## The N-Sheet Model in Capacitated Multi-Period Cutting Stock Problem with Pattern Set-Up Cost

by Putra Bangun

**Submission date:** 11-Jul-2022 11:19AM (UTC+0700)

**Submission ID:** 1869025191

**File name:** ISRITI 2020.pdf (4.23M)

Word count: 17140 Character count: 95234



# PROCEEDING

#3rd **ISRITI 2020** 

Yogyakarta - Indonesia 10 December 2020

ARTIFICIAL INTELLIGENCE for SOCIAL INTERACTIONS

isriti.akakom.ac.id









2020 3rd International Seminar on Research of Information Technology and Intelligent Systems 2020 3<sup>rd</sup> International Seminar on Research of Information Technol (ISRITI) took place 10 December 2020 in Yogyakarta, Indonesia

> IEEE catalog number: CFP20AAH-PRT ISBN: 978-1-7281-8404-3

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Operations Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved. Copyright  $\ensuremath{\mathbb{C}}$  2020 by IEEE.

### **International Seminar on Research of Information Technology and Intelligent Systems**

### The 3<sup>rd</sup> ISRITI 2020

#### 10 December 2020

#### STMIK AKAKOM YOGYAKARTA

Jalan Raya Janti no 143, Karang Jambe, Banguntapan, Bantul Yogyakarta, Indonesia 55198 Phone: +62 858-4813-5411 (whatsapp only) | Email: isriti@akakom.ac.id www.isriti.akakom.ac.id

#### WELCOME SPEECH FROM THE CHAIRMAN OF STMIK AKAKOM YOGYAKARTA

The honourable Keynote Speakers (Dr. Zoohan Gani from Victoria University and Assc. Prof. Ahmad Hoirul Basory from King Abdul Azis University)
Chairman of Widya Bakti Foundation and his staffs,
Representatives from IEEE Indonesia Chapter and Central IEEE,

Team of Indonesia Researcher and Scientist Institute,

Researchers and conference attendees,

Ladies and Gentlemen,

Assalamu'alaikum Wr. Wb.

May peace and health be upon us all.

First of all, let us express our utmost gratitude to God Almighty (SWT) for His blessings and grace so that even though in this coronavirus pandemic atmosphere, we can all still participate in the third iSriti international conference. On this occasion, let me express my sincere appreciation to the Keynote Speakers: Dr. Zoohan Gani from Victoria University, Sydney Australia, and Assoc. Prof. Dr. Ahmad Hoirul Basory from King Abdul Azis University, Rabig, Makkah, Saudi Arabia for their willingness to share their brilliant ideas and insights to be presented at this conference.

#### Dear ladies and gentlemen

On this occasion, as the head of STMIK AKAKOM Yogyakarta, I am saddened to state that the third iSriti conference had to be held online, considering that the coronavirus pandemic has not ended. Even though a pandemic currently hits us, the researchers' enthusiasm is apparent in the number of research articles submitted. We received up to 262 articles from 17 countries. Around 135 articles were accepted to be readily presented online in a conference forum with the theme: Artificial Intelligence for Social Interactions.

As the organizers of iSriti, we are very proud and grateful for the researchers' participation who have been willing to submit their research results to be published in this conference forum. We would also like to thank IEEE and IRSI, who have trusted and supported this conference from the very beginning. We still hope to build networks and information exchange between academics, practitioners, researchers, and the government to identify and explore issues, opportunities, and solutions to face challenges in the current era of technological disruption.

Finally, on this occasion, I would like to express my utmost gratitude to:

- The distinguished keynote speakers who have been willing to share their valuable knowledge in this conference;
- 2) The third iSriti researchers who have presented and will present their research results;
- 3) Reviewers who have carefully reviewed the articles of the researchers;
- 4) Moderators who are more than willing to lead the plenary session;
- 5) IEEE for trusting us to hold this international conference;
- 6) IRSI, which has supported the third iSriti activities until now;
- 7) The committee that has been working hard to prepare this international conference according to plan; Last but not least, as the organizer, I would like to sincerely apologize for any shortcomings or inconveniences during this event.

Thank you very much for your kind attention, and Wassalamu'alaium Wr. Wb. Yogyakarta, 10 December 2020

The Chairman of STMIK AKAKOM Yogyakarta

Totok Suprawoto, M.M., M.T.

#### WELCOME SPEECH FROM THE GENERAL CHAIR OF THE 3<sup>rd</sup> ISRITI 2020

Dear colleagues and friends.

On behalf of the organizing committee, I am delighted to welcome all participants to the 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI 2020). This conference is the third international conference held by STMIK Akakom Yogyakarta, Indonesia and the first to be held by STMIK Akakom in virtual form on December 10th, 2020.

In this conference, the committee decided to choose the following theme: "Artificial Intelligence for Social Interactions". This highlight was chosen because various advances in the field of AI have recently raised concerns that AI will replace various things that are the human domain. For us, AI can be used to better understand social interactions and to build machines that work more collaboratively and effectively with humans. Therefore, by highlighting that theme in ISRITI 2020, we hope we can raise awareness towards AI for social interactions.

The aim of the conference is to provide an interactive international forum for sharing and exchanging information on the latest research in the area of information technology, computer sciences, informatics, and related fields. Nearly 135 academicians, researchers, practitioners, and presenters from 17 countries (Indonesia, Malaysia, India, USA, Brazil, Australia, South Korea, Hungary, Morocco, Vietnam, Iraq, China, Thailand, Turkey, Ireland, Romania, Russia, and Saudi Arabia) gathered in this event. In total, there are 262 active papers submitted to this conference. Each paper has been reviewed with tight criteria from our invited reviewers. Based on the review result, 135 papers have been accepted, which lead to an acceptance rate of 51.5%. This conference will not be successful without extensive effort from many parties. First, I would like to thank all keynote speakers for allocating their valuable time to share their knowledge with us. I would also like to express my sincere gratitude to all participants who participate in this conference. Special acknowledgement should go to the Technical Program Committee Chairs, Members, and Reviewers for their thorough and timely reviewing of the papers. We would also like to thank our sponsors: IEEE Indonesia Section and Research and Society Service Institution at STMIK Akakom. Last but not least, recognition should also go to the Local Organizing Committee members who have put enormous effort and support for this conference. At last, we hope that you have an enjoyable and inspiring moment during our conference. Thank you for your participation in ISRITI 2020.

Yogyakarta, 10 December 2020 General Chair of the 3rd ISRITI 2020

Dr. Bambang Purnomosidi D. P.

#### PREFACE

A language and reasoning can be said as some of the characteristics of human abilities. On the other hand, the ability of human thinking can be modeled as computation. The development of cognitive science that combines scientific development with technology began to appear in the 1960s. In those years, human behavior did not adequately explain cognitive processes. Although, there has been much debate by behaviorist experts regarding the cognitive science approach. However, with a variety of approaches, there is something quite encouraging that computer models of cognition can be used as an alternative approach to these various models. Furthermore, computers can be used to test hypotheses where computation itself is the subject of the mind. So that there are various kinds of models developed in the field of cognitive science with different fields of science, including anthropology, artificial intelligence (AI), philosophy, linguistics, neuroscience, and psychology. Even though there are different scientific fields, it turns out that they can work together in explaining various kinds of cognitive science models. AI is a part of the field of computer science that can describe intelligent computer systems. This system can show characteristics related to intelligence in human behavior, such as reasoning, understanding language, learning, solving problems, and so on. This intelligent system has a long-term goal of equaling or surpassing human intelligence. The approach used in simulating this system uses mathematical approaches, discursive reasoning, language, and so on. New developments related to the paradigm in this field emerged in the mid-80s, bringing together developments in the fields of philosophy, AI, and cognitive science.

Human intelligence is illustrated as a result of a program running on the human brain. In connectionist's view, information processing on computer devices is a fundamental difference from the brain. In the contextsensitive cognition model, human intelligence depends on the physical properties of the neurons. So that artificial intelligence requires brain-like computer skills, better known as neurocomputers. The purpose of this terminology is to design hardware compatible with neuro-computing. In this case, the model that is later known massively is an artificial neural network in which this model is trained, not programmed. Much information is extracted deeper than a representation that is presented in various forms that can be understood by humans. In the past, artificial emotions were somewhat neglected in AI and cognitive science. However, currently, emotional intelligence is one of the things that is raised with relevant information indicators in solving a case or problem. Emotion has an important domain in motivating and directing behavior. So that discussions in cognitive science and AI become one of the raw materials in representing information, then use it in social interactions. This representation is a language capable of thinking about problem-solving and social processes. This explains the systematics or methods used are very important in understanding cognition and communication in the context of social interaction. This pattern has appeared in the childhood phase in the learning process until later understanding their identity and interacting with others in the form of communication. The basis for this transformation is then essential in solving many cases in the world of science and technology.

Editor of 2020 3rd ISRITI

Ferry Wahyu Wibowo ORCID ID: 0000-0003-1913-436X

#### THE COMMITTEE

STEERING COMMITTEE

Chuan-Ming Liu (National Taipei University of Technology, Taiwan)

Totok Suprawoto (STMIK AKAKOM Yogyakarta, Indonesia) Widyastuti Andriyani (STMIK AKAKOM Yogyakarta, Indonesia)

ORGANIZING COMMITTEE

General Chair

Bambang Purnomosidi Dwi Putranto (STMIK AKAKOM Yogyakarta, Indonesia)

Deputi of General Chair

Maria Mediatrix (STMIK AKAKOM Yogyakarta, Indonesia)

Secretary
Edy Prayitno (STMIK AKAKOM Yogyakarta, Indonesia)

Treasury

Sumiyatun Sumiyatun (STMIK AKAKOM Yogyakarta, Indonesia)

Publication Chair

Setyawan Widyarto (Universiti Selangor, Malaysia)

Chair of TPC

Domy Kristomo (STMIK AKAKOM Yogyakarta, Indonesia)

TECHNICAL COMMITTEE

Muhammad Agung Nugroho (STMIK AKAKOM Yogyakarta, Indonesia)
Luthfan Hadi Pramono (STMIK AKAKOM Yogyakarta, Indonesia)
Siska Lidya Revianti (STMIK AKAKOM Yogyakarta, Indonesia)
Ariesta Damayanti (STMIK AKAKOM Yogyakarta, Indonesia)
Robby Cokro Buwono (STMIK AKAKOM Yogyakarta, Indonesia)
Agung Budi Prasetyo (STMIK AKAKOM Yogyakarta, Indonesia)
Muhammad Guntara (STMIK AKAKOM Yogyakarta, Indonesia)

#### TECHNICAL PROGRAM COMMITTEE

The City University of New York - United State of America Prof. Biao Jiang

Prof. Dimitrios Kallergis University of West Attica - Great Britain Prof. Domenico Ciuonzo University of Naples Federico II - Italia

Prof. Iickho Song Korea Advanced Institute of Science and Technology - Korea

Prof. Julian Webber Osaka University - Japan

Ahmadu Bello University, Zaria - Nigeria Prof. Muhammed Bashir Mu'azu

Prof. Mu-Song Chen Electrical Engineering, Da-Yeh University - Taiwan

Prof. Philip Moore Lanzhou University - China Prof. Sanggyu Shin Tokai University - Japan

Vijaya Vittala Institute of Technology - India Prof. Sayantam Sarkar

Prof. Srinivasulu Tadisetty Kakatiya University College of Engineering and Technology -

India

Prof. Thaweesak Yingthawornsuk King Mongkut's University of Technology Thonburi - Thailand

Prof. Yi-Jen Su Shu-Te University - Taiwan Dr. Abdul Samad Shibghatullah UCSI University - Malaysia Dr. Adi Wibowo Diponegoro University - Indonesia

Dr. Aditi Sharma Quantum University, Roorkee, Uttarakhand - India

Dr. Ahmad Ashari Gadjah Mada University - Indonesia Dr. Ahmad Fajar Bina Nusantara University - Indonesia Dr. Ahmed Mobashsher The University of Queensland - Australia University of Technology Sydney - Australia Dr. Ali Rafiei Dr. Amit Singh Guru Gobind Singh Indraprastha University - India

Dr. Amrit Mukherjee Jiangsu University - China NEC Corporation - Japan Dr. Anand Prasad Dr. Anas AlSobeh Yarmouk University - Jordan Dr. Andreas Dewald ERNW Research GmbH - Germany Dr. Armin Lawi Hasanuddin University - Indonesia PESIT-Bangalore South Campus - India Dr. Arti Arya Dr. Aslina Baharum Universiti Malaysia Sabah - Malaysia Dr. Baba Alhaji Nigerian Defence Academy - Nigeria

Dr. Bambang Purnomosidi Dwi Putranto STMIK Akakom - Indonesia

Dr. Chau Yuen Singapore University of Technology and Design - Singapore

Dr. Danial Hooshyar Korea University - Korea EFREI - France Dr. Dario Vieira

Dr. Dedi Rohendi Universitas Pendidikan Indonesia - Indonesia

Dr. Dedy Wijaya Telkom University - Indonesia

Dr. Dhananjay Singh Hankuk University of Foreign Studies - Korea Dr. Dhomas Hatta Fudholi Universitas Islam Indonesia - Indonesia Dr. Didi Rosiyadi Indonesian Institute of Sciences - Indonesia Dr. Ennv Sela Universitas Teknologi Yogyakarta - Indonesia Dr. Esa Prakasa Indonesian Institute of Sciences - Indonesia Dr. Hasan Ali Khattak COMSATS University, Islamabad - Pakistan Dr. Hiroshi Kamabe Gifu University - Japan

Universitas Gadjah Mada - Indonesia Dr. I Wayan Mustika

Dr. Ilker Ali Ozkan Selcuk University - Turkey

Dr. Intan Ermahani A. Jalil Universiti Teknikal Malaysia Melaka - Malaysia Dr. Iwan Setyawan Satya Wacana Christian University - Indonesia Dr. Javier Gozalvez Universidad Miguel Hernandez de Elche - Spain Dr. Kiran Sree Pokkuluri Shri Vishnu Engineering College for Women - India

Dr. Kok-Why Ng

Multimedia University - Malaysia Dr. Leonardo Tomassetti Ferreira Neto University of Sao Paulo - Brazil

Dr. Maria Chiara Caschera CNR - Italia Dr. Michele Albano Aalborg University - Denmark

MIT Square - Great Britain Dr. Mithileysh Sathiyanarayanan

Dr. Mohd Hanafi Ahmad Hijazi Universiti Malaysia Sabah - Malaysia

Dr. Muhammad Herman Jamaluddin Universiti Teknikal Malaysia Melaka - Malaysia Dr. Muhammad Yusuf University of Trunojoyo, Madura - Indonesia Dr. N. Prabaharan SASTRA Deemed University - India

Dr. Nico Surantha
Bina Nusantara University - Indonesia
Dr. Nitish Ojha
Sharda University, Greater Noida, UP - India
Dr. Noriko Etani
All Nippon Airways Co., Ltd. - Japan

Dr. Othman Mohd Universiti Teknikal Malaysia Melaka - Malaysia

Dr. Oyas Wahyunggoro UGM - Indonesia Dr. Pavel Loskot Swansea University - Great Britain

Dr. Prapto Nugroho Universitas Gadjah Mada - Indonesia

Dr. Praveen Khethavath

LaGuardia Community College - United State of America

Dr. Rakan Antar

Northern Technical University - Iraq

Dr. Ruzelita Ngadiran Universiti Malaysia Perlis - Malaysia
Dr. Sa'adah Hassan Universiti Putra Malaysia - Malaysia
Dr. Seyed Ebrahim Esmaeili American University of Kuwait - Kuwait
Dr. Shajith Ali SSN College of Engineering, Chennai - India

Dr. Sri Zuliana UIN Sunan Kalijaga - Indonesia Dr. Sritrusta Sukaridhoto Politeknik Elektronika Negeri Su

Dr. Sritrusta Sukaridhoto
Politeknik Elektronika Negeri Surabaya - Indonesia
Dr. Sudi Mungkasi
Sanata Dharma University - Indonesia
Dr. Suhail Shahab
Northern Technical University - Iraq
Dr. Sukrisno Mardiyanto
Institut Teknologi Bandung - Indonesia
Dr. Suryadiputra Liawatimena
Bina Nusantara University - Indonesia
Dr. Tai-Chen Chen
MAXEDA Technology - Taiwan
Dr. Tapodhir Acharjee
Assam University, Silchar - India

Dr. Tapodhir Acharjee Assam University, Silchar - India
Dr. Tri Priyambodo Universitas Gadjah Mada - Indonesia
Dr. Vassilis Kodogiannis University of Westminster - Great Britain
Dr. Weiwen Zhang Guangdong University of Technology - China

Dr. Wichian Chutimaskul King Mongkut's University of Technology Thonburi - Thailand

Dr. Yuansong Qiao Athlone Institute of Technology - Ireland Dr. Zoohan Gani Victoria University - Australia

Mr. Alireza Ghasempour ICT Faculty - United State of America
Mr. Andi Wahju Rahardjo Emanuel Universitas Atma Jaya Yogyakarta - Indonesia

Mr. Arihant Jain Jaipur Engineering College & Research Centre - India Mr. Azizi Abdullah Universiti Kebangsaan Malaysia - Malaysia Mr. Byeong-jun Han Soongsil University - Korea

Mr. De Rosal Ignatius Moses Setiadi

Mr. Domy Kristomo

Soongsti University - Korea

Dian Nuswantoro University - Indonesia

STMIK AKAKOM Yogyakarta - Indonesia

Mr. Edhy Sutanta Institut Sains & Teknologi AKPRIND Yogyakarta - Indonesia

Mr. Edi Faizal STMIK AKAKOM Yogyakarta - Indonesia Mr. Eko Aribowo Ahmad Dahlan University - Indonesia Mr. Gunawan Gunawan Politeknik Negeri Medan - Indonesia

Mr. Ibrahim Ahmad Universiti Teknikal Malaysia Melaka - Malaysia Mr. Leonel Hernandez ITSA University - Colombia

Mr. Mahdin Mahboob Stony Brook University - United State of America
Mr. Mohd Khairul Ikhwan Ahmad Universiti Tun Hussein Onn Malaysia - Malaysia

Mr. Ramkumar Jaganathan VLB Janakiammal College of Arts and Science - India Mr. Ridi Ferdiana Universitas Gadjah Mada - Indonesia

Mr. Rifqy Hakimi ITB - Indonesia

Mr. Rikie Kartadie STMIK Akakom Jogjakarta - Indonesia Mr. Roberto Carlos Herrera Lara National Polytechnic School - Ecuador Mr. Seng Hansun Universitas Multimedia Nusantara - Indonesia

Mr. Shah Nazir University of Peshawar - Pakistan

Mr. Syed Ahmed
NED University of Engineering and Technology - Pakistan
Mr. Vaibhav Saundarmal
Mr. Vladislav Skorpil
Mr. Vladislav Skorpil
Brno University of Technology - Czech Republic

Mr. Wijang Widhiarso STMIK Global Informatika MDP Palembang - Indonesia

Mr. Win Maung Victorian Institute of Technology - Australia

Mrs. Amel Serrat Victorian Institute of Tech USTO MB - Algeria

Mrs. Anindita Septiarini Univeristas Mulawarman - Indonesia
Mrs. Ariesta Damayanti STMIK Akakom Yogyakarta - Indonesia
Mrs. Haslizatul Mohamed Hanum Universiti Teknologi MARA - Malaysia
Mrs. Kartika Kirana Universitas Negeri Malang - Indonesia

Mrs. Lucia Nugraheni Harnaningrum STMIK AKAKOM Yogyakarta - Indonesia

Mrs. Prita Dewi Mariyam Mrs. Sri Redjeki Ms. Ivanna Timotius Ms. Maria Mediatrix Universitas Indonesia - Indonesia STMIK AKAKOM Yogyakarta - Indonesia Satya Wacana Christian University - Indonesia STMIK AKAKOM - Indonesia

#### **REVIEWERS**

Dr. Intan Ermahani A. Jalil Universiti Teknikal Malaysia Melaka, Malaysia Mr. Azizi Abdullah Universiti Kebangsaan Malaysia, Malaysia

Dr. Tapodhir Acharjee Assam University, Silchar, India

Mr. Ibrahim Ahmad
Universiti Teknikal Malaysia Melaka, Malaysia
Mr. Mohd Khairul Ikhwan Bin Ahmad
Universiti Tun Hussein Onn Malaysia, Malaysia
Mr. Syed Umaid Ahmed
NED
University of Engineering and Technology, Pakistan

Dr. Michele Albano Aalborg University, Denmark
Dr. Baba Alhaji Nigerian Defence Academy, Niger
Dr. Sh. Jish Ali

Dr. Shajith Ali SSN College of Engineering, Chennai, India

Dr. Anas Mohammad Ramadan AlSobeh
Dr. Rakan Khalil Antar
Northern Technical University, Iraq
Mr. Eko Aribowo
Ahmad Dahlan University, Indonesia
Dr. Arti Arya
PESIT-Bangalore South Campus, India
Dr. Ahmad Ashari
Gadjah Mada University, Indonesia
Universiti Malaysia Sabah, Malaysia

Dr. Maria Chiara Caschera CNR, Italy

Prof. Mu-Song Chen Electrical Engineering, Da-Yeh University, Taiwan

Dr. Tai-Chen Chen MAXEDA Technology, Taiwan

Dr. Wichian Chutimaskul King Mongkut's University of Technology Thonburi, Thailand

Prof. Domenico Ciuonzo
University of Naples Federico II, IT, Italy
Mr. Akhmad Dahlan
Universitas Amikom Yogyakarta, Indonesia
Mrs. Ariesta Damayanti
STMIK Akakom Yogyakarta, Indonesia
Dr. Andreas Dewald
ERNW Research GmbH, Germany
Universitas Atma Jaya Yogyakarta, Indones

Mr. Andi Wahju Rahardjo Emanuel
Dr. Seyed Ebrahim Esmaeili
Dr. Noriko Etani
Mr. Edi Faizal
Dr. Ahmad Nurul Fajar
Mr. Ridi Ferdiana
Dr. Dhomas Hatta Fudholi
Universitas Atma Jaya Yogyakarta, Indonesia
Universitas Atma Jaya Yogyakarta, Indonesia
American University of Kuwait, Kuwait
All Nippon Airways Co., Ltd., Japan
STMIK AKAKOM Yogyakarta, Indonesia
Bina Nusantara University, Indonesia
Universitas Gadjah Mada, Indonesia

Mrs. Zoohan Gani Victoria University, Australia

Mr. Alireza Ghasempour ICT Faculty, USA

Dr. Javier Gozalvez
Universidad Miguel Hernandez de Elche, Spain
Mr. Gunawan Gunawan
Politeknik Negeri Medan, Indonesia
Mr. Ibnu Hadi Purwanto
Universitas AMIKOM Yogyakarta, Indonesia
Mr. Rifqy Hakimi
ITB, Indonesia

Mr. Byeong-jun Han Soongsil University, Korea (South)

Mr. Seng Hansun Universitas Multimedia Nusantara, Indonesia

Dr. Sa'adah Hassan Universiti Putra Malaysia, Malaysia Mr. Leonel Hernandez ITSA University, Colombia Mr. Roberto Carlos Herrera Lara National Polytechnic School, Ecuador

Mr. Roberto Carlos Herrera Lara National Polytechnic School, Ecuador Dr. Mohd Hanafi Ahmad Hijazi Universiti Malaysia Sabah, Malaysia Dr. Danial Hooshyar Korea (South)

Mr. Ramkumar Jaganathan

VLB Janakiammal College of Arts and Science, India

Mr. Arihant Kumar Jain

Jaipur Engineering College & Research Centre, India

Universiti Teknikal Malaysia Melaka, Malaysia

Prof. Biao Jiang The City University of New York, USA
Prof. Dimitrios Kallergis University of West Attica, Greece

Dr. Hiroshi Kamabe Gifu University, Japan

Dr. Hasan Ali Khattak COMSATS University, Islamabad, Pakistan Dr. Praveen Khethavath LaGuardia Community College, USA Wrs. Kartika Candra Kirana Universitas Negeri Malang, Indonesia

Dr. Vassilis Kodogiannis University of Westminster, United Kingdom (Great Britain)

Mr. Domy Kristomo STMIK AKAKOM Yogyakana, Indonesia Dr. Armin Lawi Hasanuddin University, Indonesia Dr. Suryadiputra Liawatimena Bina Nusantara University, Indonesia

Dr. Pavel Loskot Swansea University, United Kingdom (Great Britain)

Mr. Mahdin Mahboob Stony Brook University, USA

Dr. Sukrisno Mardivanto Institut Teknologi Bandung, Indonesia Mrs. Prita Dewi Mariyam Universitas Indonesia, Indonesia Mr. Win Maung Victorian Institute of Technology, Australia

Ms. Maria Mediatrix STMIK AKAKOM, Indonesia

Dr. Ahmed Toaha Mobashsher The University of Queensland, Australia Mrs. Haslizatul Mohamed Hanum Universiti Teknologi MARA, Malaysia Dr. Othman Mohd Universiti Teknikal Malaysia Melaka, Malaysia

Prof. Philip T Moore Lanzhou University, China

Prof. Muhammed Bashir Mu'azu Ahmadu Bello University, Zaria, Nigeria

Jiangsu University, China Dr. Amrit Mukherjee

Dr. Sudi Mungkasi Sanata Dharma University, Indonesia Dr. I Wayan Mustika Universitas Gadjah Mada, Indonesia Mr. Shah Nazir University of Peshawar, Pakistan Dr. Kok-Why Ng Multimedia University, Malaysia Dr. Ruzelita Ngadiran Universiti Malaysia Perlis, Malaysia Mr. Muhammad Agung Nugroho STMIK AKAKOM Yogyakarta, Indonesia Dr. Prapto Nugroho Universitas Gadjah Mada, Indonesia Sharda University, Greater Noida, UP, India

Dr. Nitish Ojha Dr. Ilker Ali Ozkan Selcuk University, Turkey

Dr. Kiran Sree Pokkuluri Shri Vishnu Engineering College for Women, India

Dr. N. Prabaharan SASTRA Deemed University, India Dr. Esa Prakasa Indonesian Institute of Sciences, Indonesia Dr. Anand R. Prasad NEC Corporation, Japan STMIK AKAKOM Yogyakarta, Indonesia Mr. Edy Prayitno Dr. Tri K Priyambodo Universitas Gadjah Mada, Indonesia

Dr. Bambang Purnomosidi Dwi Putranto STMIK Akakom, Indonesia

Dr. Yuansong Qiao Athlone Institute of Technology, Ireland Dr. Ali Rafiei University of Technology Sydney, Australia Mrs. Sri Redjeki STMIK AKAKOM Yogyakarta, Indonesia Dr. Dedi Rohendi Universitas Pendidikan Indonesia, Indonesia Dr. Didi Rosiyadi Indonesian Institute of Sciences, Indonesia Dr. Rosaria Rucco University of Naples Parthenope, Italy Prof. Sayantam Sarkar Vijaya Vittala Institute of Technology, India Dr. Mithileysh Sathiyanarayanan MIT Square, United Kingdom (Great Britain)

Mr. Vaibhav Dudhaji Saundarmal Marathwada Institute of Technology, Aurangabad, India

Dr. Enny Sela Universitas Teknologi Yogyakarta, Indonesia

Univeristas Mulawarman, Indonesia

Mrs. Anindita Septiarini USTO MB, Algeria

Mrs. Amel Serrat

Mr. De Rosal Ignatius Moses Setiadi Dian Nuswantoro University, Indonesia Dr. Iwan Setyawan Satya Wacana Christian University, Indonesia

Dr. Suhail Najm Shahab Northern Technical University, Iraq

Dr. Aditi Sharma Quantum University, Roorkee, Uttarakhand, India

Dr. Abdul Samad Shibghatullah UCSI University, Malaysia Prof. Sanggyu Shin Tokai University, Japan

Dr. Amit Prakash Singh Guru Gobind Singh Indraprastha University, India Dr. Dhananjay Singh Hankuk University of Foreign Studies, Korea (South)

Mr. Wangjam Niranjan Singh Assam University, India

Mr. Vladislav Skorpil Brno University of Technology, Czech Republic

Prof. Iickho Song Korea Advanced Institute of Science and Technology, Korea (South)

Prof. Yi-Jen Su Shu-Te University, Taiwan

Dr. Sritrusta Sukaridhoto Politeknik Elektronika Negeri Surabaya, Indonesia Mr. Totok Suprawoto STMIK AKAKOM Yogyakarta, Indonesia Dr. Nico Surantha Bina Nusantara University, Indonesia Mr. Edhy Sutanta Institut Sains & Teknologi AKPRIND Yogyakarta, Indonesia

Prof. Srinivasulu Tadisetty Kakatiya University College of Engineering and Technology, India

Satya Wacana Christian University, Indonesia Ms. Ivanna Timotius Dr. Leonardo Henrique Tomassetti Ferreira Neto University of Sao Paulo, Brazil

Dr. Oyas Wahyunggoro UGM, Indonesia Osaka University, Japan Prof. Julian L Webber Dr. Adi Wibowo Diponegoro University, Indonesia Prof. Thaweesak Yingthawornsuk

Dr. Chau Yuen Dr. Muhammad Yusuf Dr. Weiwen Zhang

Dr. Sri Utami Zuliana

Mr. Ferry Wahyu Wibowo Mr. Wijang Widhiarso Dr. Dedy Rahman Wijaya

King Mongkut's University of Technology Thonburi, Thailand Singapore University of Technology and Design, Singapore University of Trunojoyo, Madura, Indonesia Guangdong University of Technology, China UIN Sunan Kalijaga, Indonesia

Universitas Amikom Yogyakarta, Indonesia STMIK Global Informatika MDP Palembang, Indonesia

Telkom University, Indonesia

#### **AUTHOR INDEX**

| Author                       | Session | Start page | Title                                                                                                                   |
|------------------------------|---------|------------|-------------------------------------------------------------------------------------------------------------------------|
| A ABCDEFGHIJKL               | MNOPO   | QRSTUW     | XYZ                                                                                                                     |
| Abadi, Imam                  | 3E.3    | 716        | Energy Management Efficiency and Stability Using<br>Passive Filter in Standalone Photovoltaic Sudden<br>Cloud Condition |
| Abdillah, Rahmad             | 3A.1    | 621        | Facial Expression Recognition and Face<br>Recognition Using a Convolutional Neural Network                              |
| Abdul-Jabbar, Jassim         | 3B.4    | 655        | A Robust Iris Segmentation Algorithm Based on<br>Pupil Region for Visible Wavelength Environments                       |
| Adi, Sumarni                 | 1C.2    | 94         | The Best Parameter Tuning on RNN Layers for<br>Indonesian Text Classification                                           |
| Aditya, Christian Sri Kusuma | 1D.5    | 152        | Comparative Analysis of DDoS Detection<br>Techniques Based on Machine Learning in<br>OpenFlow Network                   |
| Aditya, Trias                | 2G.5    | 604        | Comparison of the Latest DTM with DEM Pleiades in Monitoring the Dynamic Peatland                                       |
| Adrian, Ronald               | 1E.5    | 198        | Roadside Unit Power Saving using Vehicle<br>Detection System in Vehicular Ad-hoc Network                                |
| Afdhal, Afdhal               | 2E.3    | 509        | Convolutional Network and Moving Object<br>Analysis for Vehicle Detection in Highway<br>Surveillance Videos             |
| Affandi, Achmad              | 1G.1    | 267        | A Combination of Defected Ground Structure and<br>Line Resonator for Mutual Coupling Reduction                          |
| Agustina, Dina               | 1B.2    | 48         | Prediction of forest fire occurrence in peatlands using machine learning approaches                                     |
| Akbar, Renal                 | 1D.6    | 158        | Performance Analysis FSR and DSR Routing<br>Protocol in VANET with V2V and V2I Models                                   |
| Akhsanta, Muhammad           | 2E.6    | 525        | Text-Independent Speaker Identification Using PCA-SVM Model                                                             |
| Al Aufa, Badra               | 2F.6    | 562        | Measuring Instagram Activity and Engagement<br>Rate of Hospital: A Comparison Before and During<br>COVID-19 Pandemic    |
| Al Maki, Wikky               | 1B.8    | 73         | Hybrid Method for Flower Classification in High<br>Intra-class Variation                                                |
| Alam, Sahirul                | 1E.5    | 198        | Roadside Unit Power Saving using Vehicle<br>Detection System in Vehicular Ad-hoc Network                                |

| Alamsyah, Rangga           | 3B.2 | 646 | Speech Gender Classification Using Bidirectional<br>Long Short Term Memory                                                                |
|----------------------------|------|-----|-------------------------------------------------------------------------------------------------------------------------------------------|
| Alfi, Farah                | 1F.2 | 227 | Quality Assessment of Digital Terrestrial Television<br>Broadcast in Surabaya                                                             |
| Ali, Tarig Ahmed El Khider | 1B.7 | 68  | Risk Prediction of Major Depressive Disorder using<br>Artificial Neural Network                                                           |
| Alief, Fahdiaz             | 1F.3 | 233 | Android Forensic Tools Analysis for Unsend Chat on Social Media                                                                           |
| Amalia, Yasmin             | 2D.2 | 457 | Benchmarking Explicit Rating Prediction<br>Algorithms for Cosmetic Products                                                               |
| Amanaf, Muntaqo            | 1G.3 | 278 | 5G New Radio (NR) Network Planning at<br>Frequency 2,6 GHz in The Gold Triangle Area of<br>Jakarta                                        |
| Ambarwari, Agus            | 2B.7 | 389 | Design and prototype development of internet of things for greenhouse monitoring system                                                   |
| Andriyani, Widyastuti      | 2B.6 | 383 | A Comparative Study of Java and Kotlin for<br>Android Mobile Application Development                                                      |
|                            | 1B.2 | 48  | Prediction of forest fire occurrence in peatlands using machine learning approaches                                                       |
| Anggraeni, Martianda       | 1F.2 | 227 | Quality Assessment of Digital Terrestrial Television<br>Broadcast in Surabaya                                                             |
| Annisa, Fadhilah Qalbi     | 1B.8 | 79  | Personality Dimensions Classification with EEG<br>Analysis using Support Vector Machine                                                   |
| Antonius, Suyanto          | 2E.7 | 529 | Center of Gravity Method for Finding Center of<br>Laser Beam Projection on Landslide Measurement                                          |
| Anugraha, Tides            | 1D.3 | 140 | Experimental Security Analysis for Fake eNodeB<br>Attack on LTE Network                                                                   |
| Anwar, Muchamad Taufiq     | 1C.1 | 83  | Performance Comparison of Data Mining<br>Techniques for Rain Prediction Models in Indonesia                                               |
| Archi, Muhammad            | 1E.2 | 182 | Initial Access in 5G mmWave Communication using Hybrid Genetic Algorithm and Particle Swarm Optimization                                  |
| Ardiansyah, Agus           | 2B.5 | 377 | Prototype Design of IoT (Internet of Things)-based<br>Load Monitoring System                                                              |
| Arfian, Nur                | 2B.1 | 354 | The User Experience effect of Applying Floating<br>Action Button (FAB) into Augmented Reality<br>Anatomy Cranium Media Learning Prototype |
| Ariananda, Dyonisius       | 1F.5 | 245 | Single Snapshot-Spatial Compressive Beamforming<br>for Azimuth Estimation and Backscatter<br>Reconstruction                               |

| 2B.4  | 371                                                                                                                       | Development of The Personnel Monitoring System<br>Using Mobile Application and Real-Time Database<br>During the COVID19 Pandemic                                                                                                                                                                                                      |
|-------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1B.2  | 48                                                                                                                        | Prediction of forest fire occurrence in peatlands using machine learning approaches                                                                                                                                                                                                                                                   |
| 1D.8  | 170                                                                                                                       | Measurement of Information Security Awareness<br>Level: A Case Study of Online Transportation<br>Users                                                                                                                                                                                                                                |
| 1G.4  | 284                                                                                                                       | Modification of 2.2 GHz S-Band Rectangular Patch<br>Microstrip Antenna using Truncated Corner Method<br>for Satellite Applications                                                                                                                                                                                                    |
| 1G.5  | 289                                                                                                                       | Design of Optimal Satellite Constellation for<br>Indonesian Regional Navigation System based on<br>GEO and GSO Satellites                                                                                                                                                                                                             |
| 3D.1  | 682                                                                                                                       | Fruits Classification from Image using MPEG-7<br>Visual Descriptors and Extreme Learning Machine                                                                                                                                                                                                                                      |
| 1G.8  | 306                                                                                                                       | Ship Heading Control Using Nonlinear Model<br>Predictive Control                                                                                                                                                                                                                                                                      |
| 1A.2  | 7                                                                                                                         | Blackbox Testing Model Boundary Value of<br>Mapping Taxonomy Applications and Data<br>Analysis of Art and Artworks                                                                                                                                                                                                                    |
| 3C.2  | 661                                                                                                                       | The Use of Pre and Post Processing to Enhance<br>Mandible Segmentation using Active Contours on<br>Dental Panoramic Radiography Images                                                                                                                                                                                                |
| 3B.1  | 642                                                                                                                       | Comparison of Feature Extraction for Speaker<br>Identification System                                                                                                                                                                                                                                                                 |
| 2A.5  | 332                                                                                                                       | Extraction Dependency Based on Evolutionary<br>Requirement Using Natural Language Processing                                                                                                                                                                                                                                          |
| MNOPO | QRSTUW                                                                                                                    | XYZ                                                                                                                                                                                                                                                                                                                                   |
| 2B.3  | 365                                                                                                                       | Proximity-based COVID-19 Contact Tracing<br>System Devices for Locally Problems Solution                                                                                                                                                                                                                                              |
| 3B.1  | 642                                                                                                                       | Comparison of Feature Extraction for Speaker<br>Identification System                                                                                                                                                                                                                                                                 |
| 1B.3  | 52                                                                                                                        | Speaker Recognition Using Mel Frequency Cepstral<br>Coefficient and Self-Organising Fuzzy Logic                                                                                                                                                                                                                                       |
| 3A.4  | 638                                                                                                                       | A Kubernetes Algorithm for scaling Virtual Objects                                                                                                                                                                                                                                                                                    |
| 2E.5  | 520                                                                                                                       | Indonesian Traffic Sign Recognition For Advanced<br>Driver Assistent (ADAS) Using YOLOv4                                                                                                                                                                                                                                              |
|       | 1B.2<br>1D.8<br>1G.4<br>1G.5<br>3D.1<br>1G.8<br>1A.2<br>3C.2<br>3B.1<br>2A.5<br>M N O P (<br>2B.3<br>3B.1<br>1B.3<br>3A.4 | 1B.2       48         1D.8       170         1G.4       284         1G.5       289         3D.1       682         1G.8       306         1A.2       7         3C.2       661         3B.1       642         2A.5       332         M N O P Q R S T U W       2B.3         3B.1       642         1B.3       52         3A.4       638 |

| Budi Setiawan, Fajar    | 1E.8   | 215    | Performance Enhancement in Macro-Femto<br>Network Using a Modified Discrete Moth-flame<br>Optimization Algorithm                                  |
|-------------------------|--------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Budiman, Edy            | 2D.7   | 482    | Dayak Onion (Eleutherine palmifolia (L) Merr) as<br>An Alternative Treatment in Early Detection of<br>Dental Caries using Certainty Factor        |
| Bustamam, Alhadi        | 1A.6   | 26     | The Multimodal Transfer Learning for Diagnosing COVID-19 Pneumonia from Chest CT-Scan and X-Ray Images                                            |
| C ABCDEFGHIJK           | LMNOPO | QRSTUW | XYZ                                                                                                                                               |
| Cahyani, Denis          | 1B.4   | 56     | Indonesian Parsing using Probabilistic Context-<br>Free Grammar (PCFG) and Viterbi-Cocke Younger<br>Kasami (Viterbi-CYK)                          |
| Chotimah, Khusnul       | 1G.8   | 306    | Ship Heading Control Using Nonlinear Model<br>Predictive Control                                                                                  |
| D ABCDEFGHIJK           | LMNOP  | QRSTUW | XYZ                                                                                                                                               |
| Daelami, Ahmad          | 2F.5   | 551    | Development of Temperature and Humidity<br>Control System in Internet-of-Things based Oyster<br>Mushroom Cultivation                              |
| Darari, Fariz           | 2D.2   | 457    | Benchmarking Explicit Rating Prediction<br>Algorithms for Cosmetic Products                                                                       |
| Delfianti, Rezi         | 3E.3   | 716    | Energy Management Efficiency and Stability Using<br>Passive Filter in Standalone Photovoltaic Sudden<br>Cloud Condition                           |
| Dewantara, Mahardira    | 2C.1   | 400    | Minimization of Power Losses through Optimal<br>Placement and Sizing from Solar Power and Battery<br>Energy Storage System in Distribution System |
| Dirgantoro, Burhanuddin | 2E.4   | 514    | Speaker Recognition For Digital Forensic Audio<br>Analysis Using Support Vector Machine                                                           |
| Djawas, Faizah          | 2F.6   | 562    | Measuring Instagram Activity and Engagement<br>Rate of Hospital: A Comparison Before and During<br>COVID-19 Pandemic                              |
| Dwijayanti, Suci        | 3A.1   | 621    | Facial Expression Recognition and Face<br>Recognition Using a Convolutional Neural Network                                                        |
| Dwiputra, Richard       | 1E.6   | 203    | Network Attack Detection System Using Filter-<br>based Feature Selection and SVM                                                                  |
| E ABCDEFGHIJK           | LMNOPO | QRSTUW | XYZ                                                                                                                                               |
| Eka Sari, Wahyuni       | 1B.1   | 42     | Papaya Disease Detection Using Fuzzy Naïve Bayes<br>Classifier                                                                                    |

| Ekaniza, Raki                | 1A.5 | 21     | PSO-Learned Artificial Neural Networks for<br>Activity Recognition                                                                     |
|------------------------------|------|--------|----------------------------------------------------------------------------------------------------------------------------------------|
| Eko Sulistyo, Meiyanto       | 2C.6 | 428    | Design and Development of Bit Error Measurement using FPGA for Visible Light Communication                                             |
| El Khalyly, Badr             | 3A.4 | 638    | A Kubernetes Algorithm for scaling Virtual Objects                                                                                     |
| Elsa, Corry                  | 2G.1 | 577    | Case Study: AppDynamics Application as Business<br>Intelligence to Support Digital Business Operations<br>at PT PGD                    |
| Emanuel, Andi Wahju Rahardjo | 1C.3 | 100    | Influence Distribution Training Data on<br>Performance Supervised Machine Learning<br>Algorithms                                       |
| Engel, Ventje                | 1E.6 | 203    | Network Attack Detection System Using Filter-<br>based Feature Selection and SVM                                                       |
| F ABCDEFGHIJKL               | MNOP | QRSTUW | XYZ                                                                                                                                    |
| Fachrie, Muhammad            | 2G.1 | 583    | Guided Genetic Algorithm to Solve University<br>Course Timetabling with Dynamic Time Slot                                              |
| Fadhilah, Amanda             | 1D.8 | 170    | Measurement of Information Security Awareness<br>Level: A Case Study of Online Transportation<br>Users                                 |
| Fahmi, Fahmi                 | 2B.4 | 371    | Development of The Personnel Monitoring System<br>Using Mobile Application and Real-Time Database<br>During the COVID19 Pandemic       |
| Fahrudin, Tresna             | 2A.7 | 344    | Indonesian Stock Price Prediction including<br>Covid19 Era Using Decision Tree Regression                                              |
| Fanani, M.                   | 1C.7 | 117    | Implementation of Maximum Power Point<br>Tracking on PV System using Artificial Bee Colony<br>Algorithm                                |
| Faraby, Muhira               | 2C.4 | 418    | The Single Tuned Filter Planning to Mitigate<br>Harmonic Pollution in Radial Distribution Network<br>Using Particle Swarm Optimization |
| Fardan, Fardan               | 1D.3 | 140    | Experimental Security Analysis for Fake eNodeB<br>Attack on LTE Network                                                                |
| Farrell, Mochammad           | 2E.3 | 505    | Combined Firefly Algorithm-Random Forest to<br>Classify Autistic Spectrum Disorders                                                    |
| Fatichah, Chastine           | 3C.2 | 661    | The Use of Pre and Post Processing to Enhance<br>Mandible Segmentation using Active Contours on<br>Dental Panoramic Radiography Images |
| Ferdiansyah, Indra           | 1C.7 | 117    | Implementation of Maximum Power Point Tracking on PV System using Artificial Bee Colony Algorithm                                      |

|                        | 2C.3  | 412    | Design and Implementation of SVPWM Inverter to<br>Reduce Total Harmonic Distortion (THD) on Three<br>Phase Induction Motor Speed Regulation Using<br>Constant V/F |
|------------------------|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | 2C.2  | 406    | Three Phase Induction Motor Dynamic Speed<br>Regulation Using IP Controller                                                                                       |
| Firdaus, Diash         | 1D.7  | 164    | DDoS Attack Detection in Software Defined<br>Network using Ensemble K-means++ and Random<br>Forest                                                                |
| Firdaus, Diaz          | 2D.6  | 476    | Topic-Based Tweet Clustering for Public Figures<br>Using Ant Clustering                                                                                           |
| Fitria, Irma           | 1G.8  | 306    | Ship Heading Control Using Nonlinear Model<br>Predictive Control                                                                                                  |
| Fitriati, Andi         | 2C.4  | 418    | The Single Tuned Filter Planning to Mitigate<br>Harmonic Pollution in Radial Distribution Network<br>Using Particle Swarm Optimization                            |
| Frannita, Eka          | 2E.2  | 499    | Supervised Deep Learning for Thyroid Nodules<br>Classification Based on Margin Characteristic                                                                     |
| G ABCDEFGHIJK          | LMNOP | QRSTUW | XXX                                                                                                                                                               |
| Ginting, Ishak         | 1D.3  | 140    | Experimental Security Analysis for Fake eNodeB<br>Attack on LTE Network                                                                                           |
| Gitakarma, Made Santo  | 1F.1  | 221    | Designing Wireless Sensor Network Routing on<br>Agriculture Area Using The LEACH Protocol                                                                         |
| Gumilar, Langlang      | 3E.2  | 711    | Variations in the Placement of DFIG in the Power<br>System to Changes of Short Circuit Current                                                                    |
| Gunawan, Dadang        | 1E.2  | 182    | Initial Access in 5G mmWave Communication using Hybrid Genetic Algorithm and Particle Swarm Optimization                                                          |
| Gupta, Anju            | 2C.9  | 445    | Robust Control Design Procedure and Simulation of PRES Controller having Phase-Locked Loop(PLL) control technique in Grid-Tied Converter                          |
| H ABCDEFGHIJK          | LMNOP | QRSTUW | XYZ                                                                                                                                                               |
| Hadikurniawati, Wiwien | 1C.1  | 83     | Performance Comparison of Data Mining<br>Techniques for Rain Prediction Models in Indonesia                                                                       |
| Halim, Arwin           | 2A.4  | 326    | Optimization of SV-kNNC using Silhouette<br>Coefficient and LMKNN for Stock Price Prediction                                                                      |
| Hamed, Fatima          | 1B.7  | 68     | Risk Prediction of Major Depressive Disorder using<br>Artificial Neural Network                                                                                   |

| Hamka Ibrahim, Muhammad | 2C.6 | 428 | Design and Development of Bit Error Measurement using FPGA for Visible Light Communication                                                |
|-------------------------|------|-----|-------------------------------------------------------------------------------------------------------------------------------------------|
| Hanifa, Annisa          | 2C.6 | 428 | Design and Development of Bit Error Measurement using FPGA for Visible Light Communication                                                |
| Harintaka, Harintaka    | 2G.5 | 604 | Comparison of the Latest DTM with DEM Pleiades in Monitoring the Dynamic Peatland                                                         |
| Hartanto, Rudy          | 2B.1 | 354 | The User Experience effect of Applying Floating<br>Action Button (FAB) into Augmented Reality<br>Anatomy Cranium Media Learning Prototype |
|                         | 2G.3 | 593 | Multi-Point Travel Destination Recommendation<br>System In Yogyakarta Using Hybrid Location<br>Based Service-Floyd Warshall Method        |
| Hasibuan, Siti          | 1B.3 | 52  | Speaker Recognition Using Mel Frequency Cepstral<br>Coefficient and Self-Organising Fuzzy Logic                                           |
| Hasim, Sitronella       | 1F.8 | 262 | Performance Evaluation of Cell-Edge Femtocell<br>Densely Deployed in OFDMA-Based Macrocellular<br>Network                                 |
| Hastuti, Puji           | 2G.4 | 599 | Application For Detection Of Pedestrian Position<br>On Zebra Cross                                                                        |
| Hermawan, Tofan         | 1F.3 | 233 | Android Forensic Tools Analysis for Unsend Chat on Social Media                                                                           |
| Hermawati, Hermawati    | 3A.1 | 621 | Facial Expression Recognition and Face<br>Recognition Using a Convolutional Neural Network                                                |
| Herumurti, Darlis       | 3C.2 | 661 | The Use of Pre and Post Processing to Enhance<br>Mandible Segmentation using Active Contours on<br>Dental Panoramic Radiography Images    |
| Hery, Hery              | 1C.1 | 89  | Website Design for Locating Tuna Fishing Spot<br>Using Naïve Bayes and SVM Based on VMS Data<br>on Indonesian Sea                         |
| Hidayat, Firhat         | 1E.6 | 203 | Network Attack Detection System Using Filter-<br>based Feature Selection and SVM                                                          |
| Hidayat, Risanuri       | 3B.1 | 642 | Comparison of Feature Extraction for Speaker<br>Identification System                                                                     |
|                         | 1F.5 | 245 | Single Snapshot-Spatial Compressive Beamforming<br>for Azimuth Estimation and Backscatter<br>Reconstruction                               |
|                         | 1B.3 | 52  | Speaker Recognition Using Mel Frequency Cepstral<br>Coefficient and Self-Organising Fuzzy Logic                                           |
| Hidayat, Taufik         | 2G.7 | 615 | Validation of Information Technology Value Model for Petroleum Industry                                                                   |

|                       | 2G.6   | 609    | Model Development of Information Technology<br>Value for Downstream Petroleum Industry                                                            |
|-----------------------|--------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | 2F.1   | 534    | Effect of Android and Social Media User Growth on<br>the Financial Technology Lending Borrowers and<br>its Financing                              |
| Hikmah, Awaliyatul    | 1C.2   | 94     | The Best Parameter Tuning on RNN Layers for Indonesian Text Classification                                                                        |
| Hikmarika, Hera       | 3A.1   | 621    | Facial Expression Recognition and Face<br>Recognition Using a Convolutional Neural Network                                                        |
| Hikmaturokhman, Alfin | 1G.3   | 278    | 5G New Radio (NR) Network Planning at<br>Frequency 2,6 GHz in The Gold Triangle Area of<br>Jakarta                                                |
|                       | 1G.2   | 272    | Techno-Economic 5G New Radio Planning at 26<br>GHz Frequency in Pulogadung Industrial Area                                                        |
| Hilmizen, Naufal      | 1A.6   | 26     | The Multimodal Transfer Learning for Diagnosing COVID-19 Pneumonia from Chest CT-Scan and X-Ray Images                                            |
| Hindrayani, Kartika   | 2A.7   | 344    | Indonesian Stock Price Prediction including<br>Covid19 Era Using Decision Tree Regression                                                         |
| Husin, Zaenal         | 3A.1   | 621    | Facial Expression Recognition and Face<br>Recognition Using a Convolutional Neural Network                                                        |
| Hutami, Augustine     | 2E.2   | 499    | Supervised Deep Learning for Thyroid Nodules<br>Classification Based on Margin Characteristic                                                     |
| I ABCDEFGHIJK         | LMNOPO | QRSTUW | ХYZ                                                                                                                                               |
| Iftadi, Irwan         | 2C.6   | 428    | Design and Development of Bit Error Measurement using FPGA for Visible Light Communication                                                        |
| Indriawati, Katherin  | 1G.6   | 295    | Particle Filter Based Speed Estimator for Speed<br>Sensorless Control in Induction Motor                                                          |
|                       | 1G.7   | 301    | Disturbance Observer-Based Speed Estimator for<br>Controlling Speed Sensorless Induction Motor                                                    |
| Irawan, Arif          | 2B.8   | 394    | Smart Safe Prototype Based Internet of Things<br>(IoT) with Face and Fingerprint Recognition                                                      |
| Irnawan, Roni         | 2C.1   | 400    | Minimization of Power Losses through Optimal<br>Placement and Sizing from Solar Power and Battery<br>Energy Storage System in Distribution System |
| Iskandar, Nur Muhamad | 1G.1   | 267    | A Combination of Defected Ground Structure and<br>Line Resonator for Mutual Coupling Reduction                                                    |
| Isnandar, Suroso      | 2C.5   | 423    | Analysis of Performance Index in Transmission<br>Expansion Planning of Sulawesi's Electricity<br>System                                           |

| Istikmal, Istikmal   | 1D.3  | 140    | Experimental Security Analysis for Fake eNodeB<br>Attack on LTE Network                                                            |
|----------------------|-------|--------|------------------------------------------------------------------------------------------------------------------------------------|
|                      | 1D.6  | 158    | Performance Analysis FSR and DSR Routing<br>Protocol in VANET with V2V and V2I Models                                              |
|                      | 2B.8  | 394    | Smart Safe Prototype Based Internet of Things<br>(IoT) with Face and Fingerprint Recognition                                       |
| J ABCDEFGHIJKI       | LMNOP | QRSTUW | XYZ                                                                                                                                |
| Jati Anggoro, Wisang | 1E.7  | 209    | Development of Smart Energy Meter Based on<br>LoRaWAN in Campus Area                                                               |
| Jatmiko, Wisnu       | 2E.5  | 520    | Indonesian Traffic Sign Recognition For Advanced<br>Driver Assistent (ADAS) Using YOLOv4                                           |
| Julzarika, Atriyon   | 2G.5  | 604    | Comparison of the Latest DTM with DEM Pleiades in Monitoring the Dynamic Peatland                                                  |
| K ABCDEFGHIJK        | LMNOP | QRSTUW | XYZ                                                                                                                                |
| Kamirul, Kamirul     | 1G.4  | 284    | Modification of 2.2 GHz S-Band Rectangular Patch<br>Microstrip Antenna using Truncated Corner Method<br>for Satellite Applications |
|                      | 1G.5  | 289    | Design of Optimal Satellite Constellation for<br>Indonesian Regional Navigation System based on<br>GEO and GSO Satellites          |
| Karna, Nyoman        | 1D.3  | 140    | Experimental Security Analysis for Fake eNodeB<br>Attack on LTE Network                                                            |
| Karo, Ferdinanta     | 1G.3  | 278    | 5G New Radio (NR) Network Planning at<br>Frequency 2,6 GHz in The Gold Triangle Area of<br>Jakarta                                 |
| Khairunnisa, Syifa   | 2D.5  | 471    | Removing Noise, Reducing dimension, and<br>Weighting Distance to Enhance k-Nearest Neighbors<br>for Diabetes Classification        |
| Komarudin, Udin      | 2F.5  | 551    | Development of Temperature and Humidity<br>Control System in Internet-of-Things based Oyster<br>Mushroom Cultivation               |
| Kouty, Shreyus       | 2C.8  | 439    | Multilayer Secure Hardware Network Stack using FPGA                                                                                |
| Krisnadi, Dion       | 1C.1  | 89     | Website Design for Locating Tuna Fishing Spot<br>Using Naïve Bayes and SVM Based on VMS Data<br>on Indonesian Sea                  |
| Kristiani, Eveline   | 2G.1  | 577    | Case Study: AppDynamics Application as Business<br>Intelligence to Support Digital Business Operations<br>at PT PGD                |
|                      |       |        |                                                                                                                                    |

| Kunang, Yesi          | 1D.4  | 146    | Improving Classification Attacks in IOT Intrusion<br>Detection System using Bayesian Hyperparameter<br>Optimization              |
|-----------------------|-------|--------|----------------------------------------------------------------------------------------------------------------------------------|
| Kurniawati, Yulia Ery | 1B.1  | 42     | Papaya Disease Detection Using Fuzzy Naïve Bayes<br>Classifier                                                                   |
| Kusnandar, Kusnandar  | 2F.5  | 551    | Development of Temperature and Humidity<br>Control System in Internet-of-Things based Oyster<br>Mushroom Cultivation             |
| L ABCDEFGHIJK         | LMNOP | QRSTUW | XYZ                                                                                                                              |
| Lagunov, Alexey       | 3E.1  | 705    | Features of the Use of Solar Panels at Low<br>Temperatures in the Arctic                                                         |
| Lee, HoonJae          | 1E.3  | 187    | TwoChain: Leveraging Blockchain and Smart<br>Contract for Two Factor Authentication                                              |
| Lee, Sang-Gon         | 1E.3  | 187    | TwoChain: Leveraging Blockchain and Smart<br>Contract for Two Factor Authentication                                              |
| Lin, Haitao           | 1A.2  | 12     | Distributed Alternating Direction Multiplier<br>Method Based on Optimized Topology and Nodes<br>Selection Strategy               |
| Lubis, Ainul          | 2B.3  | 365    | Proximity-based COVID-19 Contact Tracing<br>System Devices for Locally Problems Solution                                         |
| Lukas, Samuel         | 1C.1  | 89     | Website Design for Locating Tuna Fishing Spot<br>Using Naïve Bayes and SVM Based on VMS Data<br>on Indonesian Sea                |
| M ABCDEFGHIJK         | LMNOP | QRSTUW | XYZ                                                                                                                              |
| Mahamad, Abd Kadir    | 2B.4  | 371    | Development of The Personnel Monitoring System<br>Using Mobile Application and Real-Time Database<br>During the COVID19 Pandemic |
| Mahardiko, Rahutomo   | 2G.7  | 615    | Validation of Information Technology Value Model for Petroleum Industry                                                          |
|                       | 2G.6  | 609    | Model Development of Information Technology<br>Value for Downstream Petroleum Industry                                           |
|                       | 2F.1  | 534    | Effect of Android and Social Media User Growth on<br>the Financial Technology Lending Borrowers and<br>its Financing             |
| Mahersatillah, Andi   | 3D.2  | 688    | Unstructured Road Detection and Steering Assist<br>Based on HSV Color Space Segmentation for<br>Autonomous Car                   |
| Mahfiz, Syiti         | 2D.8  | 488    | Aspect-based Opinion Mining on Beauty Product<br>Reviews                                                                         |

| Manik, Lindung      | 3A.2 | 627 Stemming Javanese: Another Adaptation of the<br>Nazief-Adriani Algorithm                                                              |
|---------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Mardhotillah, Rinda | 2E.4 | 514 Speaker Recognition For Digital Forensic Audio<br>Analysis Using Support Vector Machine                                               |
| Masngut, Ibnu       | 2B.2 | 360 Development and Implementation of Kalman Filts<br>for IoT Sensors: Towards a Better Precision<br>Agriculture                          |
| Maulana, Eka        | 1E.7 | 209 Development of Smart Energy Meter Based on LoRaWAN in Campus Area                                                                     |
| Mawaldi, Ikbal      | 1D.3 | 140 Experimental Security Analysis for Fake eNodeB<br>Attack on LTE Network                                                               |
| Mootha, Siddartha   | 3E.4 | 721 A Stacking Ensemble of Multi Layer Perceptrons to<br>Predict Online Shoppers' Purchasing Intention                                    |
| Mubarok, Husein     | 2B.5 | 377 Prototype Design of IoT (Internet of Things)-based Load Monitoring System                                                             |
| Muchtar, Akhyar     | 2C.4 | 418 The Single Tuned Filter Planning to Mitigate<br>Harmonic Pollution in Radial Distribution Networ<br>Using Particle Swarm Optimization |
| Muchtar, Kahlil     | 2E.3 | 509 Convolutional Network and Moving Object<br>Analysis for Vehicle Detection in Highway<br>Surveillance Videos                           |
| Muflikhah, Lailil   | 1A.8 | 37 Prediction of Liver Cancer Based on DNA Sequence Using Ensemble Method                                                                 |
| Muharram, Muh.      | 2D.4 | 467 Firefly Algorithm-based Optimization of Base<br>Transceiver Station Placement                                                         |
| Mujahidin, Irfan    | 1A.2 | 7 Blackbox Testing Model Boundary Value of<br>Mapping Taxonomy Applications and Data<br>Analysis of Art and Artworks                      |
| Muladi, Muladi      | 2B.4 | 371 Development of The Personnel Monitoring System<br>Using Mobile Application and Real-Time Database<br>During the COVID19 Pandemic      |
| Mulyanto, Agus      | 2E.5 | 520 Indonesian Traffic Sign Recognition For Advanced<br>Driver Assistent (ADAS) Using YOLOv4                                              |
| Munadi, Rendy       | 1D.7 | 164 DDoS Attack Detection in Software Defined<br>Network using Ensemble K-means++ and Random<br>Forest                                    |
| Mungkasi, Sudi      | 2A.2 | 321 Some Numerical and Analytical Solutions to an<br>Enzyme-Substrate Reaction-Diffusion Problem                                          |
| Mursanto, Petrus    | 2E.5 | 520 Indonesian Traffic Sign Recognition For Advanced<br>Driver Assistent (ADAS) Using YOLOv4                                              |

| Murwantara, I Made                     | 1C.1 | 89     | Website Design for Locating Tuna Fishing Spot<br>Using Naïve Bayes and SVM Based on VMS Data<br>on Indonesian Sea                      |
|----------------------------------------|------|--------|----------------------------------------------------------------------------------------------------------------------------------------|
| Mustika, I Wayan                       | 1E.5 | 198    | Roadside Unit Power Saving using Vehicle<br>Detection System in Vehicular Ad-hoc Network                                               |
|                                        | 1E.8 | 215    | Performance Enhancement in Macro-Femto<br>Network Using a Modified Discrete Moth-flame<br>Optimization Algorithm                       |
|                                        | 1E.7 | 209    | Development of Smart Energy Meter Based on<br>LoRaWAN in Campus Area                                                                   |
|                                        | 1D.2 | 135    | Interference Mitigation in Cognitive Radio Network<br>Based on Grey Wolf Optimizer Algorithm                                           |
|                                        | 2G.4 | 599    | Application For Detection Of Pedestrian Position<br>On Zebra Cross                                                                     |
| Muthchamy Sellamuthu, Karthika<br>Devi | 3E.4 | 721    | A Stacking Ensemble of Multi Layer Perceptrons to<br>Predict Online Shoppers' Purchasing Intention                                     |
| Muttaqin, Didik                        | 2D.3 | 463    | Speech Emotion Detection Using Mel-Frequency<br>Cepstral Coefficient and Hidden Markov Model                                           |
| N ABCDEFGHIJKL                         | MNOP | QRSTUW | XYZ                                                                                                                                    |
| N. Fathee, Hala                        | 3B.4 | 655    | A Robust Iris Segmentation Algorithm Based on<br>Pupil Region for Visible Wavelength Environments                                      |
| Nafi'iyah, Nur                         | 3C.2 | 661    | The Use of Pre and Post Processing to Enhance<br>Mandible Segmentation using Active Contours on<br>Dental Panoramic Radiography Images |
| Nagy, Adam                             | 3A.3 | 632    | A bio-motivated vision system and artificial neural network for autonomous UAV obstacle avoidance                                      |
| Najmurrokhman, Asep                    | 2F.5 | 551    | Development of Temperature and Humidity<br>Control System in Internet-of-Things based Oyster<br>Mushroom Cultivation                   |
| Nam, Andrew                            | 1A.1 | 1      | Resource-Aware Pareto-Optimal Automated<br>Machine Learning Platform                                                                   |
| Nasaruddin, Nasaruddin                 | 2E.3 | 509    | Convolutional Network and Moving Object<br>Analysis for Vehicle Detection in Highway<br>Surveillance Videos                            |
| Nashiruddin, Muhammad Imam             | 1F.6 | 251    | Performance Evaluation of XGS-PON Optical<br>Network Termination for Enterprise Customer                                               |
|                                        | 1F.4 | 239    | Performance Evaluation of IPTV Multicast Service<br>Testing for XGS-PON Optical Line Termination                                       |
| Nasr-Azadani, Mohamad                  | 1A.1 | 1      | Resource-Aware Pareto-Optimal Automated<br>Machine Learning Platform                                                                   |

| Nasri, Muhammad         | 2B.1 | 354 The User Experience effect of Applying Floating<br>Action Button (FAB) into Augmented Reality<br>Anatomy Cranium Media Learning Prototype           |
|-------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nguyen-Quoc, Huy        | 2D.1 | 451 Gender recognition based on ear images: a comparative experimental study                                                                            |
| Nivaan, Goldy Valendria | 1C.4 | 106 Analytic Predictive of Hepatitis using The Regression Logic Algorithm                                                                               |
| Noer, Astriany          | 1G.4 | 284 Modification of 2.2 GHz S-Band Rectangular Pat<br>Microstrip Antenna using Truncated Corner Meth-<br>for Satellite Applications                     |
|                         | 1G.5 | 289 Design of Optimal Satellite Constellation for<br>Indonesian Regional Navigation System based on<br>GEO and GSO Satellites                           |
| NQ, Mohammad Arifin     | 3A.2 | 627 Stemming Javanese: Another Adaptation of the<br>Nazief-Adriani Algorithm                                                                            |
| Nugraha, Syechu         | 2C.3 | 412 Design and Implementation of SVPWM Inverter Reduce Total Harmonic Distortion (THD) on The Phase Induction Motor Speed Regulation Using Constant V/F |
|                         | 2C.2 | 406 Three Phase Induction Motor Dynamic Speed<br>Regulation Using IP Controller                                                                         |
| Nugroho, Hanung         | 2E.2 | 499 Supervised Deep Learning for Thyroid Nodules<br>Classification Based on Margin Characteristic                                                       |
| Nugroho, Lukito         | 2G.3 | 593 Multi-Point Travel Destination Recommendation<br>System In Yogyakarta Using Hybrid Location<br>Based Service-Floyd Warshall Method                  |
|                         | 2G.4 | 599 Application For Detection Of Pedestrian Position<br>On Zebra Cross                                                                                  |
| Nur, Darfiana           | 2A.1 | On Parameter Estimation of Stochastic Delay<br>Difference Equation using the Two m-delay<br>Autoregressive Coefficients                                 |
| Nurdewanto, B.          | 1A.2 | 7 Blackbox Testing Model Boundary Value of<br>Mapping Taxonomy Applications and Data<br>Analysis of Art and Artworks                                    |
| Nurfadillah, Raditya    | 2D,2 | 457 Benchmarking Explicit Rating Prediction<br>Algorithms for Cosmetic Products                                                                         |
| Nurlina, Elin           | 2F.5 | 551 Development of Temperature and Humidity<br>Control System in Internet-of-Things based Oysten<br>Mushroom Cultivation                                |
|                         |      |                                                                                                                                                         |

| Nurmaini, Siti        | 1D.4   | 146    | Improving Classification Attacks in IOT Intrusion<br>Detection System using Bayesian Hyperparameter<br>Optimization                                       |
|-----------------------|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nurtiyasari, Devi     | 3C.3   | 667    | COVID-19 Chest X-Ray Classification Using<br>Convolutional Neural Network Architectures                                                                   |
| Nurwarsito, Heru      | 1E.1   | 176    | Performance Analysis of Temporally Ordered<br>Routing Algorithm Protocol and Zone Routing<br>Protocol On Vehicular Ad-Hoc Network in Urban<br>Environment |
| Nusantara, Damai      | 2C.5   | 423    | Analysis of Performance Index in Transmission<br>Expansion Planning of Sulawesi's Electricity<br>System                                                   |
| O ABCDEFGHIJ          | KLMNOP | QRSTUW | XYZ                                                                                                                                                       |
| Octarina, Sisca       | 2A.1   | 315    | The N-Sheet Model in Capacitated Multi-Period Cutting Stock Problem with Pattern Set-Up Cost                                                              |
| Oktian, Yustus        | 1E.3   | 187    | TwoChain: Leveraging Blockchain and Smart<br>Contract for Two Factor Authentication                                                                       |
| Osman, Safaa          | 1B.7   | 68     | Risk Prediction of Major Depressive Disorder using<br>Artificial Neural Network                                                                           |
| P ABCDEFGHIJ          | KLMNOP | QRSTUW | XYZ                                                                                                                                                       |
| Perkasa, Gregorius    | 1D.2   | 135    | Interference Mitigation in Cognitive Radio Network<br>Based on Grey Wolf Optimizer Algorithm                                                              |
| Permana, Indra        | 2F.1   | 534    | Effect of Android and Social Media User Growth on<br>the Financial Technology Lending Borrowers and<br>its Financing                                      |
| Permanasari, Adhistya | 2B.1   | 354    | The User Experience effect of Applying Floating<br>Action Button (FAB) into Augmented Reality<br>Anatomy Cranium Media Learning Prototype                 |
| Petho, Mate           | 3A.3   | 632    | A bio-motivated vision system and artificial neural network for autonomous UAV obstacle avoidance                                                         |
| Prakoso, Rahardi      | 1D.8   | 170    | Measurement of Information Security Awareness<br>Level: A Case Study of Online Transportation<br>Users                                                    |
| Pramono, Subuh        | 2C.6   | 428    | Design and Development of Bit Error Measurement using FPGA for Visible Light Communication                                                                |
| Prasetya, Suisbiyanto | 1G.4   | 284    | Modification of 2.2 GHz S-Band Rectangular Patch<br>Microstrip Antenna using Truncated Corner Method<br>for Satellite Applications                        |
| Prasetyawan, Purwono  | 2E.5   | 520    | Indonesian Traffic Sign Recognition For Advanced<br>Driver Assistent (ADAS) Using YOLOv4                                                                  |

| Prasetyo, Wisnu      | 2A.8 | 1 | Students Academic Performance Prediction with k-<br>Nearest Neighbor and C4.5 on SMOTE-balanced<br>data                                                       |
|----------------------|------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prasojo, Radityo Eko | 2D.2 |   | Benchmarking Explicit Rating Prediction<br>Algorithms for Cosmetic Products                                                                                   |
| Pratama, Denni       | 1A.4 |   | Comparison of PSO, FA, and BA for Discrete Optimization Problems                                                                                              |
| Pratama, Gilang      | 2B.2 | j | Development and Implementation of Kalman Filter<br>for IoT Sensors: Towards a Better Precision<br>Agriculture                                                 |
| Pratama, Raditya     | 2G.3 |   | Multi-Point Travel Destination Recommendation<br>System In Yogyakarta Using Hybrid Location<br>Based Service-Floyd Warshall Method                            |
| Pratama, Yogaswara   | 2G.1 | 1 | Case Study: AppDynamics Application as Business<br>Intelligence to Support Digital Business Operations<br>at PT PGD                                           |
| Pratiwi, Melati      | 3C.4 | 1 | Classification of Customer Actions on Digital<br>Money Transactions on PaySim Mobile Money<br>Simulator using Probabilistic Neural Network<br>(PNN) Algorithm |
| Priyadi, Ardyono     | 3E.3 | 1 | Energy Management Efficiency and Stability Using<br>Passive Filter in Standalone Photovoltaic Sudden<br>Cloud Condition                                       |
| Priyadi, Yudi        | 2A.5 |   | Extraction Dependency Based on Evolutionary<br>Requirement Using Natural Language Processing                                                                  |
| Priyambodo, Tri      | 1F.1 |   | Designing Wireless Sensor Network Routing on Agriculture Area Using The LEACH Protocol                                                                        |
|                      | 1D.1 |   | Real-time Testing on Improved Data Transmission<br>Security in the Industrial Control System                                                                  |
| Prutphongs, Ponsuda  | 2G.2 |   | Decision Support System for Power Plant<br>Improvement Investment Using Life-Cycle Cost                                                                       |
| Pujianto, Utomo      | 2A.8 | i | Students Academic Performance Prediction with k-<br>Nearest Neighbor and C4.5 on SMOTE-balanced<br>data                                                       |
| Purnomo, Hindriyanto | 1F.7 |   | Detection of Sensor Node-less Area Using A Genetic<br>Algorithm for Wireless Sensor Network                                                                   |
|                      | 3D.4 |   | A Modified Deep Convolutional Network for Covid-<br>19 detection based on chest X-ray images                                                                  |
| Purwanto, Era        | 2C.3 |   | Design and Implementation of SVPWM Inverter to<br>Reduce Total Harmonic Distortion (THD) on Three                                                             |
|                      |      |   |                                                                                                                                                               |

|                                      |      |        | Phase Induction Motor Speed Regulation Using Constant V/F                                                                                                         |
|--------------------------------------|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | 2C.2 | 406    | Three Phase Induction Motor Dynamic Speed<br>Regulation Using IP Controller                                                                                       |
| Purwanto, Yudha                      | 1D.7 | 164    | DDoS Attack Detection in Software Defined<br>Network using Ensemble K-means++ and Random<br>Forest                                                                |
| Puspita, Fitri Maya                  | 2F.5 | 556    | Modification of Wireless Reverse Charging Scheme with Bundling Optimization Issues                                                                                |
| Puspitasari, Novianti                | 2D.7 | 482    | Dayak Onion (Eleutherine palmifolia (L) Merr) as<br>An Alternative Treatment in Early Detection of<br>Dental Caries using Certainty Factor                        |
| Putra, Agfianto                      | 1D.1 | 129    | Real-time Testing on Improved Data Transmission<br>Security in the Industrial Control System                                                                      |
| Putranto, Bambang Purnomosidi<br>Dwi | 2B.6 | 383    | A Comparative Study of Java and Kotlin for<br>Android Mobile Application Development                                                                              |
| Putranto, Lesnanto Multa             | 2C.5 | 423    | Analysis of Performance Index in Transmission<br>Expansion Planning of Sulawesi's Electricity<br>System                                                           |
|                                      | 2C.1 | 400    | Minimization of Power Losses through Optimal<br>Placement and Sizing from Solar Power and Battery<br>Energy Storage System in Distribution System                 |
| Putri, Andi                          | 2C.4 | 418    | The Single Tuned Filter Planning to Mitigate<br>Harmonic Pollution in Radial Distribution Network<br>Using Particle Swarm Optimization                            |
| Q ABCDEFGHIJKI                       | MNOP | QRSTUW | XYZ                                                                                                                                                               |
| Qomariyah, Nunung Nurul              | 1C.8 | 123    | Predicting User Preferences with XGBoost Learning to Rank Method                                                                                                  |
| Qudsi, Ony                           | 2C.3 | 412    | Design and Implementation of SVPWM Inverter to<br>Reduce Total Harmonic Distortion (THD) on Three<br>Phase Induction Motor Speed Regulation Using<br>Constant V/F |
|                                      | 2C.2 | 406    | Three Phase Induction Motor Dynamic Speed<br>Regulation Using IP Controller                                                                                       |
| R ABCDEFGHIJKL                       | MNOP | QRSTUW | XYZ                                                                                                                                                               |
| R., Christiono                       | 2C.4 | 418    | The Single Tuned Filter Planning to Mitigate<br>Harmonic Pollution in Radial Distribution Network<br>Using Particle Swarm Optimization                            |
| Rachmawaty, Dina                     | 1G.2 | 272    | Techno-Economic 5G New Radio Planning at 26<br>GHz Frequency in Pulogadung Industrial Area                                                                        |

| Rahayu, Eny Sukani     | 1F.5 |     | Single Snapshot-Spatial Compressive Beamforming<br>for Azimuth Estimation and Backscatter<br>Reconstruction                                                       |
|------------------------|------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ramadhan, Firdiansyah  | 2E.1 | 494 | Royale Heroes: A Unique RTS Game Using Deep<br>Reinforcement Learning-based Autonomous<br>Movement                                                                |
| Ramadhani, Kurniawan   | 2E.3 | 505 | Combined Firefly Algorithm-Random Forest to<br>Classify Autistic Spectrum Disorders                                                                               |
| Ratchagit, Manlika     | 2A.1 | 310 | On Parameter Estimation of Stochastic Delay<br>Difference Equation using the Two m-delay<br>Autoregressive Coefficients                                           |
| Rianti, Desi           | 1G.2 | 272 | Techno-Economic 5G New Radio Planning at 26<br>GHz Frequency in Pulogadung Industrial Area                                                                        |
| Ridhatama, Hasbi       | 2F.5 | 551 | Development of Temperature and Humidity<br>Control System in Internet-of-Things based Oyster<br>Mushroom Cultivation                                              |
| Rifa'i, Nanang         | 1G.7 | 301 | Disturbance Observer-Based Speed Estimator for<br>Controlling Speed Sensorless Induction Motor                                                                    |
| Rifadil, Mochammad     | 2C.3 | 412 | Design and Implementation of SVPWM Inverter to<br>Reduce Total Harmonic Distortion (THD) on Three<br>Phase Induction Motor Speed Regulation Using<br>Constant V/F |
|                        | 2C.2 | 406 | Three Phase Induction Motor Dynamic Speed<br>Regulation Using IP Controller                                                                                       |
| Riyadi, E. Hadiyono    | 1D.1 | 129 | Real-time Testing on Improved Data Transmission<br>Security in the Industrial Control System                                                                      |
| Riyantoko, Prismahardi | 2A.7 | 344 | Indonesian Stock Price Prediction including<br>Covid19 Era Using Decision Tree Regression                                                                         |
| Robbi, Niki            | 1D.2 | 135 | Interference Mitigation in Cognitive Radio Network<br>Based on Grey Wolf Optimizer Algorithm                                                                      |
| Romadhony, Ade         | 2D.8 | 488 | Aspect-based Opinion Mining on Beauty Product<br>Reviews                                                                                                          |
| Rosadi, Dedi           | 3C.3 | 667 | COVID-19 Chest X-Ray Classification Using<br>Convolutional Neural Network Architectures                                                                           |
|                        | 1B.2 | 48  | Prediction of forest fire occurrence in peatlands using machine learning approaches                                                                               |
| Rosselina, Linda       | 1F.3 | 233 | Android Forensic Tools Analysis for Unsend Chat<br>on Social Media                                                                                                |
| Ruldeviyani, Yova      | 2G.1 | 577 | Case Study: AppDynamics Application as Business<br>Intelligence to Support Digital Business Operations<br>at PT PGD                                               |

|                   | 1D.8   | 170    | Measurement of Information Security Awareness<br>Level: A Case Study of Online Transportation<br>Users                                                            |
|-------------------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rusdiyanto, Dian  | 2F.7   | 567    | Comparison Of Eight Elements Array Structure<br>Design For Coastal Surveillance Radar                                                                             |
| Rusli, Muhammad   | 2C.3   | 412    | Design and Implementation of SVPWM Inverter to<br>Reduce Total Harmonic Distortion (THD) on Three<br>Phase Induction Motor Speed Regulation Using<br>Constant V/F |
| S ABCDEFGHIJK     | LMNOPO | QRSTUW | XYZ                                                                                                                                                               |
| S, Subaryono      | 2G.5   | 604    | Comparison of the Latest DTM with DEM Pleiades in Monitoring the Dynamic Peatland                                                                                 |
| Sa'adah, Siti     | 1A.7   | 32     | Prediction of Gross Domestic Product (GDP) in<br>Indonesia Using Deep Learning Algorithm                                                                          |
|                   | 3C.4   | 677    | Classification of Customer Actions on Digital<br>Money Transactions on PaySim Mobile Money<br>Simulator using Probabilistic Neural Network<br>(PNN) Algorithm     |
| Safitri, Eristya  | 2A.7   | 344    | Indonesian Stock Price Prediction including<br>Covid19 Era Using Decision Tree Regression                                                                         |
| Sahmoud, Shaaban  | 3B.4   | 655    | A Robust Iris Segmentation Algorithm Based on<br>Pupil Region for Visible Wavelength Environments                                                                 |
| Samudera, Satriya | 2C.2   | 406    | Three Phase Induction Motor Dynamic Speed<br>Regulation Using IP Controller                                                                                       |
| Santoso, Fian     | 3D.4   | 700    | A Modified Deep Convolutional Network for Covid-<br>19 detection based on chest X-ray images                                                                      |
| Sarjiya, Sarjiya  | 2C.5   | 423    | Analysis of Performance Index in Transmission<br>Expansion Planning of Sulawesi's Electricity<br>System                                                           |
|                   | 2C.1   | 400    | Minimization of Power Losses through Optimal<br>Placement and Sizing from Solar Power and Battery<br>Energy Storage System in Distribution System                 |
| Sarwinda, Devvi   | 1A.6   | 26     | The Multimodal Transfer Learning for Diagnosing COVID-19 Pneumonia from Chest CT-Scan and X-Ray Images                                                            |
| Sasmito, Adityan  | 1C.5   | 111    | Comparison of The Classification Data Mining<br>Methods to Identify Civil Servants in Indonesian<br>Social Insurance Company                                      |
| Sediyono, Eko     | 1F.7   | 257    | Detection of Sensor Node-less Area Using A Genetic<br>Algorithm for Wireless Sensor Network                                                                       |

| Sendari, Siti              | 2B.4 | 371 | Development of The Personnel Monitoring System<br>Using Mobile Application and Real-Time Database<br>During the COVID19 Pandemic |
|----------------------------|------|-----|----------------------------------------------------------------------------------------------------------------------------------|
| Setianingsih, Casi         | 2E.4 | 514 | Speaker Recognition For Digital Forensic Audio<br>Analysis Using Support Vector Machine                                          |
| Setiawan, Florentinus Budi | 2E.7 | 529 | Center of Gravity Method for Finding Center of<br>Laser Beam Projection on Landslide Measurement                                 |
| Setijadi, Eko              | 1G.1 | 267 | A Combination of Defected Ground Structure and<br>Line Resonator for Mutual Coupling Reduction                                   |
| Setya Budi, Avian Lukman   | 3E.3 | 716 | Energy Management Efficiency and Stability Using<br>Passive Filter in Standalone Photovoltaic Sudden<br>Cloud Condition          |
| Severin, Ionuț-Cristian    | 3C.3 | 672 | The Head Posture System Based on 3 Inertial<br>Sensors and Machine Learning Models: Offline<br>Analyze                           |
| Shadieq, Nuur              | 1B.6 | 62  | Leveraging Side Information to Anime<br>Recommender System using Deep learning                                                   |
| Siahaan, Daniel            | 2A.5 | 332 | Extraction Dependency Based on Evolutionary<br>Requirement Using Natural Language Processing                                     |
| Simbolon, Josua            | 1G.6 | 295 | Particle Filter Based Speed Estimator for Speed<br>Sensorless Control in Induction Motor                                         |
| Sinaga, Frans              | 2A.4 | 326 | Optimization of SV-kNNC using Silhouette<br>Coefficient and LMKNN for Stock Price Prediction                                     |
| Sirait, Pahala             | 2A.4 | 326 | Optimization of SV-kNNC using Silhouette<br>Coefficient and LMKNN for Stock Price Prediction                                     |
| Siregar, Faisal            | 1B.8 | 73  | Hybrid Method for Flower Classification in High<br>Intra-class Variation                                                         |
| Siswantoro, Joko           | 3D.1 | 682 | Fruits Classification from Image using MPEG-7<br>Visual Descriptors and Extreme Learning Machine                                 |
| Siswantoro, Muhammad       | 3D.1 | 682 | Fruits Classification from Image using MPEG-7<br>Visual Descriptors and Extreme Learning Machine                                 |
| Soeprijanto, Adi           | 3E.3 | 716 | Energy Management Efficiency and Stability Using<br>Passive Filter in Standalone Photovoltaic Sudden<br>Cloud Condition          |
| Solihah, Nomarhinta        | 1F.6 | 251 | Performance Evaluation of XGS-PON Optical<br>Network Termination for Enterprise Customer                                         |
|                            | 1F.4 | 239 | Performance Evaluation of IPTV Multicast Service<br>Testing for XGS-PON Optical Line Termination                                 |

| Sonalitha, Elta    | 1A.2 | 7 Blackbox Testing Model Boundary Value of<br>Mapping Taxonomy Applications and Data<br>Analysis of Art and Artworks                                           |
|--------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sridhar, Sashank   | 3E.4 | 721 A Stacking Ensemble of Multi Layer Perceptron<br>Predict Online Shoppers' Purchasing Intention                                                             |
| Stiawan, Deris     | 1D.4 | 146 Improving Classification Attacks in IOT Intrus<br>Detection System using Bayesian Hyperparamet<br>Optimization                                             |
| Suban, Ignasius    | 1C.3 | 100 Influence Distribution Training Data on<br>Performance Supervised Machine Learning<br>Algorithms                                                           |
| Subchan, Subchan   | 1G.8 | 306 Ship Heading Control Using Nonlinear Model<br>Predictive Control                                                                                           |
| Subriadi, Apol     | 2F.2 | 539 Consumer Behavior in Social Commerce Adopti<br>Systematic Literature Review                                                                                |
| Sudaryanto, Arif   | 2C.3 | A12 Design and Implementation of SVPWM Invert<br>Reduce Total Harmonic Distortion (THD) on The<br>Phase Induction Motor Speed Regulation Using<br>Constant V/F |
| Sudiharto, Indhana | 1C.7 | 117 Implementation of Maximum Power Point<br>Tracking on PV System using Artificial Bee Co<br>Algorithm                                                        |
| Sugianto, Sugianto | 2A.6 | 338 Multivariate Time Series Forecasting Based Cl.<br>Computing For Consumer Price Index Using Do<br>Learning Algorithms                                       |
| Sulistiadi, Wahyu  | 2F.6 | 562 Measuring Instagram Activity and Engagement<br>Rate of Hospital: A Comparison Before and Du<br>COVID-19 Pandemic                                           |
| Sulistiyono, Mulia | 1C.2 | 94 The Best Parameter Tuning on RNN Layers for<br>Indonesian Text Classification                                                                               |
| Sulistyo, Selo     | 1E.5 | 198 Roadside Unit Power Saving using Vehicle<br>Detection System in Vehicular Ad-hoc Network                                                                   |
| Sultoni, Arif      | 2F.8 | 572 Implementation of Fuzzy-PID Based MPPT for<br>Stand Alone 1.75 kWP PV System                                                                               |
| Sumadi, Fauzi      | 1D.5 | 152 Comparative Analysis of DDoS Detection<br>Techniques Based on Machine Learning in<br>OpenFlow Network                                                      |
| Sumiharto, Raden   | 1F.1 | 221 Designing Wireless Sensor Network Routing on<br>Agriculture Area Using The LEACH Protocol                                                                  |
|                    |      |                                                                                                                                                                |

| Suprapto, Bhakti  | 1D.4 | 146 | Improving Classification Attacks in IOT Intrusion<br>Detection System using Bayesian Hyperparameter<br>Optimization |
|-------------------|------|-----|---------------------------------------------------------------------------------------------------------------------|
|                   | 3A.1 | 621 | Facial Expression Recognition and Face<br>Recognition Using a Convolutional Neural Network                          |
| Supriyanto, Eko   | 1B.8 | 79  | Personality Dimensions Classification with EEG<br>Analysis using Support Vector Machine                             |
|                   | 1B.7 | 68  | Risk Prediction of Major Depressive Disorder using<br>Artificial Neural Network                                     |
| Suryanto, Yohan   | 1F.3 | 233 | Android Forensic Tools Analysis for Unsend Chat on Social Media                                                     |
| Susanto, Misfa    | 1F.8 | 262 | Performance Evaluation of Cell-Edge Femtocell<br>Densely Deployed in OFDMA-Based Macrocellular<br>Network           |
| Sussi, Sussi      | 1D.6 | 158 | Performance Analysis FSR and DSR Routing<br>Protocol in VANET with V2V and V2I Models                               |
| Sutivong, Daricha | 2G.2 | 588 | Decision Support System for Power Plant<br>Improvement Investment Using Life-Cycle Cost                             |
| Suwadi, Suwadi    | 1E.4 | 192 | Performance Enhancement of Multi-User Key<br>Extraction Scheme (MKES) Based on Imperfect<br>Signal Reciprocity      |
| Suyanto, Suyanto  | 2D.4 | 467 | Firefly Algorithm-based Optimization of Base<br>Transceiver Station Placement                                       |
|                   | 2E.1 | 494 | Royale Heroes: A Unique RTS Game Using Deep<br>Reinforcement Learning-based Autonomous<br>Movement                  |
|                   | 1A.4 | 17  | Comparison of PSO, FA, and BA for Discrete Optimization Problems                                                    |
|                   | 2E.6 | 525 | Text-Independent Speaker Identification Using PCA-SVM Model                                                         |
|                   | 2D.3 | 463 | Speech Emotion Detection Using Mel-Frequency<br>Cepstral Coefficient and Hidden Markov Model                        |
|                   | 1A.5 | 21  | PSO-Learned Artificial Neural Networks for<br>Activity Recognition                                                  |
|                   | 2E.3 | 505 | Combined Firefly Algorithm-Random Forest to<br>Classify Autistic Spectrum Disorders                                 |
|                   | 3B.3 | 650 | Detection of Multi-Class Glaucoma Using Active<br>Contour Snakes and Support Vector Machine                         |
|                   | 2D.6 | 476 | Topic-Based Tweet Clustering for Public Figures Using Ant Clustering                                                |
|                   |      |     | V                                                                                                                   |

|                             | 2D.5  | 471    | Removing Noise, Reducing dimension, and                                                                                                                   |  |  |
|-----------------------------|-------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                             |       |        | Weighting Distance to Enhance k-Nearest Neighbors<br>for Diabetes Classification                                                                          |  |  |
|                             | 3B.2  | 646    | Speech Gender Classification Using Bidirectional<br>Long Short Term Memory                                                                                |  |  |
| Suyanto, Yohanes            | 1F.1  | 221    | Designing Wireless Sensor Network Routing on<br>Agriculture Area Using The LEACH Protocol                                                                 |  |  |
| T ABCDEFGHIJKL              | MNOPO | QRSTUW | XYZ                                                                                                                                                       |  |  |
| Taheri, Sahar               | 1B.8  | 79     | Personality Dimensions Classification with EEG<br>Analysis using Support Vector Machine                                                                   |  |  |
| Taufani, Agusta             | 2A.8  | 348    | Students Academic Performance Prediction with k-<br>Nearest Neighbor and C4.5 on SMOTE-balanced<br>data                                                   |  |  |
| Truong Hoang, Vinh          | 2D.1  | 451    | Gender recognition based on ear images: a comparative experimental study                                                                                  |  |  |
| Tung, Teresa                | 1A.1  | 1      | Resource-Aware Pareto-Optimal Automated<br>Machine Learning Platform                                                                                      |  |  |
| U ABCDEFGHIJKL              | MNOP  | QRSTUW | XYZ                                                                                                                                                       |  |  |
| Umam, Mohammad              | 1E.1  | 176    | Performance Analysis of Temporally Ordered<br>Routing Algorithm Protocol and Zone Routing<br>Protocol On Vehicular Ad-Hoc Network in Urban<br>Environment |  |  |
| Usman, U                    | 2C.4  | 418    | The Single Tuned Filter Planning to Mitigate<br>Harmonic Pollution in Radial Distribution Network<br>Using Particle Swarm Optimization                    |  |  |
| Uyun, Shofwatul             | 3D.3  | 694    | Feature Selection on Magelang Duck Egg Candling<br>Image Using Variance Threshold Method                                                                  |  |  |
| W ABCDEFGHIJKLMNOPQRSTUWXYZ |       |        |                                                                                                                                                           |  |  |
| W, Bambang                  | 1G.6  | 295    | Particle Filter Based Speed Estimator for Speed<br>Sensorless Control in Induction Motor                                                                  |  |  |
|                             | 1G.7  | 301    | Disturbance Observer-Based Speed Estimator for<br>Controlling Speed Sensorless Induction Motor                                                            |  |  |
| Wahyudi, Anung              | 2B.7  | 389    | Design and prototype development of internet of things for greenhouse monitoring system                                                                   |  |  |
| Wahyuni, Maria              | 2E.7  | 529    | Center of Gravity Method for Finding Center of<br>Laser Beam Projection on Landslide Measurement                                                          |  |  |
| Waluyo, Anita               | 2G.1  | 583    | Guided Genetic Algorithm to Solve University<br>Course Timetabling with Dynamic Time Slot                                                                 |  |  |

| Wardhani, Shinta Amalia     | 2F.2 | 539 | Consumer Behavior in Social Commerce Adoption:<br>Systematic Literature Review                                                             |  |
|-----------------------------|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| Wati, Masna                 | 2D.7 | 482 | Dayak Onion (Eleutherine palmifolia (L) Merr)<br>An Alternative Treatment in Early Detection of<br>Dental Caries using Certainty Factor    |  |
| Wibisono, Radityo           | 2C.7 | 433 | Optimization Coagulation Process of Water<br>Treatment Plant Using Neural Network and<br>Internet of Things (IoT) Communication            |  |
| Wibowo, Agung               | 1B.6 | 62  | Leveraging Side Information to Anime<br>Recommender System using Deep learning                                                             |  |
| Wibowo, Ferry Wahyu         | 1F.7 | 257 | Detection of Sensor Node-less Area Using A Genetic<br>Algorithm for Wireless Sensor Network                                                |  |
| Wibowo, Muhammad            | 1A.7 | 32  | Prediction of Gross Domestic Product (GDP) in<br>Indonesia Using Deep Learning Algorithm                                                   |  |
| Widians, Joan               | 2D.7 | 482 | Dayak Onion (Eleutherine palmifolia (L) Merr) as<br>An Alternative Treatment in Early Detection of<br>Dental Caries using Certainty Factor |  |
| Widiyatmoko, Dany           | 3A.2 | 627 | Stemming Javanese: Another Adaptation of the<br>Nazief-Adriani Algorithm                                                                   |  |
| Widiyatmoko, Wahyu          | 1C.1 | 83  | Performance Comparison of Data Mining<br>Techniques for Rain Prediction Models in Indonesia                                                |  |
| Widyawan, Widy              | 1D.2 | 135 | Interference Mitigation in Cognitive Radio Network<br>Based on Grey Wolf Optimizer Algorithm                                               |  |
| Widyawati, Dewi             | 2B.7 | 389 | Design and prototype development of internet of things for greenhouse monitoring system                                                    |  |
| Wijayanto, Danur            | 1F.1 | 221 | Designing Wireless Sensor Network Routing on<br>Agriculture Area Using The LEACH Protocol                                                  |  |
| Winarno, Edy                | 1C.1 | 83  | Performance Comparison of Data Mining<br>Techniques for Rain Prediction Models in Indonesia                                                |  |
| Winursito, Anggun           | 2B.2 | 360 | Development and Implementation of Kalman Filte<br>for IoT Sensors: Towards a Better Precision<br>Agriculture                               |  |
| Witono, Timotius            | 2F.4 | 545 | Analysis of Indonesia's Internet Topology Borders at the Autonomous System Level                                                           |  |
| Wiwatanapataphee, Benchawan | 2A.1 | 310 | On Parameter Estimation of Stochastic Delay<br>Difference Equation using the Two m-delay<br>Autoregressive Coefficients                    |  |
| Wulandari, Eliandri         | 1F.4 | 239 | Performance Evaluation of IPTV Multicast Service<br>Testing for XGS-PON Optical Line Termination                                           |  |

| Xaphakdy, Khampaserth       | 1E.8  | 215    | Performance Enhancement in Macro-Femto<br>Network Using a Modified Discrete Moth-flame<br>Optimization Algorithm                         |  |
|-----------------------------|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Y ABCDEFGHIJKI              | LMNOP | QRSTUW | XYZ                                                                                                                                      |  |
| Yadav, Uma                  | 2C.9  | 445    | Robust Control Design Procedure and Simulation of PRES Controller having Phase-Locked Loop(PLL) control technique in Grid-Tied Converter |  |
| Yang, Yao                   | 1A.1  | 1      | Resource-Aware Pareto-Optimal Automated<br>Machine Learning Platform                                                                     |  |
| Yazid, Setiadi              | 2F.4  | 545    | Analysis of Indonesia's Internet Topology Borders at the Autonomous System Level                                                         |  |
| Yudhantomo, Thomas          | 2C.5  | 423    | Analysis of Performance Index in Transmission<br>Expansion Planning of Sulawesi's Electricity<br>System                                  |  |
| Yudhistiro, Kukuh           | 1A.2  | 7      | Blackbox Testing Model Boundary Value of<br>Mapping Taxonomy Applications and Data<br>Analysis of Art and Artworks                       |  |
| Yugopuspito, Pujianto       | 1C.1  | 89     | Website Design for Locating Tuna Fishing Spot<br>Using Naïve Bayes and SVM Based on VMS Data<br>on Indonesian Sea                        |  |
| Yuliana, Mike               | 1E.4  | 192    | Performance Enhancement of Multi-User Key<br>Extraction Scheme (MKES) Based on Imperfect<br>Signal Reciprocity                           |  |
| Yunanto, Prasti Eko         | 2D.5  | 471    | Removing Noise, Reducing dimension, and<br>Weighting Distance to Enhance k-Nearest Neighbors<br>for Diabetes Classification              |  |
| Yusran, Yusran              | 3D.2  | 688    | Unstructured Road Detection and Steering Assist<br>Based on HSV Color Space Segmentation for<br>Autonomous Car                           |  |
| Yusrandi, Yusrandi          | 2B.4  | 371    | Development of The Personnel Monitoring System<br>Using Mobile Application and Real-Time Database<br>During the COVID19 Pandemic         |  |
| Z ABCDEFGHIJKLMNOPQRSTUWXYZ |       |        |                                                                                                                                          |  |
| Zaeni, Ilham Ari            | 2B.4  | 371    | Development of The Personnel Monitoring System<br>Using Mobile Application and Real-Time Database<br>During the COVID19 Pandemic         |  |
| Zahara, Soffa               | 2A.6  | 338    | Multivariate Time Series Forecasting Based Cloud<br>Computing For Consumer Price Index Using Deep<br>Learning Algorithms                 |  |

| Zainuddin, Zahir  | 3D.2 | 688 | Unstructured Road Detection and Steering Assist<br>Based on HSV Color Space Segmentation for<br>Autonomous Car     |
|-------------------|------|-----|--------------------------------------------------------------------------------------------------------------------|
| Zeng, Shuai       | 1A.2 | 12  | Distributed Alternating Direction Multiplier<br>Method Based on Optimized Topology and Nodes<br>Selection Strategy |
| Zsedrovits, Tamas | 3A.3 | 632 | A bio-motivated vision system and artificial neural network for autonomous UAV obstacle avoidance                  |
| Zubair, Anis      | 1A.2 | 7   | Blackbox Testing Model Boundary Value of<br>Mapping Taxonomy Applications and Data<br>Analysis of Art and Artworks |
| Zulfira, Fakhira  | 3B.3 | 650 | Detection of Multi-Class Glaucoma Using Active<br>Contour Snakes and Support Vector Machine                        |
| Zulkifli, Fitri   | 1E.7 | 209 | Development of Smart Energy Meter Based on<br>LoRaWAN in Campus Area                                               |

# PAPER TITLES

#### 5 A B C D E F G H I L M N O P O R S T U V W

# 5 5ABCDEFGHILMNOPQRSTUVW

5G New Radio (NR) Network Planning at Frequency 2,6 GHz in The Gold Triangle Area of Jakarta

# A 5ABCDEFGHILMNOPQRSTUVW

- A bio-motivated vision system and artificial neural network for autonomous UAV obstacle avoidance
- A Combination of Defected Ground Structure and Line Resonator for Mutual Coupling Reduction
- A Comparative Study of Java and Kotlin for Android Mobile Application Development
- A Kubernetes Algorithm for scaling Virtual Objects
- A Modified Deep Convolutional Network for Covid-19 detection based on chest X-ray images
- A Robust Iris Segmentation Algorithm Based on Pupil Region for Visible Wavelength Environments
- A Stacking Ensemble of Multi Layer Perceptrons to Predict Online Shoppers' Purchasing Intention
- Analysis of Indonesia's Internet Topology Borders at the Autonomous System Level
- Analysis of Performance Index in Transmission Expansion Planning of Sulawesi's Electricity System
- Analytic Predictive of Hepatitis using The Regression Logic Algorithm
- Android Forensic Tools Analysis for Unsend Chat on Social Media
- Application For Detection Of Pedestrian Position On Zebra Cross
- Aspect-based Opinion Mining on Beauty Product Reviews

#### B 5ABCDEFGHILMNOPORSTUVW

Benchmarking Explicit Rating Prediction Algorithms for Cosmetic Products
Blackbox Testing Model Boundary Value of Mapping Taxonomy Applications and Data Analysis of Art and
Artworks

# C 5ABCDEFGHILMNOPQRSTUVW

Case Study: AppDynamics Application as Business Intelligence to Support Digital Business Operations at PT PGD

Center of Gravity Method for Finding Center of Laser Beam Projection on Landslide Measurement

Classification of Customer Actions on Digital Money Transactions on PaySim Mobile Money Simulator using Probabilistic Neural Network (PNN) Algorithm

Combined Firefly Algorithm-Random Forest to Classify Autistic Spectrum Disorders

Comparative Analysis of DDoS Detection Techniques Based on Machine Learning in OpenFlow Network

Comparison Of Eight Elements Array Structure Design For Coastal Surveillance Radar

Comparison of Feature Extraction for Speaker Identification System

Comparison of PSO, FA, and BA for Discrete Optimization Problems

Comparison of The Classification Data Mining Methods to Identify Civil Servants in Indonesian Social Insurance Company

Comparison of the Latest DTM with DEM Pleiades in Monitoring the Dynamic Peatland

Consumer Behavior in Social Commerce Adoption: Systematic Literature Review

Convolutional Network and Moving Object Analysis for Vehicle Detection in Highway Surveillance Videos

COVID-19 Chest X-Ray Classification Using Convolutional Neural Network Architectures

# D 5ABCDEFGHILMNOPQRSTUVW

Dayak Onion (Eleutherine palmifolia (L) Merr) as An Alternative Treatment in Early Detection of Dental Caries using Certainty Factor

DDoS Attack Detection in Software Defined Network using Ensemble K-means++ and Random Forest

Decision Support System for Power Plant Improvement Investment Using Life-Cycle Cost

Design and Development of Bit Error Measurement using FPGA for Visible Light Communication

Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three Phase Induction Motor Speed Regulation Using Constant V/F

Design and prototype development of internet of things for greenhouse monitoring system

Design of Optimal Satellite Constellation for Indonesian Regional Navigation System based on GEO and GSO Satellites

Designing Wireless Sensor Network Routing on Agriculture Area Using The LEACH Protocol

Detection of Multi-Class Glaucoma Using Active Contour Snakes and Support Vector Machine

Detection of Sensor Node-less Area Using A Genetic Algorithm for Wireless Sensor Network

Development and Implementation of Kalman Filter for IoT Sensors: Towards a Better Precision Agriculture

Development of Smart Energy Meter Based on LoRaWAN in Campus Area

Development of Temperature and Humidity Control System in Internet-of-Things based Oyster Mushroom Cultivation

Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic

Distributed Alternating Direction Multiplier Method Based on Optimized Topology and Nodes Selection Strategy Disturbance Observer-Based Speed Estimator for Controlling Speed Sensorless Induction Motor

# E 5ABCDEFGHILMNOPQRSTUVW

Effect of Android and Social Media User Growth on the Financial Technology Lending Borrowers and its Financial

Energy Management Efficiency and Stability Using Passive Filter in Standalone Photovoltaic Sudden Cloud Condition

Experimental Security Analysis for Fake eNodeB Attack on LTE Network

Extraction Dependency Based on Evolutionary Requirement Using Natural Language Processing

# F 5ABCDEFGHILMNOPQRSTUVW

Facial Expression Recognition and Face Recognition Using a Convolutional Neural Network
Feature Selection on Magelang Duck Egg Candling Image Using Variance Threshold Method
Features of the Use of Solar Panels at Low Temperatures in the Arctic
Firefly Algorithm-based Optimization of Base Transceiver Station Placement
Fruits Classification from Image using MPEG-7 Visual Descriptors and Extreme Learning Machine

#### G 5ABCDEFGHILMNOPQRSTUVW

Gender recognition based on ear images: a comparative experimental study Guided Genetic Algorithm to Solve University Course Timetabling with Dynamic Time Slot

# H 5ABCDEFGHILMNOPQRSTUVW

Hybrid Method for Flower Classification in High Intra-class Variation

# I 5ABCDEFGHILMNOPQRSTUVW

Implementation of Fuzzy-PID Based MPPT for Stand Alone 1.75 kWP PV System

Implementation of Maximum Power Point Tracking on PV System using Artificial Bee Colony Algorithm Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization

Indonesian Parsing using Probabilistic Context-Free Grammar (PCFG) and Viterbi-Cocke Younger Kasami (Viterbi-CYK)

Indonesian Stock Price Prediction including Covid19 Era Using Decision Tree Regression
Indonesian Traffic Sign Recognition For Advanced Driver Assistent (ADAS) Using YOLOv4
Influence Distribution Training Data on Performance Supervised Machine Learning Algorithms
Initial Access in 5G mmWave Communication using Hybrid Genetic Algorithm and Particle Swarm
Optimization

Interference Mitigation in Cognitive Radio Network Based on Grey Wolf Optimizer Algorithm

# L 5ABCDEFGHILMNOPQRSTUVW

Leveraging Side Information to Anime Recommender System using Deep learning

# M 5ABCDEFGHILMNOPQRSTUVW

Measurement of Information Security Awareness Level: A Case Study of Online Transportation Users Measuring Instagram Activity and Engagement Rate of Hospital: A Comparison Before and During COVID-19 Pandemic

Minimization of Power Losses through Optimal Placement and Sizing from Solar Power and Battery Energy Storage System in Distribution System

Model Development of Information Technology Value for Downstream Petroleum Industry

Modification of 2.2 GHz S-Band Rectangular Patch Microstrip Antenna using Truncated Corner Method for Satellite Applications

Modification of Wireless Reverse Charging Scheme with Bundling Optimization Issues

Multi-Point Travel Destination Recommendation System In Yogyakarta Using Hybrid Location Based Service-Floyd Warshall Method

Multilayer Secure Hardware Network Stack using FPGA

Multivariate Time Series Forecasting Based Cloud Computing For Consumer Price Index Using Deep Learning Algorithms

# N 5ABCDEFGHILMNOPQRSTUVW

Network Attack Detection System Using Filter-based Feature Selection and SVM

# O 5ABCDEFGHILMNOPQRSTUVW

On Parameter Estimation of Stochastic Delay Difference Equation using the Two m-delay Autoregressive Coefficients

Optimization Coagulation Process of Water Treatment Plant Using Neural Network and Internet of Things (IoT) Communication

Optimization of SV-kNNC using Silhouette Coefficient and LMKNN for Stock Price Prediction

# P 5ABCDEFGHILMNOPQRSTUVW

Papaya Disease Detection Using Fuzzy Naïve Bayes Classifier
Particle Filter Based Speed Estimator for Speed Sensorless Control in Induction Motor
Performance Analysis FSR and DSR Routing Protocol in VANET with V2V and V2I Models

Performance Analysis of Temporally Ordered Routing Algorithm Protocol and Zone Routing Protocol On Vehicular Ad-Hoc Network in Urban Environment

Performance Comparison of Data Mining Techniques for Rain Prediction Models in Indonesia

Performance Enhancement in Macro-Femto Network Using a Modified Discrete Moth-flame Optimization Algorithm

Performance Enhancement of Multi-User Key Extraction Scheme (MKES) Based on Imperfect Signal Reciprocity

Performance Evaluation of Cell-Edge Femtocell Densely Deployed in OFDMA-Based Macrocellular Network

Performance Evaluation of IPTV Multicast Service Testing for XGS-PON Optical Line Termination

Performance Evaluation of XGS-PON Optical Network Termination for Enterprise Customer

Personality Dimensions Classification with EEG Analysis using Support Vector Machine

Predicting User Preferences with XGBoost Learning to Rank Method

Prediction of forest fire occurrence in peatlands using machine learning approaches

Prediction of Gross Domestic Product (GDP) in Indonesia Using Deep Learning Algorithm

Prediction of Liver Cancer Based on DNA Sequence Using Ensemble Method

Prototype Design of IoT (Internet of Things)-based Load Monitoring System

Proximity-based COVID-19 Contact Tracing System Devices for Locally Problems Solution

PSO-Learned Artificial Neural Networks for Activity Recognition

#### Q 5ABCDEFGHILMNOPQRSTUVW

Quality Assessment of Digital Terrestrial Television Broadcast in Surabaya

# R 5ABCDEFGHILMNOPQRSTUVW

Real-time Testing on Improved Data Transmission Security in the Industrial Control System Removing Noise, Reducing dimension, and Weighting Distance to Enhance k-Nearest Neighbors for Diabetes Classification

Resource-Aware Pareto-Optimal Automated Machine Learning Platform

Risk Prediction of Major Depressive Disorder using Artificial Neural Network

Roadside Unit Power Saving using Vehicle Detection System in Vehicular Ad-hoc Network

Robust Control Design Procedure and Simulation of PRES Controller having Phase-Locked Loop(PLL) control technique in Grid-Tied Converter

Royale Heroes: A Unique RTS Game Using Deep Reinforcement Learning-based Autonomous Movement

# S 5ABCDEFGHILMNOPQRSTUVW

Ship Heading Control Using Nonlinear Model Predictive Control

Single Snapshot-Spatial Compressive Beamforming for Azimuth Estimation and Backscatter Reconstruction

Smart Safe Prototype Based Internet of Things (IoT) with Face and Fingerprint Recognition

Some Numerical and Analytical Solutions to an Enzyme-Substrate Reaction-Diffusion Problem

Speaker Recognition For Digital Forensic Audio Analysis Using Support Vector Machine

Speaker Recognition Using Mel Frequency Cepstral Coefficient and Self-Organising Fuzzy Logic

Speech Emotion Detection Using Mel-Frequency Cepstral Coefficient and Hidden Markov Model

Speech Gender Classification Using Bidirectional Long Short Term Memory

Stemming Javanese: Another Adaptation of the Nazief-Adriani Algorithm

Students Academic Performance Prediction with k-Nearest Neighbor and C4.5 on SMOTE-balanced data

Supervised Deep Learning for Thyroid Nodules Classification Based on Margin Characteristic

# T 5ABCDEFGHILMNOPQRSTUVW

Techno-Economic 5G New Radio Planning at 26 GHz Frequency in Pulogadung Industrial Area Text-Independent Speaker Identification Using PCA-SVM Model
The Best Parameter Tuning on RNN Layers for Indonesian Text Classification

# The N-Sheet Model in Capacitated Multi-Period Cutting Stock Problem with Pattern Set-Up Cost

Sisca Octarina\*
Department of Mathematics
Faculty of Mathematics and Natural
Sciences
Universitas Sriwijaya
Inderalaya, Indonesia
sisca octarina@unsri.ac.id

Des Alwine Zayanti
Department of Mathematics
Faculty of Mathematics and Natural
Sciences
Universitas Sriwijaya
Inderalaya, Indonesia
desalwinez@unsri.ac.id

Putra Bahtera Jaya Bangun
Department of Mathematics
Faculty of Mathematics and Natural
Sciences
Universitas Sriwijaya
Inderalaya, Indonesia
putra5987@unsri.ac.id

Sisca Pebrina
Department of Mathematics
Faculty of Mathematics and Natural
Sciences
Universitas Sriwijaya
Inderalaya, Indonesia
siscapebrina22@gmail.com

Laila Hanum
Department of Biology
Faculty of Mathematics and Natural
Sciences
Universitas Sriwijaya
Inderalaya, Indonesia
lailahanum@ymail.com

Abstract— Cutting Stock Problem (CSP) is a problem to optimize the stock usage with specifics cutting patterns. This research implemented the N-Sheet model in Capacitated Multi-Period Cutting Stock Problem with the pattern set-up cost. This study used the data of the rectangular stocks, which cut to a variety of item sizes. The Pattern Generation (PG) algorithm determined the cutting patterns. The PG produced 21 optimal patterns based on the length and 23 optimal patterns based on the width to fulfil customer requirements. And then, we formulated the patterns into the N-Sheet model. The optimal solution from the N-Sheet model in this research were six cutting patterns. We used the 1st, 2nd, 5th, and 19th patterns for cutting based on length, and the 4th and 23rd patterns for cutting based on the width. The solutions of the model were not so optimal because it yielded too many surplus items.

Keywords—Cutting Stock Problem, Pattern Generation, N-Sheet, Multi-Period, Pattern

# I. INTRODUCTION

Industry players are always looking for ways to get optimal profits without increasing capital or detrimental consumers. They can optimize raw materials and minimize the remaining cut (trim loss). Wood, paper, glass, steel, marble, and other industries mostly used this method. The problem of setting raw materials in Operation Research (OR) is commonly called the Cutting Stock Problem (CSP), which is cutting the available standard raw materials in specific sizes to minimize the trim loss. According to its dimensions, CSP consists of one-dimensional CSP, two-dimensional CSP, and three-dimensional CSP. Cutting only one side is called a one-dimensional CSP. This study discussed two-dimensional CSP, where the cutting considers the width and length of the raw material. Meanwhile, for three-dimensional CSP, cutting considers the width, length, and height.

Reference [1] said that in general, cutting raw materials consists of cutting a specific set of small objects or commonly referred to as items, from certain more massive groups, called stock sheets. Reference [2] stated that according to its form, CSP is divided into two, namely irregular and regular.

Researchers have developed CSP research from time to time with various problem-solving algorithms starting from pattern formation [2]–[6], model building [7]–[10], and solving methods [11]–[13]. Two-dimensional CSP using the Arc-Flow model with guillotine constraints was formulated by [1]. And then, [14] used the matheuristic approach to solved the Arc-Flow model. In general, CSP research uses the Arc-flow model and other models, such as the N-Sheet model, Dotted Board and others. Another study was conducted by [15] regarding two-dimensional CSP of the guillotine problem by minimizing trim loss. This study's result indicated a modified model to handle specific cases, for example, the correct two-stage guill time cutting without trimming. Reference [16] proposed two heuristics for the capacitated multi-period CSP with the pattern set-up cost.

Capacitated multi-period CSP is a cutting process with more than one period, where the period is the units of time for completing the work. Furthermore, [17] created a pattern formation program for two-dimensional CSP using a modified Branch and Bound algorithm, but this program still produces many of the same patterns. Reference [6] examined CSP with the Pattern Generation algorithm for one-dimensional problems with pattern setting costs. Reference [18] implemented the Branch and Cut method in the two-dimensional N-Sheet CSP model, wherein this study did not take the pattern set-up cost. They used the N-Sheet model for solving problems with one-dimensional or two-dimensional raw materials. This model can solve a single stock or multiple stock problems, however they used only a single period, not multi-periods.

This study designed the cutting patterns for rectangular and guillotine-shaped items with the pattern set-up cost. The cost included the inventory cost per unit in each period, each item's usage cost and the pattern cost. The search for cutting patterns in this study used the Pattern Generation algorithm. There have been limited studies concerned with capacitated multi-periods CSP. Therefore, this research formulated the

N-sheet model on the Capacitated Multi-Period CSP to minimize the trim loss.

#### II. RESEARCH METHOD

There are some steps taken in this study. First, we described and classified data. These data included the stock's size, item's length, width measurements, and item's requests. The stocks were rectangular, and there were three types of item's dimension. The data implemented in the Pattern Generation algorithm were sorted, descending from the most extensive to the smallest sized product. The Pattern Generation algorithm processed data to obtain the first stage cutting pattern and the second stage cutting pattern. The N-Sheet model was formulated and solved it using the LINDO 61 program.

# III. RESULT AND DISCUSSIONS

This study used paper raw material data in the form of a rectangle with a length of 3,000 mm and a width of 3,500 mm with three items. Table 1 showed the item's sizes and demand.

TABLE 1. ITEM SIZE AND DEMAND

| The ith item | Length | Width  | Number of Demand |
|--------------|--------|--------|------------------|
| 1            | 378 mm | 200 mm | 75 sheets        |
| 2            | 555 mm | 496 mm | 6 sheets         |
| 3            | 555 mm | 755 mm | 4 sheets         |

Table 1 showed the highest demand was 75 sheets, while for the second demand as many as six sheets, and third demand as many as four sheets. There are three items, with 378 mm  $\times$ 200 mm, 555 mm  $\times$  496 mm, and 555 mm  $\times$  755 mm dimensions.

The stock with standard width (w' = 3,500) and standard length (l' = 3,000) is cut to 3 sizes with a certain width and length, respectively denoted by  $w_i$  and  $l_i$  where (i = 1, 2, 3)and  $w_1>w_2>w_3$ . The cutting pattern of the PG algorithm is needed to meet the demand. A cutting pattern with the minimum trim loss is referred to as a feasible cutting pattern.

We obtained the feasible cutting pattern through a search tree. The tree level represents the required width, arranged in descending order where the largest is at the first level while the smallest size is placed at the tree's last level. The initial vertex of the first level represents the standard width used to generate the pattern. Therefore, a separate search tree is used to create patterns according to each standard width.

The branch of level i in the search tree represents the multiplication of the number of items by the width  $w_i$  obtained according to the  $j^{th}$  cutting pattern. This multiplication represents the sum of the widths cut from the stock to fill the width  $w_i$ . The vertices from the second level to the  $n^{th}$  level represent the remaining width after fulfilling the specified cut from the previous i-1 branch. The final vertex of the search tree shows the remaining reductions resulting from the different cutting patterns. The search tree is built from top to bottom, then left to right.

We generate the cutting pattern by applying PG algorithm [2] to the data in Table 1. The steps of the PG algorithms are as follows [2]:

- Ordering the width  $w_i$  (i = 1, 2, 3) in descending order. So, we have  $w_1 = 555$  mm,  $w_2 = 555$  mm, and  $w_3 = 378 \text{ mm}.$
- Use Eq. 1 to fill the first column. (j = 1) $a_{i1} = \left[\frac{w' - \sum_{z=1}^{i-1} a_{z1} w_z}{w_i}\right], i = 1, 2, 3$ Use Eq. (2) to find the trim loss. (1)

$$c_{i} = w' - \sum_{i=1}^{3} a_{ij} w_{i} \tag{2}$$

- Set level index (row index) i to n-1.
- Check level of vertex, eg. vertex (i, j). If the vertex equals to zero  $(a_{ij} = 0)$ , go to Step 7. If not generate new column j = j + 1 with these elements:
  - a.  $a_{zj} = a_{z(j-1)} (z = 1, 2, ..., i 1)$  to fill the preceeding vertex (i, j).
  - b.  $a_{ij} = a_{i(j-1)} 1$  to fill the vertex (i, j).
  - c. Fill the remaining from vertex-*j* using Eq. (3).

$$a_{ij} = \left[ \frac{w' - \sum_{z=1}^{i-1} a_z w_z}{w_i} \right] \tag{3}$$

- Use Eq. (2) to find the trim loss from the  $j^{th}$  pattern. Go back to Step 4.
- Set i = i 1. If i > 0, go to Step 5. Otherwise, stop.

By implementing the PG algorithm and the data in Table 1, we got 21 cutting patterns based on the length shown in Fig. 1 and 2. We must read the search tree in Fig. 1 from top to bottom and continue from left to right. From Fig. 1, we can see that the first level is 3,000. It means that the length of the stock is 3,000 mm. After that, we took the second level of the tree from the top. If we used the 3,000 mm of the stock to cut the item with a length of 555 mm, we could get five pieces of 555 mm. The remaining stock is 225 mm. From 225 mm of the remaining, we continue to the third level of the search tree. 225 mm of the remaining can not use any more to cut the second item of 555 mm, so the number of cutting is 0. In the fourth level of the search tree, we use 225 mm of the remaining paper to cut the third item with 378 mm. Because the remaining stock is smaller than the item, we can not use it to cut for the third item, and the number of cuts in the fourth level becomes zero. We can see the trim loss in the last vertex at the tree's bottom. The first pattern based on the length is five pieces of 555 mm with 225 mm of trim loss. The second pattern is four pieces of 555 mm and a piece of 555 mm with 225 mm of trim loss. The third pattern is four pieces of 555 mm and two pieces of 378 mm with 24 mm of trim loss. The patterns continue until the 21th pattern. Fig. 2 is a continuation of Fig. 1. For details, the cutting patterns based on the length as shown in Fig. 1 and Fig. 2 can be seen in Table

On the other hand, by implementing the PG algorithm to the data in Table 1, we got 23 cutting patterns based on the width. These patterns can be seen in Fig. 3 and Fig. 4. We also must read the search tree in Fig. 3 from top to bottom and continue from left to right. From Fig. 3, we can see that the first level is 3,500. It means that the length of the stock is 3,500 mm. After that, we took the second level of the tree from the top. If we used the 3,500 mm of the stock to cut the item with a length of 755 mm, we could get four pieces of 755 mm.

The remaining stock is 48 mm. From 48 mm of the remaining, we continue to the third level of the search tree. 48 mm of the remaining can not use any more to cut the second item of 496 mm, so the number of cutting is 0. In the fourth level of the search tree, we use 48 mm of the remaining paper to cut the third item with 200 mm. In this last level, we get 2 pieces of 200 mm. The trim loss is in the last vertex at the tree's bottom. The first pattern based on the width is four pieces of 755 mm and two pieces of 200 mm, with 80 mm of trim loss. The

second pattern is three pieces of 755 mm, two pieces of 496 mm, and a piece of 200 mm with 43 mm of trim loss. The third pattern is three pieces of 755 mm, a piece of 496 mm, and three pieces of 200 mm with 139 mm of trim loss. The patterns continue until the  $23^{rd}$  pattern. Fig. 3 is a continuation of Fig 4. For details, the cutting patterns based on the width as shown in Fig. 3 and Fig. 4 can be seen in Table 3.

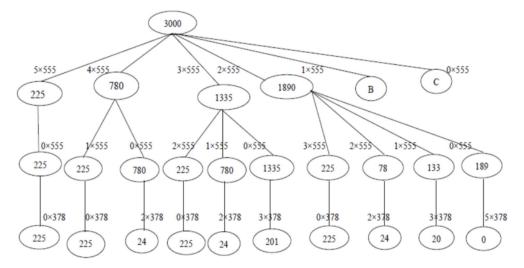



Figure 1. The Tree of Cutting Patterns Based on The Length Part 1

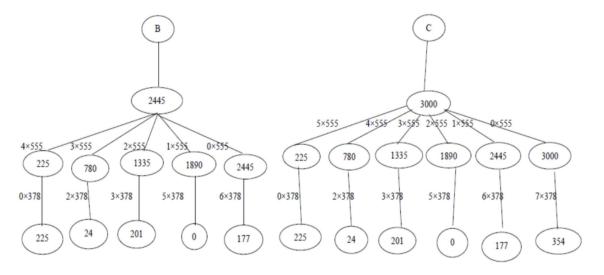



Figure 2. The Tree of Cutting Patterns Based on The Length Part 2  $\,$ 

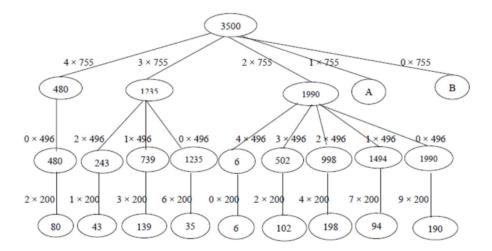



Figure 3. The Tree of Cutting Patterns Based on The Width Part 1

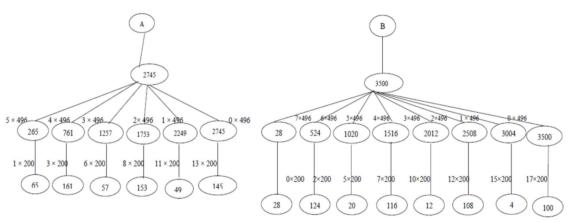



Figure 4. The Tree of Cutting Patterns Based on The Width Part 2

From Table 2, if we use the first pattern, we can get five pieces of items with length 555 mm and 225 mm of trim loss, and so on until the 21st pattern. From Table 3, if we use the first pattern, we can get four pieces of items with width 755 mm, two pieces of items with width 200 mm, and 80 mm of trim loss. All of the patterns from Table 2 and 3 were formulated to the N-Sheet model. The objective function of the N-Sheet model is to minimize the trim loss in order to obtain an optimal cutting pattern.

The N-Sheet model for the cutting patterns in Table 2 and Table 3 can be seen in Model (4)-(8).

is the number of p pattern which cut based on the length. is the number of p pattern which cut based on the width.  $y_p$ 

is the number of the  $i^{th}$  item which cut according to the j<sup>th</sup> pattern.

$$Z = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} h_{i} I_{it} + \sum_{p=1}^{p \max} (pC + \beta) x_{p} \right) +$$

$$\sum_{t=1}^{T} \left( \sum_{i=1}^{n} h_{i} I_{it} + \sum_{p=1}^{p \max} (pC + \beta) y_{p} \right)$$
(4)

Subject to:

Subject to: 
$$\sum_{i=1}^{pmax} l_{ij} x_p \le I_i, i = 1, ..., p^{max}$$
(5) 
$$\sum_{j=1}^{pmax} l_{ij} y_p \le I_i, j = 1, ..., p^{max}$$
(6) 
$$\sum_{i=1}^{pmax} x_p = \mathbb{N}, i = 1, ..., p^{max}$$
(7) 
$$\sum_{j=1}^{pmax} y_p = \mathbb{N}, j = 1, ..., p^{max}$$
(8)

$$\sum_{i=1}^{p^{\max}} l_{ii} y_n \le I_{i,j} = 1, \dots, p^{\max}$$
 (6)

$$\sum_{i=1}^{p \max} x_n = \mathbb{N}, i = 1, \dots, p^{\max}$$
 (7)

$$\sum_{i=1}^{p^{max}} y_p = \mathbb{N}, \ j = 1, ..., p^{max}$$
 (8)

is the number of item. n

Tis the number of period, T = 2

is the inventory cost per unit per period.

is the length of stock, L = 3,500

Cis the unit cost, C = 3,500  $I_{it}$  is the inventory number of the  $i^{th}$  item in the  $t^{th}$  period.

p is the number of pattern.

t is the period.

 $\beta$  is the pattern set up cost,  $\beta = 0.01 L$ 

N is the positive integer number

TABLE 2. THE CUTTING PATTERNS BASED ON THE LENGTH

| The j th | The Number of Items |        |        | Trim loss |
|----------|---------------------|--------|--------|-----------|
| pattern  | 555 mm              | 555 mm | 378 mm | (mm)      |
| 1        | 5                   | 0      | 0      | 225       |
| 2        | 4                   | 1      | 0      | 225       |
| 3        | 4                   | 0      | 2      | 24        |
| 4        | 3                   | 2      | 0      | 225       |
| 5        | 3                   | 1      | 2 3    | 24        |
| 6        | 3                   | 0      | 3      | 201       |
| 7        | 2                   | 3      | 0      | 225       |
| 8        | 2                   | 2      | 2      | 24        |
| 9        | 2                   | 1      | 3      | 201       |
| 10       | 2                   | 0      | 5      | 0         |
| 11       | 1                   | 4      | 0      | 225       |
| 12       | 1                   | 3      | 2 3    | 24        |
| 13       | 1                   | 2      | 3      | 201       |
| 14       | 1                   | 1      | 5      | 0         |
| 15       | 1                   | 0      | 6      | 177       |
| 16       | 0                   | 5      | 0      | 225       |
| 17       | 0                   | 4      | 2      | 24        |
| 18       | 0                   | 3      | 3      | 201       |
| 19       | 0                   | 2      | 5      | 0         |
| 20       | 0                   | 1      | 6      | 177       |
| 21       | 0                   | 0      | 7      | 354       |

 $p^{max}$  is the maximum number of patterns

By using the data in Table 1 with the variables and parameters that had explained before, the N-Sheet model can be seen in Model (9).

TABLE 3. THE CUTTING PATTERNS BASED ON THE WIDTH

| The                     | The    | Trim loss |        |      |
|-------------------------|--------|-----------|--------|------|
| j <sup>th</sup> pattern | 755 mm | 496 mm    | 200 mm | (mm) |
| 1                       | 4      | 0         | 2      | 80   |
| 2                       | 3      | 2         | 1      | 43   |
| 3                       | 3      | 1         | 3      | 139  |
| 4                       | 3      | 0         | 6      | 35   |
| 5                       | 2      | 4         | 0      | 6    |
| 6                       | 2      | 3         | 2      | 102  |
| 7                       | 2      | 2         | 4      | 198  |
| 8                       | 2      | 1         | 7      | 94   |
| 9                       | 2      | 0         | 9      | 190  |
| 10                      | 1      | 5         | 1      | 65   |
| 11                      | 1      | 4         | 3      | 161  |
| 12                      | 1      | 3         | 6      | 57   |
| 13                      | 1      | 2         | 8      | 153  |
| 14                      | 1      | 1         | 11     | 49   |
| 15                      | 1      | 0         | 13     | 145  |
| 16                      | 0      | 7         | 0      | 28   |
| 17                      | 0      | 6         | 2      | 124  |
| 18                      | 0      | 5         | 5      | 20   |
| 19                      | 0      | 4         | 7      | 116  |
| 20                      | 0      | 3         | 10     | 12   |
| 21                      | 0      | 2         | 12     | 108  |
| 22                      | 0      | 1         | 15     | 4    |
| 23                      | 0      | 0         | 17     | 100  |

#### Minimize

 $Z=13,1l_{11}+13,1l_{12}+10,51l_{21}+10,51l_{22}+5,78l_{31}+5,78l_{32}+3535x_1+7035x_2+10535x_3+14035x_4+17535x_5+21035x_6+24535x_7+28035x_8+31535x_9+35035x_{10}+38535x_{11}+42035x_{12}+45535x_{13}+49035x_{14}+52535x_{15}+56035x_{16}+59535x_{17}+63035x_{18}+66535x_{19}+70035x_{20}+73535x_{21}+3535y_1+7035y_2+10535y_3+14035y_4+17535y_5+21035y_6+24535y_7+28035y_8+31535y_9+35035y_{10}+38535y_{11}+42035y_{12}+45535y_{13}+49035y_{14}+52535y_{15}+56035y_{16}+59535y_{17}+63035y_{18}+66535y_{19}+70035y_{20}+73535y_{21}+77035y_{22}+80535y_{22}$ 

Subject to: (9)

 $7x_1 + 6x_2 + 5x_3 + 3x_4 + 2x_5 + 6x_7 + 5x_8 + 3x_9 + 2x_{10} + 5x_{12} + 3x_{13} + 2x_{14} + 3x_{16} + 2x_{17} + 2x_{19} \ge 75$   $x_2 + 2x_3 + 3x_4 + 4x_5 + 5x_6 + x_8 + 2x_9 + 3x_{10} + 4x_{11} + x_{13} + 2x_{14} + 3x_{15} + x_{17} + 2x_{18} + x_{20} \ge 6$   $x_7 + x_8 + x_9 + x_{10} + x_{11} + 2x_{12} + 2x_{13} + 2x_{14} + 2x_{15} + 3x_{16} + 3x_{17} + 3x_{18} + 4x_{19} + 4x_{20} + 5x_{21} \ge 4$   $17y_1 + 15y_2 + 12y_3 + 10y_4 + 7y_5 + 5y_6 + 2y_7 + 13y_9 + 11y_{10} + 8y_{11} + 6y_{12} + 3y_{13} + y_{14} + 9y_{15} + 7y_{16} + 4y_{17} + 2y_{18} + 6y_{20} + 3y_{21} + y_{22} + 2y_{23} \ge 75$ 

 $\begin{array}{c} y_2 + 2y_3 + 3y_4 + 4y_5 + 5y_6 + 6y_7 + 7y_8 + y_{10} + 2y_{11} + 3y_{12} + 4y_{13} + 5y_{14} + y_{16} + 2y_{17} + 3y_{18} + 4y_{19} + y_{21} + 2y_{22} \geq 6 \\ y_9 + y_{10} + y_{11} + y_{12} + y_{13} + y_{14} + 2y_{15} + 2y_{16} + 2y_{17} + 2y_{18} + 2y_{19} + 3y_{20} + 3y_{21} + 3y_{22} + 4y_{23} \geq 4 \\ x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} + x_{12} + x_{13} + x_{14} + x_{15} + x_{16} + x_{17} + x_{18} + x_{19} + x_{20} + x_{21} \geq 1 \\ y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9 + y_{10} + y_{11} + y_{12} + y_{13} + y_{14} + y_{15} + y_{16} + y_{17} + y_{18} + y_{19} + y_{20} + y_{21} \\ & + y_{22} + y_{23} \geq 1 \end{array}$ 

 $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}, x_{19}, x_{20}, , x_{21} \geq 0$ 

 $y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{7}, y_{8}, y_{9}, y_{10}, y_{11}, y_{12}, y_{13}, y_{14}, y_{15}, y_{16}, y_{17}, y_{18}, y_{19}, y_{20}, y_{21}, y_{22}, y_{23}, I_{11}, I_{12}, I_{21}, I_{22}, I_{31}, I_{32} \geq 0$ 

 $x_i$  is the number of the  $i^{th}$  pattern which cut based on the length, i = 1, 2, 3, ..., 21.

 $y_j$  is the number of the  $j^{th}$  pattern which cut based on the width, j = 1,2,3,...,23.

By using the LINDO 61, the optimal solution of Model (9) is Z = 12,  $x_1 = 9$ ,  $x_2 = 2$ ,  $x_5 = 1$ ,  $x_{19} = 1$ ,  $y_4 = 2$ ,  $y_{23} = 28$ . Based on the optimal solution obtained, we have some of the results, as shown below.

Z = 12 means that we must use 12 pieces of stocks with dimension 3,000 mm  $\times$  3,500 mm,

 $x_1 = 9$  means that it is possible to use the 1<sup>st</sup> cutting pattern nine times,

 $x_2 = 2$  means that we use the  $2^{nd}$  cutting pattern two times,  $x_5 = 1$  means that we use the  $5^{th}$  cutting pattern one time,  $x_{19} = 1$  means that we use the  $19^{th}$  cutting pattern one time, The value of  $x_1, x_2, x_5$ , and  $x_{19}$  means that the  $1^{st}$ ,  $2^{nd}$ ,  $5^{th}$  and  $19^{th}$  are cutting patterns based on the length in the first stage. Also the value of  $y_4$  and  $y_{23}$  means that the  $4^{th}$  and  $23^{rd}$  are cutting patterns based on the width.

 $y_4$  =2 means that the 4<sup>th</sup> cutting pattern is cut two times, and  $y_{23}$  = 28 means that the  $23^{rd}$  cutting pattern is cut 28 times based on the width. From the results, there are still many cutting patterns chosen. And if we use the optimal patterns, there will be many surplus for the first item. Compare to the research by [18], Model (9) in this research are still not useful enough in solving the problem with data in Table 1, because of the surplus items.

#### IV. CONCLUSIONS

Based on the results and discussion, the N-Sheet model can be used for single stock CSP where it can include the cost component of pattern set. The pattern set-up cost consists of the cost of the inventory per unit in each period, the cost of using each item and the cost of determining the pattern. These costs have been determined from the beginning of the cutting pattern. The optimal solution obtained shows that there is a great deal of surplus for the first item. The solution shows that the N-Sheet CSP Capacitated Multi-Period model is not useful enough in solving problems in the data of Table 1.

For further research, the Cutting Stock Problem model's more extensions are critically essential to improve than previous models. We suggest computational tests for further study.

#### ACKNOWLEDGMENT

This research is supported by Universitas Sriwijaya through Sains, Teknologi dan Seni (SATEKS) Research Grant Scheme, 2020.

#### REFERENCES

- [1] R. Macedo, C. Alves, and J. M. Valério de Carvalho, "Arc-flow model for the two-dimensional guillotine cutting stock problem," *Comput. Oper. Res.*, vol. 37, no. 6, pp. 991–1001, 2010, doi: 10.1016/j.cor.2009.08.005.
- [2] S. Octarina, M. Radiana, and P. B. J. Bangun, "Implementation of pattern generation algorithm in forming Gilmore and Gomory model for two dimensional cutting stock problem," in *IOP Conference Series: Materials Science and Engineering*, 2018, vol. 300, no. 1, doi: 10.1088/1757-899X/300/1/012021.
- [3] W. Rodrigo, "A Method for Two-Dimensional Cutting Stock Problem with Triangular Shape Items," *Br. J. Math. Comput. Sci.*, vol. 3, no. 4, pp. 750–771, 2013, doi: 10.9734/bjmcs/2013/5165.
- [4] C. Arbib, F. Marinelli, and P. Ventura, "One-dimensional cutting stock with a limited number of open stacks: Bounds and solutions from a new integer linear programming model," *Int. Trans. Oper. Res.*, vol. 23, no. 1–2, pp. 47–63, 2016, doi: 10.1111/itor.12134.
- [5] N. Ma, Y. Liu, Z. Zhou, and C. Chu, "Combined cutting stock and lot-sizing problem with pattern setup," *Comput. Oper. Res.*, vol. 95, pp. 44–55, 2018, doi: 10.1016/j.cor.2018.02.016.
- [6] Y. Cui, C. Zhong, and Y. Yao, "Pattern-set generation algorithm for the one-dimensional cutting stock problem with setup cost," Eur. J. Oper. Res., vol. 243,

- no. 2, pp. 540–546, 2015, doi: 10.1016/j.ejor.2014.12.015.
- [7] S. Octarina, M. Janna, E. S. Cahyono, P. B. J. Bangun, and L. Hanum, "The modified branch and bound algorithm and dotted board model for triangular shape items," in *Journal of Physics: Conference Series*, 2020, vol. 1480, no. 1, doi: 10.1088/1742-6596/1480/1/012065.
- [8] S. Octarina, V. Ananda, and E. Yuliza, "Gilmore and gomory model on two dimensional multiple stock size cutting stock problem," *J. Phys. Conf. Ser.*, vol. 1282, no. 1, 2019, doi: 10.1088/1742-6596/1282/1/012015.
- [9] T. Liu, Z. Luo, H. Qin, and A. Lim, "A branch-and-cut algorithm for the two-echelon capacitated vehicle routing problem with grouping constraints," Eur. J. Oper. Res., vol. 266, no. 2, pp. 487–497, 2018, doi: 10.1016/j.ejor.2017.10.017.
- [10] S. Octarina, D. G. Juita, N. Eliyati, and P. B. J. Bangun, "Set Covering Model in Solving Multiple Cutting Stock Problem," Sci. Technol. Indones., vol. 5, no. 4, p. 121, 2020, doi: 10.26554/sti.2020.5.4.121-130.
- [11] T. Y. Lin, S. M. Chen, and M. T. Yu, "Solving the cutting-stock problem by using the Sequential Quadratic Programming optimization method," *IEEE Int. Conf. Ind. Eng. Eng. Manag.*, vol. 2016-Decem, pp. 1699–1702, 2016, doi: 10.1109/IEEM.2016.7798167.
- [12] J. F. V. Julliany Sales Brandão1, Alessandra Martins Coelho, Felipe do Carmo, "Study of Different Setup Costs in SingleGA to Solve a One-Dimensional Cutting Stock Problem," GSTF J. Comput., vol. 2, no. 1, pp. 1–6, 2012, doi: 10.5176 2010-2283 2.1.118.
- [13] A. Tandabani, S. Janakiraman, and S. Pothula, "Cutting Stock Problem Original.Pdf."
- [14] N. Braga, C. Alves, R. Macedo, and J. V. De Carvalho, "Combined cutting stock and scheduling: A matheuristic approach," *Int. J. Innov. Comput. Appl.*, vol. 7, no. 3, pp. 135–146, 2016, doi: 10.1504/IJICA.2016.078724.
- [15] N. Rodrigo, "One-Dimensional Cutting Stock Problem with Cartesian Coordinate Points," *Int. J. Syst. Sci. Appl. Math.*, vol. 2, no. 5, p. 99, 2017, doi: 10.11648/j. iissam.20170205.14
- 10.11648/j.ijssam.20170205.14.

  [16] N. Ma, Y. Liu, and Z. Zhou, "Two heuristics for the capacitated multi-period cutting stock problem with pattern setup cost," Comput. Oper. Res., vol. 109, pp. 218–229, 2019, doi: 10.1016/j.cor.2019.05.013.
- [17] S. Octarina, P. B. J. Bangun, and S. Hutapea, "The Application to Find Cutting Patterns in Two Dimensional Cutting Stock Problem," pp. 1–5, 2017.
- [18] P. B. J. Bangun, S. Octarina, and A. P. Pertama, "Implementation of branch and cut method on nsheet model in solving two dimensional cutting stock problem," in *Journal of Physics: Conference Series*, 2019, vol. 1282, no. 1, doi: 10.1088/1742-6596/1282/1/012012.

# Some Numerical and Analytical Solutions to an Enzyme-Substrate Reaction-Diffusion Problem

# Sudi Mungkasi

Department of Mathematics, Faculty of Science and Technology,
Sanata Dharma University
Yogyakarta, Indonesia
sudi@usd.ac.id

Abstract-We consider an enzyme-substrate reactiondiffusion problem. Unsteady and steady state models are recalled. For the unsteady state case, the model is in the form of a second order partial differential equation. We solve the unsteady state model using the explicit numerical finite difference method, which is forward difference in time and centered difference in space. For the general steady state case, the model is in the form of a second order ordinary differential equation. We solve the general steady state model using the explicit first order Euler's numerical method. For the particular steady state case of the unsaturated catalytic kinetics. we derive the exact analytical solution using the characteristic method of ordinary differential equations. For the particular steady state case of the saturated catalytic kinetics, we derive the exact analytical solution using the direct-integration method. The obtained exact analytical solutions are identical with the existing exact analytical solutions derived using the variational iteration method. With the aid of computer, the enzyme-substrate reaction-diffusion problem can be solved and simulated successfully for both unsteady and steady state cases.

Index Terms—enzyme-substrate system, finite difference method, reaction-diffusion problem, saturated steady state, unsaturated steady state

#### I. INTRODUCTION

Chemical reaction problems may incorporate diffusion. This process is then called a reaction-diffusion problem. The reaction-diffusion process has been modelled into a mathematical equation. The derivation involves the so called Michaelis—Menten kinetics. The Michaelis—Menten kinetics itself has been widely recognised in chemistry for reaction problems [1, 2, 3, 4, 5, 6, 7].

A number of authors provide some studies of reactiondiffusion in chemical reaction problems. Lyons et al. [8, 9] derived a dimensionless model of the problem, where the system was a boundary value problem. The model of Lyons et al. [8, 9] was then studied by Rahamathunissa and Rajendran [10], where the system was changed to an initial value problem. Furthermore, Mahalakshmi and Hariharan [11] provide an approximation method for solving the initial value problem that was considered by Rahamathunissa and Rajendran [10]. The unsaturated and saturated steady state solutions to the initial value problem have been obtained by Rahamathunissa and Rajendran [10] using a variational iteration method. The variational iteration method was due to He [12, 13, 14] and it has been successfully used to solve various problems [15, 16, 17, 18, 19, 20, 21, 22, 23, 24] including the mathematical chemistry areas [25, 26, 27, 28, 29, 30].

In this paper, we provide an alternative method to solve unsaturated and saturated steady state problems. We implement the characteristic and direct-integration methods for ordinary differential equations in solving the unsaturated and saturated steady state problems. We also provide the unstability property of the equilibrium solution. In addition, finite difference methods for solving the unsteady and steady state problems are provided. Finite difference method has been shown to be powerful for solving various problems [31, 32, 33, 34, 35], which also include mathematical chemistry areas [36, 37, 38, 39, 40, 41, 42, 43, 44, 45].

This paper is simply organised as follows: we recall the mathematical models and provide their analytical properties; then, numerical finite difference methods are presented; afterwards, numerical results and discussion are provided; and finally, some concluding remarks are written.

# II. MATHEMATICAL MODELS AND THEIR PROPERTIES

Enzyme-substrate reaction-diffusion models have been derived by Lyons et al. [8]. In this section, we recall the models of unsteady and steady state cases.

#### A. Unsteady state model

We consider the following unsteady state dimensionless model

$$\frac{\partial u(x,t)}{\partial t} = \frac{\partial^2 u(x,t)}{\partial x^2} - \frac{\gamma u(x,t)}{1 + \alpha u(x,t)} \tag{1} \label{eq:1}$$

with initial condition

$$u(x,0) = 0, (2)$$

and boundary conditions

$$\frac{\partial u(0,t)}{\partial x} = 0, \qquad u(1,t) = 1. \tag{3}$$

Here the space domain is  $0 \le x \le 1$ , the time domain is  $t \ge 0$ , and u(x,t) represents the concentration of substrate at any position x at any time t. In addition, parameters  $\alpha$  and  $\gamma$  are positive constants relating to the reaction process (see [8, 9, 10, 11] for details).

#### B. Steady state model

For the steady state condition, time t does not influence the dynamics of the system. Therefore, the steady state model is the following ordinary differential equation

$$\frac{d^2u(x)}{dx^2} - \frac{\gamma u(x)}{1 + \alpha u(x)} = 0. \tag{4} \label{eq:4}$$

Let us consider the function

$$f(u) = -\frac{\gamma u}{1 + \alpha u}. ag{5}$$

This function f is zero if and only if u=0. This u=0 is the equilibrium solution. As

$$f'(u) = -\frac{\gamma}{(1+\alpha u)^2},\tag{6}$$

# The N-Sheet Model in Capacitated Multi-Period Cutting Stock Problem with Pattern Set-Up Cost

**ORIGINALITY REPORT** 

14% SIMILARITY INDEX

10%
INTERNET SOURCES

8%
PUBLICATIONS

**3**% STUDENT PAPERS

MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED)

< 1%



Internet Source

Exclude quotes

Off

Exclude bibliography C

Exclude matches

Off