
International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.3, October 2015

28

Time Complexity Analysis of Support Vector Machines

(SVM) in LibSVM

Abdiansah Abdiansah

Intelligent System Laboratory
Comp. Science Department

Sriwijaya University

Retantyo Wardoyo

Intelligent System Laboratory
Comp. Science & Electronic Dept.

Gadjah Mada University

ABSTRACT

Support Vector Machines (SVM) is one of machine learning

methods that can be used to perform classification task.

Many researchers using SVM library to accelerate their

research development. Using such a library will save their

time and avoid to write codes from scratch. LibSVM is one

of SVM library that has been widely used by researchers to

solve their problems. The library also integrated to WEKA,

one of popular Data Mining tools. This article contain results

of our work related to complexity analysis of Support Vector

Machines. Our work has focus on SVM algorithm and its

implementation in LibSVM. We also using two popular

programming languages i.e C++ and Java with three different

dataset to test our analysis and experiment. The results of

our research has proved that the complexity of SVM

(LibSVM) is O(n3) and the time complexity shown that C++

faster than Java, both in training and testing, beside that the

data growth will be affect and increase the time of

computation.

General Terms
Machines Learning, Support Vector Machines, LibSVM,

Complexity

Keywords

SVM, LibSVM, C++, Java, WEKA, Data Mining

1. INTRODUCTION

Support Vector Machines (SVM) proposed by Vapnik in

early 1990s is used for computational tool for supervised

learning which has advantages than other methods in various

types of application [18]. In the classification task, SVM

leading than other methods because SVM provides a global

solution for data classification. SVM gives a unique global

hyperplane to separate data points for different classes. SVM

used Structural Risk Minimization (SRM) principle to reduce

risk during training phase. SVM generally used for

classification and regression [1][3][6][10][11][16]. At the

first time, SVM only be used for binary classification, but

now it can be used for multi-class [7][15][9]. SVM is widely

used for classification in the areas such as disease detection,

text categorization, software defect, intruder detection, time-

series forecasting, detection and others.

LibSVM is a programming library to facilitate researchers to

perform SVM classification, it is developed by [8]. Many

researchers used LibSVM to cut off software development

process so that they only focus on data rather than tools.

LibSVM also integrated into WEKA as a default SVM

module. WEKA is an application as a tool for testing and

evaluation, where it contains many algorithms for data

mining areas such as: preprocessing, classification,

clusterization, association, selection and attributes

visualization. It makes LibSVM should be considered as one

of SVM library. Many researchers used it both as

experiments and real applications.

This paper contains LibSVM analysis using algorithm

complexity (all routines in LibSVM) and it has tested using

two popular programming languages i.e C++ and Java.

Yields of experiment are expected to provide an information

related to the complexity of the algorithm in LibSVM and

knowing the running-time indicator of training and testing

both for C++ and Java. Furthermore, this paper is organized

as follows: Section 2 contains methodology are used in this

experiment i.e data analysis, brief theory of SVM, LibSVM

and the tools has been used. Section 3 contains analysis and

experiment i.e finding main routines in LibSVM, compute

the algorithms complexity and implementing it using C++

and Java. Section 4 is discussion about results and Section 5

is conclusion.

2. METHODOLOGY

2.1 Data Analysis

Generally, data is formed as datasets with a particular format.

The following is data format used in LibSVM:

<label> <index1>:<value1> <index2>:<value2> ...

Where <label> is binary-class (-1, 1) or multi-class. <index>

is attribute represent integer numbers from 1 to n. <value> is

the value of attribute represent real numbers. There are three

datasets used in this experiment i.e:

 LibSVM: heart_scale (binary-class, 270 records,

13 attributes)

 Hsu et al. [5]: train.3 (binary-class, 2.000 records,

22 attributes)

 WEKA: iris.train (multi-class, 150 records, 4

attributes).

WEKA using LibSVM to apply SVM algorithm, therefore

we conducted an experiment to measure the accuracy of

classification between (WEKA + LibSVM) versus (CPP +

LibSVM) and (Java + LibSVM) using iris.train dataset, the

result is same. The experiments show that LibSVM give

consistent result even with different media. LibSVM also

good in compatibility because it is use standar programming

library.

2.2 Support Vector Machines

Support Vector Machines (SVM) is one of machine learning

algorithms using supervised learning models for pattern

recognition. SVM is often used for classification and

regression analysis. [17] showed that SVM classification is

quite good with accuracy above 80.0%. e.g, given a training

set,

(X i
,Y

i),i= 1,. .. ,n,

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.3, October 2015

29

where,

X
i
= (x i

, . .. ,x
id)

is a sample of d-dimension and
y

i
∈{1,− 1}

is a label

given to sample. The SVM task is to find a linear

discriminant function
g (x)=w

T
X+w

0 so that,

w

T
x

i
+w

0
≥ +1

for
y

i
=+1

w

T
xi +w0≤ − 1

for
y

i
=−1

solutions for these problems must satisfy the following

equation:

y
i(w

T x
i
+w

0)≥ 1 i=1,. .. ,n (1)

optimal linear function can be obtained by minimizing the

following quadratic programming problems [13]:

min
1

2
wT w−∑

i= 1

n

α(y1(w
T x

i
+w

0)− 1) (2)

which will produce the following solutions:

w=∑
i= 1

n

α y
i
x

i
(3)

where,
{α,i=1,.. ,n;α≥ 0}

is Lagrange multipliers.

to make data separated linearly, feature space mapped into a

high dimensional space. The technique used to perform

mapping function is called Kernel. The kernel is a function:

k : χ× χ→ℝ

which took two samples from input space and mapped into a

real number that indicates the level of similarity. For all,

x
i
,x

j
∈ χ,

then the Kernel function must satisfy:

k (xi
,x

j)= ⟨∅ (x i),∅ (x j)⟩ (4)

where
∅

is an explicit mapping from input space
χ

to

features of dot product of space
Η

[4]. To applied the

Kernel into SVM, generally, the equation (2) were solved by

the following equation:

max∑
i= 1

n

α
i
−

1

2
∑
i=1

n

∑
j= 1

n

α
i
α

j
y

i
y

j
x

i
⋅ x

j
(5)

where
x

i
⋅ x

j is inner product of the two samples is implicit

kernel in the equation similarity measure between
x

i and

x
j inner product can be replaced with another kernel

function so that the equation (5) will be as the following

equation:

max∑
i= 1

n

α
i
−

1

2
∑
i=1

n

∑
j= 1

n

α
i
α

j
y

i
y

j
k(x i

,x
j) (6)

There are four basic types of kernels: linear, polynomial,

radial basis function and sigmoid. SVM can be used for

multi-class, which is using a strategy of one-against-one [14]

which has been tested by [5] and the results are quite good.

2.3 LibSVM

LibSVM is a programming library for SVM algorithm was

developed by [8], it is used researcher for classification and

regression task. LibSVM also integrated into WEKA that

contains a collection of machine learning algorithms for Data

Mining. Existing algorithms in Weka can be used directly or

invoked using Java library. LibSVM has been used for

various areas starting from 2000 to 2010, more than 250,000

have download it and 10,000 emails from users who asked

related to the library [2]. LibSVM support three functions i.e

1) SVC (Support Vector Classification - binary-class and

multi-class), which can be used for classifications task; 2)

SVR (Support Vector Regression), is used for regressions

task; and 3) One-Class SVM, which is used for distribution

estimation. This paper will only discuss LibSVM for

classification because the concept of its libraries are the same

for all functions.

In Figure 1, we can see the library organization in LibSVM

for training process. svm_train is a main routine used to

perform SVM training. svm_train_one which underneath is a

routine to select one of three functions LibSVM (SVC, SVR

and one-class SVM). Under svm_train_one there are various

types of SVM functions it can be used depends on the choice

of svm_train_one. These options produced a solving model

for the data that has been trained earlier.

Figure 1. Library organization in LibSVM

Classification Accuracy

After training and testing phase, the accuracy is measured

using the following equation:

Accuracy=
correctly predicted data

total testing data
x100(7)

Short Example of LibSVM

LibSVM's technical tutorial can be read at README file

and a paper written by [8]. This example is taken from [2],

they used default LibSVM dataset (heart_scale) that contain

270 records is divided into 170 records for training

(heart_scale.tr) and 100 records for testing (heart_scale.te).

There are two executable files i.e svm_train to conduct

training and svm_predict to classify. In Figure 2 and 3 shows

the results of the execution of each applications.

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.3, October 2015

30

$./svm_train heart_scale.tr

optimization finished, #iter = 87

nu = 0.471645

obj = -67, 299458, rho = 0.203495

nSV = 88, nBSV = 72

Total nSV = 88

Figure 2. Result of svm_train

Figure 2. Result of svm_train

svm_train automatically created heart_scale.tr.model file.

The file will used as input by svm_predict.

$./svm_predict heart_scale.tr heart_scale.tr.model output

Accuracy = 83% (83/100) (classification)

Figure 3. Result of svm_predict

Figure 3. Result of svm_predict

LibSVM Code Organization

All of SVM's (LibSVM) algorithm for training and testing

implemented by svm file (svm.cpp/svm.java). Both of

svm_train and svm_predict that has discussed earlier is an

example of user interface application. These application will

call methods in svm file to perform classification task.

Therefore, this paper will discuss the complexity of codes in

the svm file.

2.4 Experimental Tools

In this experiment we used two of LibSVM's libraries i.e

C++ and Java. Both libraries were tested using a computer

with the following specifications: Intel (R) Core (TM) i5-

3230M - 2.60 GHz (4 CPU), RAM - 4 GiB, LINUX

operating system with Linux Mint KDE distro (Ubuntu Core

- 14:04 LTS - 32 bit), NetBeans 8.0.2, 1.8.0 JDK for Java

IDE and Code :: Block 13:12, GNU GCC compiler for C++.

3. ANALYSIS AND EXPERIMENTS

This section will discuss about analysis and experiments are

conducted on LibSVM. Analysis was done by tracking codes

of LibSVM's libraries, which are implemented in three files:

svm_train, svm_predict and svm. Next is finding main

routines and calculated its complexity using Big-O notation.

Lastly is run the LibSVM application using C ++ and Java to

see the results of running time.

3.1 Finding LibSVM's Routines

The experiments is conducted using default parameter and

the type of problem is classification. Based on search of

results, there are routines that are ignored, because it is not

suitable for default parameter. This paper only examines

some routines are used in the file svm_train, svm_predict and

svm (as method not file). There are ten methods are analyzed

and has computed its complexity. In general, relationship of

the third of files can be seen in Figure 4.

Figure 4. Relationship the third of files

In Figure 4, svm_train and svm_predict will call svm which

contains routines of SVM algorithm. svm_train produce a

model that will be the input for svm_predict. In svm_train

there are several routines are analyzed and has computed i.e:

 parse_command_line

 read_problem, svm_train (call)

 svm_check_parameter (call)

 svm_save_model (call)

In svm_predict i.e:

 svm_load_model (call)

 svm_predict (call)

 Predict

 svm_check_probability_model (call)

 svm_predict_ probability (call)

Figure 5. Hierarchy of methods in LibSVM

svm routines called by svm_train and svm_training and both

marked with the symbol 'call in parentheses' and 'down

arrow' (see Figure 5). In Figure 5, it can be seen the

hierarchy of routines, e.g the main code of svm_train can be

seen in Figure 6.

int main(int argc, char **argv) {

 char input_file_name[1024];

 char model_file_name[1024];

 const char *error_msg;

 parse_command_line(argc, argv, input_file_name,

 model_file_name);

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.3, October 2015

31

 read_problem(input_file_name);

 error_msg = svm_check_parameter(&prob,¶m);

 if(error_msg) {

 fprintf(stderr,"ERROR: %s\n",error_msg);

 exit(1);

 }

 if(cross_validation)

 do_cross_validation();

 else {

 model = svm_train(&prob,¶m);

 if(svm_save_model(model_file_name,model)) {

 fprintf(stderr, "can't save model to file %s\n",

 model_file_name);

 exit(1);

 }

 svm_free_and_destroy_model(&model);

 }

 svm_destroy_param(¶m);

 free(prob.y); free(prob.x);

 free(x_space); free(line);

 return 0;

}

Figure 6. svm_train main code

In Figure 6 can be seen that the routines were analyzed (in

bold) and are not analyzed (crossed out). do_cross_validation

routine is one example of a routine is not analyzed, because

cross_validation variable contains the 0 (false) which is

default value. Figure 7 shows the default parameters in the

file svm_train.

// default values

 param.svm_type = C_SVC;

 param.kernel_type = RBF;

 param.degree = 3;

 param.gamma = 0; // 1/num_features

 param.coef0 = 0;

 param.nu = 0.5;

 param.cache_size = 100;

 param.C = 1;

 param.eps = 1e-3;

 param.p = 0.1;

 param.shrinking = 1;

 param.probability = 0;

 param.nr_weight = 0;

 param.weight_label = NULL;

 param.weight = NULL;

 cross_validation = 0;

Figure 7. Default parameters of LibSVM

3.2 Algorithm Complexity
The complexity of an algorithm generally calculated using

Big-O notation. Complexity can be divided into two kinds of

complexity i.e: 1) time complexity, deal with how long the

algorithm is executed, and 2) space complexity, deal with

how much memory is used by it's algorithm. In this paper we

only discussed time complexity. An algorithm will process

amounts of data, where N is a symbol of amounts of data. If

an algorithm does not depend on N then the algorithm has

constant complexity or symbolized by O(1) (Big-O one). On

the contrary, if the algorithm is dependent on N, the

complexity depends on line code in algorithm and it is can be

O(n), O(n2), O(log n) and others.

To explain the calculation of Big-O that has used in this

article, we will give an example to compute complexity of

svm_check_parameter. The code snippets can be seen in

Figure 8.

 for(i=0;i<nr_class;i++) {

 int n1 = count[i];

 for(int j=i+1;j<nr_class;j++) {

 int n2 = count[j];

 if(param->nu*(n1+n2)/2 > min(n1,n2)) {

 free(label);

 free(count);

 return "specified nu is infeasible";

 }

 }

 }

 for(i=0;i<nr_class;i++) {

 ...

 for(int j=i+1;j<nr_class;j++) {

 ...

 }

 }

Figure 8. Code snippets of svm_check_parameter

Figure 8 is divided in two parts i.e top and bottom. The upper

part contains a complete code snippet and the lower part

contains an incomplete piece of code that simply take the

code for nesting. The code will be considered as constant or

the complexity is O(1) if it's not loop. Contrary, the

complexity affected by lower bound, upper bound and total

number of loop iteration (N). Next is to assign nr_class with

5 then find the total of interation on the existing code in

Figure 8 (bottom), Tabel 1 shown the simulation of

iterations.

Table 1. Loop Simulation

i j Numbers of Iteration

0 1, 2, 3, 4 4 times

1 1, 2, 3 3 times

2 1, 2 2 times

3 1 1 time

4 0 -

Total of Iteration 10 times

rom these simulations we made equation based on analytic

experiment for number of N data, which is formulated as

follows:

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.3, October 2015

32

∑
i= 0

n− 1

(n− 1)− i (8)

where N (nr_class) is the numbers of data and i is the counter

variable. To search the complexity, equation (8) must be first

converted into form of equation using sigma equation, the

equation broken down to be:

∑
i= 0

n− 1

(n− 1)− i=∑
i=0

n− 1

(n− 1)− ∑
i=0

n− 1

i (9)

equation (9) can be parsed becomes,

(n– 1)2 –½ (n–1)((n– 1)–1)

(n– 1)
2
–½(n–1)(n– 2)

(n2– 2n+1)− (½(n2– 3 n+2))

(2 n
2
– 4 n+2)− (n2

– 3n+ 2)
2

n
2
− n

2
. .. (9)

Equation (9) is a formula to find total number of iteration

from numbers of data (N). Based on equation (9), the

complexity of code snippet in Figure 8 is: O (n2/2) or O (n2).

Complexity sought to take a significant variable, so in this

case n2 is more significant than the n. Complexity for

svm_train, svm_predict and svm can be seen in Figures 9, 10

and 11. Tabel 2 shows total of complexity for all methods in

SVM.

Figure 9. svm_train complexity

Figure 10. svm_predict complexity

Figure 11. svm complexity

Table 2. Total Of Complexity

Num. Methods Complexity (Big-O)

1 parse_command_line O(1)+O(n)

2 read_problem O(1)+2*O(m*n)

3 svm_predict (main) dan

predict
O(1)+O(n)+O(n*m)

4 svm_check_parameter O(1)+O(m*n)+O(n2)

5 svm_train O(1)+9*O(n)+2*O(m*n)+

6*O(n2*m)

6 svm_save_model O(1)+5*O(n)+2*O(m*n)

7 svm_load_model O(1)+2*O(n)+2*O(m*n)

8 svm_check_probability_mo

del
O(1)

9 svm_predict_probability O(1)+3*O(n)+O(n2)

10 svm_predict O(1)+4*O(n)+2*O(n3)

Table 2 shows some methods in LibSVM where svm_predict

provide the highest complexity is O(n3). Actually, svm_train

also have the same complexity with svm_predict, but in this

case we limit our computation only to main routine without

any further search the sub-routine, and then some routine in

svm_train considered as O(1). Our analysis shows that SVM

algorithm requires three loops in nested loop so that the

complexity of SVM is O(n3). This analysis in accordance to

the standards of SVM complexity [12].

3.3 LibSVM Implementation

LibSVM implemented using two programming languages are

C ++ and Java. The reason for choosing these languages are

subjective based on general knowledge and opinion that both

languages are quite widely used among researchers. This

implementation merely shows LibSVM performance against

tested datasets to see how much time it took to perform the

classification (running time). The time is recorded from the

beginning execution until the end using TIME aplication

(default application on Linux), this technique referring to

[5].Tables 3 and 4 is results of implementation using C++

and Java with three sample dataset. Experiments were

conducted to look for running-time of training and testing. In

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.3, October 2015

33

this experiment, we used training data for data test. Tables 5

and 6 give results of running-time for train.3 dataset which is

divided into five subsets i.e: 400 records, 800 records, 1200

records, 1600 records and 2000 records.

Table 3. Running Time In C++

Datasets Training Time

(sec.)
Testing Time

(Sec.)

heart_scale 0.018 0.013

train.3 0.752 0.598

iris.train 0.007 0.005

Table 4. Running Time In Java

Datasets Training Time (sec.) Testing Time (Sec.)

heart_scale 0.145 0.122

train.3 1.557 1.185

iris.train 0.112 0.102

Table 5. Running Time Of Train.3 Using C++

Datasets Training Time (sec.) Testing Time (Sec.)

train.3 (400) 0.047 0.041

train.3 (800) 0.145 0.117

train.3 (1200) 0.392 0.301

train.3 (1600) 0.535 0.435

train.3 (2000) 0.752 0.598

Table 6. Running Time Of Train.3 Using Java

Datasets Training Time (sec.) Testing Time (Sec.)

train.3 (400) 0.255 0.182

train.3 (800) 0.428 0.339

train.3 (1200) 0.657 0.485

train.3 (1600) 0.928 0.689

train.3 (2000) 1.557 1.185

Figure 12. Running-time graphics using C++

Figure 13. Running-time graphics using Java

Figures 12 and 13 shows running-time graph for C++ and

Java with train.3 datasets that are divided into five subsets.

Based on the chart it can be concluded that the running-time

of C++ is faster than Java, both for training and testing. In

the graph also can be seen that the data growth will affects

the running-time, if there are more data then it need more

time.

4. DISCUSSION

The experiments for LibSVM complexity have been done

and the results has been obtained, but the calculation is not

involve all the existing routine. Experiments in LibSVM

restricted to default parameters such mentioned previously.

There are several LibSVM functions were not counted

because by default the functions is not executed.

Furthermore, the implementation of LibSVM done by re-

compile the original library. Experiments showed that

LibSVM portability is very good so that it is not difficult to

re-implemented. Problems arise when we have different

results if we run more than once, but the difference is not

significance. In order to obtain an average time we run more

than once and use three digits behind comma to get high-

precision.

There are two scenarios of experiment that aimed to see how

the results of running-time. The first scenario uses three

datasets are: heart scale, train.3 and iris.train, where the

results of the experiment showed that the C++ is faster than

Java because it C++ is native. Testing's time is smaller than

training's time and a large data will increasing computation

time. In second scenario, experiments focus on the data

train.3 were divided into five subsets, it is aims to look at the

effect of running-time where the data is growing up to be

bigger.

5. CONCLUSION

Support Vector Machines is one of machines learning using

supervised learning as knowledge training. In the

classification task, SVM is more favored than the other

methods because SVM provides a global solution for data

classification. To facilitate researchers using SVM algorithm,

Lin et al. develop LibSVM that has been widely used by

researchers and has been integrated into WEKA. This paper

contains analysis of LibSVM by doing such experiments:

compute the complexity of algorithm and implementing

using two programming language C ++ and Java.

Experimental has obtained results that the running-time using

C ++ is faster than Java because C++ is native. The results

also showed that the running-time for training and testing

with dataset train.3 is rise quadratic. Broadly speaking, the

experimental results may indicate that the running-time of

testing is smaller than training.

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.3, October 2015

34

6. REFERENCES

[1] Agarwal. S (2011). Weighted support vector regression

approach for remote healthcare monitoring. In 2011

International Conference on Recent Trends in

Information Technology (ICRTIT), IEEE, pp. 969–

974.Che, JinXing. (2013). Support vector regression

based on optimal training subset and adaptive particle

swarm optimization algorithm, Appl. Soft Comput. 13

(8), pp. 3473–3481.

[2] Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library

for support vector machines. ACM Transactions on

Intelligent Systems and Technology (TIST), 2(3), 27.

[3] Gunn S, R . (1998). Support vector machines for

classification and regression, ISIS technical report 14.

[4] Hofmann, T., Schölkopf, B., & Smola, A. J. (2008).

Kernel methods in machine learning. The annals of

statistics, 1171-1220.

[5] Hsu, C. W., & Lin, C. J. (2002). A comparison of

methods for multiclass support vector machines. Neural

Networks, IEEE Transactions on, 13(2), 415-425.

[6] Huang, Weimin, Leping Shen. (2008). Weighted

support vector regression algorithm based on data

description. In ISECS International Colloquium on

Computing, Communication, Control, and Management

CCCM’08, vol. 1, IEEE, pp. 250–254.

[7] Lee, Y, Lin, Y, G. Wahba. (2001). Multicategory

support vector machines. Comput. Sci. Stat. 33, pp.

498–512.

[8] Lin, C. J., Hsu, C. W., & Chang, C. C. (2003 – Last

updated: April 15, 2010). A practical guide to support

vector classification. National Taiwan U., www. csie.

ntu. edu. tw/cjlin/papers/guide/guide. Pdf.

[9] Nemmour, H, Chibani, Y. (2006). Multi-class SVMs

based on fuzzy integral mixture for handwritten digit

recognition. Geometric modeling and imaging—new

trends, pp. 145–149.

[10] Suykens, A.K. Johan, Brabanter Jos De, Lukas Lukas,

Vandewalle Joos. (2002). Weighted least squares

support vector machines: robustness and sparse

approximation. Neurocomputing 48 (1) 85–105.

[11] Tomar, Divya, Arya Ruchi, Agarwal Sonali. (2011).

Prediction of profitability of industries using weighted

SVR. Int. J. Comput. Sci. Eng. 3 (5) pp. 1938–1945.

[12] Tsang, I. W., Kwok, J. T., & Cheung, P. M. (2005).

Core vector machines: Fast SVM training on very large

data sets. In Journal of Machine Learning Research (pp.

363-392).

[13] Vapnik, V. (2000). The nature of statistical learning

theory. Springer Science & Business Media.

[14] Webb, A. R. (2002). Statistical pattern recognition, 2nd

Edition. John Wiley & Sons.

[15] Weston, J, Watkins, C. (1998). Multi-class support

vector machines. CSD-TR-98-04 royal holloway,

University of London, Egham, UK.

[16] Xue, Zhenxia, Liu Wanli. (2012). A fuzzy rough

support vector regression machine. In 2012 9th

International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD), Dover, pp. 840–844.

[17] Zhang, D., & Lee, W. S. (2003). Question classification

using support vector machines. In Proceedings of the

26th annual international ACM SIGIR conference on

Research and development in informaion retrieval (pp.

26-32). ACM.

[18] Zhu, G., Huang, D., Zhang, P., & Ban, W. (2015). ε-

Proximal support vector machine for binary

classification and its application in vehicle recognition.

Neurocomputing, 161, 260-266.

IJCATM : www.ijcaonline.org

