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ABSTRACT 

Support Vector Machines (SVM) is one of machine learning 

methods that can be used to perform classification task. 

Many researchers using SVM library to accelerate their 

research development. Using such a library will save their 

time and avoid to write codes from scratch. LibSVM is one 

of SVM library that has been widely used by researchers to 

solve their problems. The library also integrated to WEKA, 

one of popular Data Mining tools. This article contain results 

of our work related to complexity analysis of Support Vector 

Machines. Our work has focus on SVM algorithm and its 

implementation in LibSVM. We also using two popular 

programming languages i.e C++ and Java with three different 

dataset  to test our analysis and experiment. The results of 

our research has proved that the complexity of SVM 

(LibSVM) is O(n3) and the time complexity shown that C++ 

faster than Java, both in training and testing, beside that the 

data growth will be affect and increase the time of 

computation.   

General Terms 
Machines Learning, Support Vector Machines, LibSVM, 

Complexity 

Keywords 

SVM, LibSVM, C++, Java, WEKA, Data Mining 

1. INTRODUCTION 

Support Vector Machines (SVM) proposed by Vapnik in  

early 1990s is used for computational tool for supervised 

learning which has advantages than other methods in various 

types of application [18]. In the classification task, SVM 

leading than other methods because SVM provides a global 

solution for data classification. SVM gives a unique global 

hyperplane to separate data points for different classes. SVM 

used Structural Risk Minimization (SRM) principle to reduce 

risk during training phase. SVM generally used for 

classification and regression [1][3][6][10][11][16]. At the 

first time, SVM only be used for binary classification, but 

now it can be used for multi-class [7][15][9]. SVM is widely 

used for classification in the areas such as disease detection, 

text categorization, software defect, intruder detection, time-

series forecasting, detection and others. 

LibSVM is a programming library to facilitate researchers to 

perform SVM classification, it is developed by [8]. Many 

researchers used LibSVM to cut off software development 

process so that they only focus on data rather than tools. 

LibSVM also integrated into WEKA as a default SVM 

module. WEKA is an application as a tool for testing and 

evaluation, where it contains many algorithms for data 

mining areas such as: preprocessing, classification, 

clusterization, association, selection and attributes 

visualization. It makes LibSVM should be considered as one 

of SVM library. Many researchers used it both as 

experiments and real applications. 

This paper contains LibSVM analysis using algorithm 

complexity (all routines in LibSVM) and it has tested using 

two popular programming languages i.e C++ and Java. 

Yields of experiment are expected to provide an information 

related to the complexity of the algorithm in LibSVM and 

knowing the running-time indicator of training and testing 

both for C++ and Java. Furthermore, this paper is organized 

as follows: Section 2 contains methodology are used in this 

experiment i.e data analysis, brief theory of SVM, LibSVM 

and the tools has been used. Section 3 contains analysis and 

experiment i.e finding main routines in LibSVM, compute 

the algorithms complexity and  implementing it using C++ 

and Java. Section 4 is discussion about results and Section 5 

is conclusion.  

2. METHODOLOGY 

2.1  Data Analysis 

Generally, data is formed as datasets with a particular format. 

The following is data format used in LibSVM: 

<label> <index1>:<value1> <index2>:<value2> ... 

Where <label> is binary-class (-1, 1) or multi-class. <index> 

is attribute represent integer numbers from 1 to n. <value> is 

the value of attribute represent real numbers. There are three 

datasets used in this experiment i.e: 

 LibSVM: heart_scale (binary-class, 270 records, 

13 attributes) 

 Hsu et al. [5]: train.3 (binary-class, 2.000 records, 

22 attributes) 

 WEKA: iris.train (multi-class, 150 records, 4 

attributes). 

WEKA using LibSVM to apply SVM algorithm, therefore 

we conducted an experiment to measure the accuracy of 

classification between (WEKA + LibSVM) versus (CPP + 

LibSVM) and (Java + LibSVM) using iris.train dataset, the 

result is same. The experiments show that LibSVM give 

consistent result even with different media. LibSVM also 

good in compatibility because it is use standar programming 

library. 

2.2  Support Vector Machines 

Support Vector Machines (SVM) is one of machine learning 

algorithms using supervised learning models for pattern 

recognition. SVM is often used for classification and 

regression analysis. [17] showed that SVM classification is 

quite good with accuracy above 80.0%. e.g, given a training 

set, 

(X i
,Y

i),i= 1,. .. ,n,
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where,  
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given to sample. The SVM task is to find a linear 

discriminant function 
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solutions for these problems must satisfy the following 

equation: 

y
i(w
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i
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0)≥ 1 i=1,. .. ,n (1)
 

optimal linear function can be obtained by minimizing the 

following quadratic programming problems [13]: 

min
1
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which will produce the following solutions: 
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n
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i
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i
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where,
{α,i=1,.. ,n;α≥ 0}

is Lagrange multipliers. 

to make data separated linearly, feature space mapped into a 

high dimensional space. The technique used to perform 

mapping function is called Kernel. The kernel is a function: 

k : χ× χ→ℝ
 

which took two samples from input space and mapped into a 

real number that indicates the level of similarity. For all, 

x
i
,x

j
∈ χ,

 

then the Kernel function must satisfy: 

k (xi
,x

j)= ⟨∅ (x i),∅ (x j)⟩ (4)
 

where
∅

is an explicit mapping from input space
χ

to 

features of dot product of space
Η

[4].  To applied the 

Kernel into SVM, generally, the equation (2) were solved by 

the following equation: 
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where
x

i
⋅ x

j is inner product of the two samples is implicit 

kernel in the equation similarity measure between
x

i and

x
j inner product can be replaced with another kernel 

function so that the equation (5) will be as the following 

equation: 

max∑
i= 1

n

α
i
−

1

2
∑
i=1

n

∑
j= 1

n

α
i
α

j
y

i
y

j
k(x i

,x
j) (6)

 

There are four basic types of kernels: linear, polynomial, 

radial basis function and sigmoid. SVM can be used for 

multi-class, which is using a strategy of one-against-one [14] 

which has been tested by [5] and the results are quite good. 

2.3  LibSVM 

LibSVM is a programming library for SVM algorithm was 

developed by [8], it is used researcher for classification and 

regression task. LibSVM also integrated into WEKA that 

contains a collection of machine learning algorithms for Data 

Mining. Existing algorithms in Weka can be used directly or 

invoked using Java library. LibSVM has been used for 

various areas starting from 2000 to 2010, more than 250,000 

have download it and 10,000 emails from users who asked 

related to the library [2]. LibSVM support three functions i.e 

1) SVC (Support Vector Classification - binary-class and 

multi-class), which can be used for classifications task; 2) 

SVR (Support Vector Regression), is used for regressions 

task; and 3) One-Class SVM, which is used for distribution 

estimation. This paper will only discuss LibSVM for 

classification because the concept of its libraries are the same 

for all functions. 

In Figure 1, we can see the library organization in LibSVM 

for training process. svm_train is a main routine used to 

perform SVM training. svm_train_one which underneath is a 

routine to select one of three functions LibSVM (SVC, SVR 

and one-class SVM). Under svm_train_one there are various 

types of SVM functions it can be used depends on the choice 

of svm_train_one. These options produced a solving model 

for the data that has been trained earlier. 

 

Figure 1. Library organization  in LibSVM 

Classification Accuracy 

After training and testing phase, the accuracy is measured 

using the following equation: 

Accuracy=
# correctly predicted data

# total testing data
x100(7)

Short Example of LibSVM 

LibSVM's technical tutorial can be read at README file 

and a paper written by [8]. This example is taken from [2], 

they used default LibSVM dataset (heart_scale) that contain 

270 records is divided into 170 records for training 

(heart_scale.tr) and 100 records for testing (heart_scale.te). 

There are two executable files i.e svm_train to conduct 

training and svm_predict to classify. In Figure 2 and 3 shows 

the results of the execution of each applications. 
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$ ./svm_train heart_scale.tr 

*** 

optimization finished, #iter = 87 

nu = 0.471645 

obj = -67, 299458, rho = 0.203495 

nSV = 88, nBSV = 72 

Total nSV = 88 

Figure 2. Result of svm_train 

Figure 2. Result of svm_train 

svm_train automatically created heart_scale.tr.model file. 

The file will used as input by svm_predict. 

$./svm_predict heart_scale.tr heart_scale.tr.model output 

Accuracy = 83% (83/100) (classification) 

Figure 3. Result of svm_predict 

Figure 3. Result of svm_predict 

LibSVM Code Organization 

All of SVM's (LibSVM) algorithm for training and testing 

implemented by svm file (svm.cpp/svm.java). Both of 

svm_train and svm_predict that has discussed earlier is an 

example of user interface application. These application will 

call methods in svm file to perform classification task. 

Therefore, this paper will discuss the complexity of codes in 

the svm file. 

2.4 Experimental Tools 

In this experiment we used two of LibSVM's libraries i.e 

C++ and Java. Both libraries were tested using a computer 

with the following specifications: Intel (R) Core (TM) i5-

3230M - 2.60 GHz (4 CPU), RAM - 4 GiB, LINUX 

operating system with Linux Mint KDE distro (Ubuntu Core 

- 14:04 LTS - 32 bit), NetBeans 8.0.2, 1.8.0 JDK for Java 

IDE and Code :: Block 13:12, GNU GCC compiler for C++. 

3. ANALYSIS AND EXPERIMENTS 

This section will discuss about analysis and experiments are 

conducted on LibSVM. Analysis was done by tracking codes 

of LibSVM's libraries, which are implemented in three files: 

svm_train, svm_predict and svm. Next is finding main 

routines and calculated its complexity using Big-O notation. 

Lastly is run the LibSVM application using C ++ and Java to 

see the results of running time. 

3.1 Finding LibSVM's Routines 

The experiments is conducted using default parameter and 

the type of problem is classification. Based on search of 

results, there are routines that are ignored, because it is not 

suitable for default parameter. This paper only examines 

some routines are used in the file svm_train, svm_predict and 

svm (as method not file). There are ten methods are analyzed 

and has computed its complexity. In general, relationship of 

the third of files can be seen in Figure 4.  

 

 

 

 

 

Figure 4. Relationship the third of files 

In Figure 4, svm_train and svm_predict will call svm which 

contains routines of SVM algorithm. svm_train produce a 

model that will be the input for svm_predict. In svm_train 

there are several routines are analyzed and has computed i.e: 

 parse_command_line 

 read_problem, svm_train (call) 

 svm_check_parameter (call) 

 svm_save_model (call) 

In svm_predict i.e: 

 svm_load_model (call) 

 svm_predict (call) 

 Predict 

 svm_check_probability_model (call) 

 svm_predict_ probability (call) 

 

Figure 5. Hierarchy of methods in LibSVM 

svm routines called by svm_train and svm_training and both 

marked with the symbol 'call in parentheses' and 'down 

arrow' (see Figure 5). In Figure 5, it can be seen the 

hierarchy of routines, e.g the main code of svm_train can be 

seen in Figure 6. 

int main(int argc, char **argv) { 

  char input_file_name[1024]; 

  char model_file_name[1024]; 

  const char *error_msg; 

 

  parse_command_line(argc, argv, input_file_name,      

  model_file_name); 
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  read_problem(input_file_name); 

  error_msg = svm_check_parameter(&prob,&param); 

 

  if(error_msg) { 

    fprintf(stderr,"ERROR: %s\n",error_msg); 

    exit(1); 

  } 

  if(cross_validation) 

    do_cross_validation(); 

  else { 

    model = svm_train(&prob,&param); 

    if(svm_save_model(model_file_name,model)) { 

      fprintf(stderr, "can't save model to file %s\n",  

      model_file_name); 

      exit(1); 

    } 

  svm_free_and_destroy_model(&model); 

  } 

  svm_destroy_param(&param); 

  free(prob.y); free(prob.x); 

  free(x_space); free(line); 

  return 0; 

} 

Figure 6. svm_train main code 

In Figure 6 can be seen that the routines were analyzed (in 

bold) and are not analyzed (crossed out). do_cross_validation 

routine is one example of a routine is not analyzed, because 

cross_validation variable contains the 0 (false) which is 

default value. Figure 7 shows the default parameters in the 

file svm_train. 

// default values 

 param.svm_type = C_SVC; 

 param.kernel_type = RBF; 

 param.degree = 3; 

 param.gamma = 0; // 1/num_features 

 param.coef0 = 0; 

 param.nu = 0.5; 

 param.cache_size = 100; 

 param.C = 1; 

 param.eps = 1e-3; 

 param.p = 0.1; 

 param.shrinking = 1; 

 param.probability = 0; 

 param.nr_weight = 0; 

 param.weight_label = NULL; 

 param.weight = NULL; 

 cross_validation = 0; 

Figure 7. Default parameters of LibSVM 

3.2 Algorithm Complexity 
The complexity of an algorithm generally calculated using 

Big-O notation. Complexity can be divided into two kinds of 

complexity i.e: 1) time complexity, deal with how long the 

algorithm is executed, and 2) space complexity, deal with 

how much memory is used by it's algorithm. In this paper we 

only discussed time complexity. An algorithm will process 

amounts of data, where N is a symbol of amounts of data. If 

an algorithm does not depend on N then the algorithm has 

constant complexity or symbolized by O(1) (Big-O one). On 

the contrary, if the algorithm is dependent on N, the 

complexity depends on line code in algorithm and it is can be 

O(n), O(n2), O(log n) and others. 

To explain the calculation of Big-O that has used in this 

article, we will give an example to compute  complexity of 

svm_check_parameter. The code snippets can be seen in 

Figure 8. 

 for(i=0;i<nr_class;i++) { 

   int n1 = count[i]; 

   for(int j=i+1;j<nr_class;j++) { 

     int n2 = count[j]; 

     if(param->nu*(n1+n2)/2 > min(n1,n2)) { 

       free(label); 

       free(count); 

       return "specified nu is infeasible"; 

     } 

   } 

 }  

 for(i=0;i<nr_class;i++) { 

   ... 

   for(int j=i+1;j<nr_class;j++) { 

     ... 

   } 

 } 

Figure 8. Code snippets of svm_check_parameter 

Figure 8 is divided in two parts i.e top and bottom. The upper 

part contains a complete code snippet and the lower part 

contains an incomplete piece of code that simply take the 

code for nesting. The code will be considered as constant or 

the complexity is O(1) if it's not loop. Contrary, the 

complexity affected by lower bound, upper bound and total 

number of loop iteration (N). Next is to assign nr_class with 

5 then find the total of interation on the existing code in 

Figure 8 (bottom), Tabel 1 shown the simulation of 

iterations. 

Table 1. Loop Simulation 

i j Numbers of Iteration 

0 1, 2, 3, 4 4 times 

1 1, 2, 3 3 times 

2 1, 2 2 times 

3 1 1 time 

4 0 - 

Total of Iteration 10 times 

rom these simulations we made equation based on analytic 

experiment for number of N data, which is formulated as 

follows: 
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∑
i= 0

n− 1

(n− 1)− i (8)

 

where N (nr_class) is the numbers of data and i is the counter 

variable. To search the complexity, equation (8) must be first 

converted into form of equation using sigma equation, the 

equation broken down to be: 

∑
i= 0

n− 1

(n− 1)− i=∑
i=0

n− 1

(n− 1)− ∑
i=0

n− 1

i (9)

 

equation (9) can be parsed becomes, 

(n– 1)2 –½ (n–1)((n– 1)–1)  

(n– 1)
2
–½(n–1)(n– 2)  

(n2– 2n+1)− (½(n2– 3 n+2))  

(2 n
2
– 4 n+2)− (n2

– 3n+ 2)
2  

n
2
− n

2
. .. (9)

 

Equation (9) is a formula to find total number of iteration 

from numbers of data (N). Based on equation (9), the 

complexity of code snippet in Figure 8 is: O (n2/2) or O (n2). 

Complexity sought to take a significant variable, so in this 

case n2 is more significant than the n.  Complexity for 

svm_train, svm_predict and svm can be seen in Figures 9, 10 

and 11. Tabel 2 shows total of complexity for all methods in 

SVM. 

 

Figure 9. svm_train complexity 

 

 

Figure 10. svm_predict complexity 

 

Figure 11. svm complexity 

Table 2. Total Of Complexity 

Num. Methods Complexity (Big-O) 

1 parse_command_line O(1)+O(n) 

2 read_problem O(1)+2*O(m*n) 

3 svm_predict (main) dan 

predict 
O(1)+O(n)+O(n*m) 

4 svm_check_parameter O(1)+O(m*n)+O(n2) 

5 svm_train O(1)+9*O(n)+2*O(m*n)+

6*O(n2*m) 

6 svm_save_model O(1)+5*O(n)+2*O(m*n) 

7 svm_load_model O(1)+2*O(n)+2*O(m*n) 

8 svm_check_probability_mo

del 
O(1) 

9 svm_predict_probability O(1)+3*O(n)+O(n2) 

10 svm_predict O(1)+4*O(n)+2*O(n3) 

Table 2 shows some methods in LibSVM where svm_predict 

provide the highest complexity is O(n3). Actually, svm_train 

also have the same complexity with svm_predict, but in this 

case we limit our computation only to main routine without 

any further search the sub-routine, and then some routine in 

svm_train considered as O(1). Our analysis shows that SVM 

algorithm requires three loops in nested loop so that the 

complexity of SVM is O(n3). This analysis in accordance to 

the standards of SVM complexity [12]. 

3.3  LibSVM Implementation 

LibSVM implemented using two programming languages are 

C ++ and Java. The reason for choosing these languages are 

subjective based on general knowledge and opinion that both 

languages are quite widely used among researchers. This 

implementation merely shows LibSVM performance against 

tested datasets to see how much time it took to perform the 

classification (running time). The time is recorded from the 

beginning execution until the end using TIME aplication 

(default application on Linux), this technique referring to 

[5].Tables 3 and 4 is results of implementation using C++ 

and Java with three sample dataset. Experiments were 

conducted to look for running-time of training and testing. In 
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this experiment, we used training data for data test. Tables 5 

and 6 give results of running-time for train.3 dataset which is 

divided into five subsets i.e: 400 records, 800 records, 1200 

records, 1600 records and 2000 records. 

Table 3. Running Time In C++ 

Datasets Training Time 

(sec.) 
Testing Time 

(Sec.) 

heart_scale 0.018 0.013 

train.3 0.752 0.598 

iris.train 0.007 0.005 

 

Table 4. Running Time In Java 

Datasets Training Time (sec.) Testing Time (Sec.) 

heart_scale 0.145 0.122 

train.3 1.557 1.185 

iris.train 0.112 0.102 

 

Table 5. Running Time Of Train.3 Using C++ 

Datasets Training Time (sec.) Testing Time (Sec.) 

train.3 (400) 0.047 0.041 

train.3 (800) 0.145 0.117 

train.3 (1200) 0.392 0.301 

train.3 (1600) 0.535 0.435 

train.3 (2000) 0.752 0.598 
 

Table 6. Running Time Of Train.3 Using Java 

Datasets Training Time (sec.) Testing Time (Sec.) 

train.3 (400) 0.255 0.182 

train.3 (800) 0.428 0.339 

train.3 (1200) 0.657 0.485 

train.3 (1600) 0.928 0.689 

train.3 (2000) 1.557 1.185 

 

Figure 12. Running-time graphics using C++ 

 

Figure 13. Running-time graphics using Java 

Figures 12 and 13 shows running-time graph for C++ and 

Java with train.3 datasets that are divided into five subsets. 

Based on the chart it can be concluded that the running-time 

of C++ is faster than Java, both for training and testing. In 

the graph also can be seen that the data growth will affects 

the running-time, if there are more data then it need more 

time. 

4. DISCUSSION 

The experiments for LibSVM complexity have been done 

and the results has been obtained, but the calculation is not 

involve all the existing routine. Experiments in LibSVM 

restricted to default parameters such mentioned previously. 

There are several LibSVM functions were not counted 

because by default the functions is not executed. 

Furthermore, the implementation of LibSVM done by re-

compile the original library. Experiments showed that 

LibSVM portability is very good so that it is not difficult to 

re-implemented. Problems arise when we have different 

results if we run more than once, but the difference is not 

significance.  In order to obtain an average time we run more 

than once and use three digits behind comma to get high-

precision. 

There are two scenarios of experiment that aimed to see how 

the results of running-time. The first scenario uses three 

datasets are: heart scale, train.3 and iris.train, where the 

results of the experiment showed that the C++ is faster than 

Java because it C++ is native. Testing's time is smaller than 

training's time and a large data will increasing computation 

time. In second scenario, experiments focus on the data 

train.3 were divided into five subsets, it is aims to look at the 

effect of running-time where the data is growing up to be 

bigger.  

5. CONCLUSION 

Support Vector Machines is one of machines learning using 

supervised learning as knowledge training. In the 

classification task, SVM is more favored than the other 

methods because SVM provides a global solution for data 

classification. To facilitate researchers using SVM algorithm, 

Lin et al. develop LibSVM that has been widely used by 

researchers and has been integrated into WEKA. This paper 

contains analysis of LibSVM by doing such experiments: 

compute the complexity of algorithm and implementing 

using two programming language C ++ and Java. 

Experimental has obtained results that the running-time using 

C ++ is faster than Java because C++ is native. The results 

also showed that the running-time for training and testing 

with dataset train.3 is rise quadratic. Broadly speaking, the 

experimental results may indicate that the running-time of 

testing is smaller than training. 
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