PEMODELAN TOPIK MENGGUNAKAN METODE LATENT DIRICHLET ALLOCATION DAN GIBBS SAMPLING

RAMADANDI, RIZKI and Yusliani, Novi and Arsalan, Osvari (2021) PEMODELAN TOPIK MENGGUNAKAN METODE LATENT DIRICHLET ALLOCATION DAN GIBBS SAMPLING. Undergraduate thesis, Sriwijaya University.

[img] Text
RAMA_55201_09021381722133.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[img] Text
RAMA_55201_09021381722133_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (7MB) | Request a copy
[img]
Preview
Text
RAMA_55201_09021381722133_0008118205_0028068806_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Preview
[img] Text
RAMA_55201_09021381722133_0008118205_0028068806_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (363kB) | Request a copy
[img] Text
RAMA_55201_09021381722133_0008118205_0028068806_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (150kB) | Request a copy
[img] Text
RAMA_55201_09021381722133_0008118205_0028068806_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (452kB) | Request a copy
[img] Text
RAMA_55201_09021381722133_0008118205_0028068806_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (248kB) | Request a copy
[img] Text
RAMA_55201_09021381722133_0008118205_0028068806_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (11kB) | Request a copy
[img] Text
RAMA_55201_09021381722133_0008118205_0028068806_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (133kB) | Request a copy
[img] Text
RAMA_55201_09021381722133_0008118205_0028068806_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (255kB) | Request a copy

Abstract

Pemodelan topik adalah suatu alat yang digunakan untuk menemukan topik laten pada sekelompok dokumen. Pada penelitian ini dilakukan pemodelan topik dengan menggunakan metode Latent Dirichlet Allocation dan Gibbs Sampling dan pengembangan perangkat lunak dengan menggunakan metode Extreme Programming. Enam artikel berita Bahasa Indonesia dipilih dari ribuan artikel berita yang telah dikumpulkan dari portal berita detiknews dengan menggunakan metode Web Scrapper. Artikel berita dibagi menjadi dua kategori utama yaitu, narkoba dan COVID-19. Analisis model LDA dilakukan dengan menggunakan metode koherensi topik pengukuran skor UCI dengan hasil penelitian menyebutkan diperoleh lima buah topik optimal pada masing-masing pengujian.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Pemodelan Topik, Pemrosesan Bahasa Alami, Latent Dirichlet Allocation, Gibbs Sampling
Subjects: T Technology > T Technology (General) > T1-995 Technology (General)
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Rizki Ramadandi
Date Deposited: 19 Jan 2022 08:19
Last Modified: 19 Jan 2022 08:19
URI: http://repository.unsri.ac.id/id/eprint/61906

Actions (login required)

View Item View Item