and a decrease in the number of false negatives
(FN). Table II shows the performance results of binary
classification with the imbalance ratio (IR) equals 4.57. The
IR is defined as the size ratio of the large class and the small
class.

TABLE 1I. PERFORMANCE RESULT OF BINARY CLASSIFICATION WITH
IR =4.57 IN TESTING SET
Model Performance

BAce MCC
Standard RNN 050 0.00
| hidden LSTM layer 0.78 0.68
2 hidden LSTM layers 081 0.68
3 hidden LSTM layers 0.83 0.75

VI. CONCLUSION

This paper is an initial stage to determine the structure and
algorithm of LSTM as a classifier of ECG signals. This does
not take away the fact that the results of the performance in
this initial stage have not been too good due to minimum ECG
signal pre-processing before being classified by LSTM. In
addition, the LSTM architecture used is still standard and
simple. BZ8n though it is not too optimal, for a simple LSTM
network, the results of performance in the training and testing
sets show good classification when compared to RNN
standard. This proves that LSTM as deep learning technique
is a pretty good method for classifying sequential data that
implements timcstcrw imbalanced data.
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