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Abstract: Zr-containing SiO; and their parent catalysts were fabricated with different methods using
EDTA chelation and template-assist. The activity of the catalysts was explored in crude palm oil (CPO)
hydrocracking, conducted under a continuous system micro-cylindrical reactor. The conversion features
and the selectivity towards biofuel products were also examined. The physicochemical of catalysts, such
as structure phase, functional groups, surface morphologies, acidity features, and particle size, were
investigated. The study showed that the template method promoted the crystalline porous catalysts,
whereas the chelate method initiated the non-porous structure. The catalysts’ acidity features of SiO;
and SiO, /Zr were affected by the preparation, which revealed that the EDTA chelate-assisted method
provided higher acidity features compared with the template method. The CPO hydrocracking study
showed that the SiO, /Zr-CEDTA provided the highest catalytic activity towards the hydrocracking
process, with 87.37% of conversion attained with 66.29%.wt of liquid product. This catalyst exhibited
selectivity towards bio-jet (36.88%), bio-diesel (31.43%), and bio-gasoline (26.80%). The reusability
study revealed that the Si0, / Zr-CEDTA had better stability towards CPO conversion compared with
Si0, /Zr-CEDTA, with a low decrease in catalyst performance at three consecutive runs.

Keywords: EDTA; SiO,; 5i0» /Zr; crude palm oil; hydrocracking; biofuel

1. Introduction

The availability of sustainable and clean energy is currently a considerable concern [1].
The dominant conventional energy source is gradually utilized over time, resulting in
a deracination of the fuel supply [2,3]. Furthermore, the emission of greenhouse gases, such
as COy, SOy, NOy, and other poisonous gases from the exhaustion of conventional fuels, is
a critical concern because it is counterproductive to human health and the environment [4].
Amidst this obstacle, the courageous concept of developing alternative energy sources,
such as biofuels, bravely emerged [5]. Biofuels are known to be renewable, eco-friendly,
and sustainable, and design@their potential for substitution while reducing reliance on
fossil fuelsfif)l/]. Depending on the number of carbon atoms, these fuels are classified into
numerous fractions, such as gasoline, kerosene, and diesel [8].
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Methods regarding the production of biofuels have been explored extensively. Among
the methods that have been employed, the catalytic cracking and hydrocracking methods
seem to be the preferred processes as they produce a wide range of hydrocarbons, with
particular boiling points that may be directly applied as fuels [9]. This technology offers
several advantages, including a lower operating temperature than the pyrolysis method,
a more straightforward operating route, and a high conversion feature, with a high calorific
value and oxygen-free output [10-12]. In this operation, the double bonds in triglycgFRles
as raw material are cracked down into smaller compound hydrocarbon molecules in the
presence of hydrogen and a coherently suitable catalyst [13].

The feedstock of the catalytic hydrocracking reaction ifggj essential considerationin the
production of biofuels. Numerous triglycerides feedstocks, such as algae oil, nyamplung oil,
palm oil, soybean, safflower, jatropha, and soyfln, have been progressively utilized in the
hydrocracking process [6,14-19]. Specifically, the use of crude palm oil (CPO) as a biofuel
feedstock is propitious, considering the massive production previously reported [20].
CPO has @ extortionate yield per hectare compared to other vegetable oils [21]. For
instance, Indonesia has 14 million hectares of oil palm and delivers 85% of the world’s
palm oil [22]. CPO has a high hydrocarbon chain content with nitrogen and sulfur-free,
respectively [23,24]. Considering its chemical nature, readily abundance, and especially
its contribution to the Indonesian economy, CPO as a feedstock for producing biofuels via
catalytic hydrocracking is reasonably profitable and sustainable.

The development of sufficient catalysts for the vegetable oils’ catalytic hydrocracking
into biofuels is an essential thing and one of the critical parameters. Among the available
catalysts, Si0; is one of the catalysts that has enchanted attention due to its high ther-
mal/hydrothermal stability, which results in adequate selectivity for bfffuel products and
encourages increased oil yields [25]. 510, has been widely expanded due to its chemical
stability, vast surface area, non-toxicity, relatively inexpensive, and eco-friendly [26].

In recent decades, metal-support catalytic systems have been explored due to their
resistance to catalyst poisoning and deactivation. Currently, SiO; has been used as a sup-
ported catalyst in many active species such as Ni-Zr [27], Cu [28,29], Ni[30,31], ZnO [32],
Ag>0, NazO and K;O [33], NiP [34], CrOy [35], and Ru [36]. In particular, active zirconia-
based-catalysts have fascinated researchers, in which exhibiting Lewis acid behavior and
high catalytic features have been recognized as relatively inexpensive, low toxicity, green,
and efficient catalysts for various major organic transformations [37]. Zirconia has both
acidic and metallic features, high surface area, remarkable chemical stability, and excep-
tional surface chemical activity, which can be exploited for the enhancement)xygen—
containing chemicals such as vegetable oil [38]. Zhao et al. [39] adapts the silica
zirconium sites to produce a material with well-defined features. The study report t&
hydrogenation catalytic activity and selectivity features were remarkably enhanced by the
Zr modification of the silica support compared to Co/Si0;. Therefore, there is a reasonable
impulsion for SiO, /Zr to explore their potential as an effective cracking reaction catalyst.

Nowadays, the modulation of the physicochemical properties of the catalyst can be con-
ducted by various approaches. The use of chelating agents [40-45] and templates [46-48] has
wntly captivated attention because they can modify or tune the catalyst’s surface, structural,
and textural properties, depending on the purpose of the application. Many complexing
agents have been employed to enhance the physicochemical properties of various types of
catalysts, including citric add [40-42], L-arginine [43], EDTA-dtric acid [44], glycinate [45],
ethylene diamine and acetic acid [40]. The effects of these chelating compounds on the cat-
alysts Ni/SBA-16, Ni/ZrO», mesnpmas Sm/Ce, Ni/Si05, Ni/-alumina, and Ni/SBA-15
have all been investigated. Notably, the use of EDTA chelating agent has been reported
considerably improved the Co/SiO; nano spring catalyst as well as their catalytic activity on
Fischer-Tropsch CO hydrogenation and catalyst selectivity. This chelating agent’s ability to
promote Co304 dispersion on the support surface has been investigated [49]. The modification
of 5i0, / Zr using several techniques, such as templating and chelating methods, and compar-
ing their respective effects on the catalytic activity of hydrocracking, have not been studied yet.
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Furthermore, neither exploration nor report has been made for fabricating the Si0, /Zr using
an EDTA species as chelating and templating agents. Within this frame of reference, the use of
EDTA has the potential as a 510> template or chelating agent, considering that these species
are capable of complex binding to zirconium, and calcination at high temperatures will cause
EDTEZ® be removed, allowing changes in the physicochemical properties of 5i0,/Zr.

This work presents a simple facile route for the synthesis of 5i0;/Zr through the
complexed-impregnation method. The effect of EDTA as a chelating agent and template
method on the physicochemical features of Zr/Si0; will be explored and assessed using
multiple characterization techniques such as PSA, SEM-EDS mapping, N> physorption,
XRD, FTIR, FTIR-absorbed pyridine, as well as the total and the surface acidity features
using the gravimetric method. The catalytic activity of these as-prepared catalysts will be
examined through the catalytic hydrocracking of CPO toward biofuels.

2. Results and Discussion
2.1. Characterization of Catalysts

A series of 510,, 5i0, / Zr catalysts, and their counterparts were prepared using differ-
ent methods by employing an EDTA template and chelate agents. Their physicochemical
properties were assessed using various characterizations. Figure 1 represented the diffrac-
tograms of 5i0,, Si0,/Zr, and their modification using EDTA as a template and chelate
as well. The SiO» diffractogram revealed a broad peak at 23°, which was assigned to the
amorphous silica (ICDD No. 39-1425) [50]. Another study also observed this typical peak
when preparing 5i0, using the sol-gel method [51]. Notably, the 20 peaks at 30.11°, 34.76°,
50.30°, and 60.10° which was attributed to the single tetragonal zirconia phase (ICDD No.
80-2155) [52]. Some studies reported that the zirconia also had monoclinic, cubic, and mixed
crystal structure phases [53,54], which depend on the catalyst’s preparation. The amor-
phous silica phase was still presented on Si0, /Zr, which indicated that the amorphous
silica structure was preserved [55].

sio,

Si0y/zr

Intensity (a.u)

2 Theta (degree)
Figure 1. XRD diffraction of 5i0;, 510,/ Zr, 510,/ Zr-CEDTA, 5i0,-TEDTA, and 5iO; /Zr-TEDTA.

As seen in Figure 1, the EDTA chelate and template-assisted method promoted a sig-
nificantly different crystal structure towards Si0> /Zr. These results indicate that the EDTA
species employed with different methods, i.e., chelate and template, positively affected the
5104/ Zr structure. The Si0» / Zr-CEDTA revealed an amorphous structure with no zirconia
phase were discerned, which suggested that the Zr species was finely dispersed towards
the silica surface and relatively diminutive to be identified by the XRD [40]. This result
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was also reported by Nadia et al. [56] when preparing NiMo/silica induced by different
species such as NaHCO;, whereby the Mo species was not distinguishable after being
loaded onto silica. Rubab et al. [48] report@Efhat there was no discernible crystal structure
in Si0, /NiO, which might be attributed to the integration of NiO into the SiO, matrix,
as well as its amorphous nature and slighter crystallite size. This result also suggests
that the EDTA chelate-assisted method was changing the tetragonal phase zirconia to
the amorphous structure, which was presumably due to the robust bonded interaction
between the EDTA and Zr through the complex bond, thus leading to the inefficient Zr
crystallization. By contrast, the Si0O, prepared by the EDTA template-assisted method
(510,-TEDTA) enhanced the silica structure to be crystalline, as indicated, and new peaks
were formed, which attributed to the mixed phase, such as quartz (ICDD No. 71-5334) and
cristobalite (ICDD No. 89-3606). During the calcination process, the EDTA species was
removed and presumably generated highly ordered silica, thus leading to crystalline phase
structure. Similarly, the 5i0;/ Zr prepared by the template-assisted method was also ap-
peared a crystalline structure. Moreover, the additional peaks at 26.76° in 510,/ Zr-TEDTA
suggested the presence of a monoclinic zirconia phase [52], whereas the unobservable,
other monoclinic phase presumably due to the overlapping peaks between crystalline silica.
The relative shift of the tetragonal zirconia phase occurred, likely due to the effect of EDTA
species as a templating agent.

The FTIR spectra of Si0,, 5i0» /Z1, and their modification are depicted in Figure 2.
The absorption band at 1003 and 890 cm ! on the SiO; catalyst (Figure §fJwere attributed to
the asymmetric and symmetric 5i-O stretching vibration [57], whereas the bending mode of
Si-O-Siand O-Si-Obonds were observed at 738 and 421 cm !, respectively [58]. These peaks
also appeared in S5i0» prepared by the EDTA template (Figure 2c) with a relatively shifted
towards the lower wavelength, which suggested the local bonding structure change of
O and Si atoms promoted by the EDTA template. Meanwhile, the silanol absorption bands
were relatively unobserved on the 5i0, /Zr catalyst (Figure 2b), which was presumably
due to the intensive band of silanol groups, thus overlapping the zirconia groups bands.
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Figure 2. FTIR spectra of (a) 510, (b) SiOy/Zr (c) SiO5-TEDTA (d) SiO5/Zr-TEDTA and
(e) S0, /Zr-CEDTA.

As shown in Figure 2, since catalysts involved the same functional groups, there was
no appreciable peak change of 510 / Zr prepared by the chelate method compared with the
parent Si0, / Zr, whereas there was a slightly different absorption band at a low wavelength
when the template method was employed. This condition suggested that the template
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and chelate methods affected how the functional groups of silandEEk well as zirconia
groups bonded in the Si03 /Zr catalyst. The absorption band at 3650 cm™! and 1556 cm ™!
corresponded to the Si-OH and -OH groups, respectively [55,59], which were maintained
for all catalysts.

The SEM micrographs of modified Si0,, 5i0; /Zr, and their parent catalysts are
presented in Figure 3. 5i0; catalyst (Figure 3a) had a tiny particle distributed uniformly,
and after being loaded by the Zr species (Figure 3b), the agglomerated silica was formed
which acted as the support for the Zr species.

Figure 3. SEM micrographs of (a) SiOs (b) SiOz/Zr (¢) SiO2-TEDTA (d) SiO2/Zr-TEDTA and
(e) Si0,/ Zr-CEDTA.

Remarkably, the 510,/ Zr prepared by the EDTA template method (Figure 3c) displayed
a high porous structure allocated uniformly, the same as the SiO,/Zr-TEDTA (Figure 3d) but
with a less uniformly expanded porous structure. Meanwhile, the SiOz /Zr prepared by the
EDTA chelate method revealed an uneven non-porous structure. These results suggested that
the EDTA template-assisted method promoted the crystalline porous structure, whereas the
EDTA chelate-assisted method led to the non-porous and amorphous structure.

The EDX mapping of all catalysts is presented in Figure 4. The expected elements
of all catalysts, such as 5i, O, and Zr, exist in Figure 4a—e. 1t can be seen that there was
an adequate homogenous zirconium species dispersion towards the surface of the 510;,
which could promote the metal-support interaction [60]. However, the distribution of
5i0; as catalyst support was displayed differently depending on their preparation, which
suggested that the EDTA chelate and template method positively affected the catalysts’
morphological surface by promotiff the enhancement of Zr dispersion.

The EDX elemental analysis is shown in Table 1. It can be seen that the Zr content was
presented correspondingly over 510,/ Zr, and their counterparts, with no impurities. These
results suggested that the Si0, / Zr catalysts were successfully prepared.

Table 1. EDX results of 5i04, 505/ Zr, and their modification.

Atomic (wt.%)

Catalyst
Si 0 Zr
Si0, 18.68 81.33
Si05/Zr 216 78.14 0.26
Si0,-TEDTA 28.43 71.57
510,/ Zr-TEDTA 26.18 73.43 0.39

5i0,/Zr-CEDTA 21.6 77.85 0.55
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Figure 4. EDX mapping of (a) SiO; (b) SiO2/2Zr (¢) SiO;-TEDTA (d) SiO,/Zr-TEDTA and
(e) SiOy / Zr-CEDTA.

The Ny physisorption of S5i0s, 5i0,/Zr, and their modification using chelate and
template methods are presented in Imlre 5. Based on the IUPAC categorization, it was
apparent that all the catalysts had a type IV isotherm with a hysteresis loop of type H4,
which suggested that the catalysts were mesoporous. Furthermore, the H4 hysteresis loop
was related to the micropores with narrow slits feature [56].
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Figure 5. Ni physorptions of (a) SiOz (b) SiO»/Zr (c) SiO2-TEDTA (d) SiOq/Zr-TEDTA
(e) Si0; /Zr-CEDTA.




Catalysts 2022, 12, 1522

7o0f15

The textural features of all catalysts are shown in Table 2. The surface area of SiO,
significantly decreased after being loaded by the Zr species, presumably due to the pore
blocking of Zr species [61]. It can be seen that the SiO; /Zr-KEDTA and SiO; /Zr-CEDTA
[EM higher surface area compared with the parent $i0, /Zr catalyst, whereas the SiO,
prepared PE}he template method relatively decreased the surface area of the catalyst but
increased the total pore volume as well as the average pore radius of the catalysts. This
condition indicated that the temp[f#8 and chelate method affected the textural properties
of catalysts. The porous structure generated by the EDTA template method enhanced the
pore volume of catalysts, whereas the EDTA chelate method reduced the total pore volume
of 5i0,/Zr-CEDTA.

3
Table 2. Textural features of catalysts.

Catalyst Surface Area (m?/g) Total Pore Volume (cm?/g) Average Pore Radius (A)
S10, 294 073 49.76
SIO, /Zr 76.43 0.78 2048
SIO,-TEDTA 268 0.81 60.44
510,/ Zr-TEDTA 220.5 0.83 75.37
S10,/ Zr-CEDTA 134 0.53 79.58

qm

R T
1.000

27

The average p.arﬁcle size distribution of all catalysts is presented in Figure 6. It can
be seen that tkmioz catalyst (Figure 6a) had a relatively uniform particle distribution and
subsequently led to a non-uniform particle size distribution after being loaded by the Zr
species (Figure 6b). Si0,-TEDTA catalyst (Figure 6c) had narrow particle size distribution
with better uniformity compared with 5i0;. In contrast, surprising results were obtained on
the 510y /Zr catalyst, both prepared using the template and the chelate methods (Figure 6c,d),
as it revealed a non-uniform particle size distribution. However, 5i0, / Zr-CEDTA showed
a higher non-uniform particle size distribution than Si0» /Zr-TEDTA.
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Figure 6. Particle size distribution of (a) Si0; (b) SiO; /Zr () SiO5-TEDTA (d) SiO, / Zr-TEDTA and

(e) S0y / Zr-CEDTA.
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The average particle size of all catalysts is presented in Table 3. It can be seen that the
average particle size of SiO,/Zr was higher than the parent SiO,, presumably due to the
effect of Zr impregnation towards the Si0» catalyst, which generated aggregate particles. By
employing the EDTA template method, the average particle size of Si05 tended to decrease,
likely due to the porous structure formation, which reduced the average fFficle size. Regard-
ing Si0, /Zr catalyst, similarly, employing the template method decreasgfjthe average particle
size of the catalyst, whereas the chelate method promoted conversely. The strong interaction
of metal species with the EDTA through the chelate method likely provided a dense structure,
thus leading to the increase in the catalyst’s average particle size.

Table 3. Average particle size (um) of SiOy, SiO/ Zr, and their modification.

Catalyst Average Particle Size (um)
Si0, 21.66 +0.32
Si0,/Zr 48.39 +0.05
Si0;-TEDTA 19.08 £ 0.07
Si0s/Zr-TEDTA 34.26 +0.16
Si0s /Zr-CEDTA 61.45 +0.07

14

The total, surface, and pore acidity o.fall catalysts are presented in Figure 7. It was
distinctly seen that the S5i0; had a low acidity feature when compared to Si0O, /Zr. This
low acidity feature was correlated to the Si** ions, which acted as Lewis acid sites [55],
and gradually incfffped due to the existence of Zr species that contribute to the increase in
5i0; acidity [62]. The catalyst prepared by the template method seemed to decrease the
catalysts” acidity features for both 510, and Si0,/Zr, whereas 5i0,/ Zr prepared by the
chelate method promoted an increase in total and surfgffijacidity as well. The low acidity
of 5i0,-TEDTA and SiO; /Zr-TEDTA was presumably due to the porous structure of the
catalyst. The interrelatedness of many active sites on the catalyst surface with one another
could happen, thus leading to overlapping between adffire groups in the catalyst, thereby
prompting non-optimal probe absorption [63]. It also can be seen from Figure 7 that the
active catalyst site of 5iO; and SEB} /Zr was likely generated from the catalysts’ pores
rather than the surface, whereas the catalyst prepared by the chelate method enhanced
the catalyst acidity surface, which consequently decreased the pore acidity. This condition
suggested that the template and chelate methods generated different acidity features of the
prepared catalyst.

12
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Figure 7. Total, surface, and pore acidity of the catalyst.
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The FTIR-pyridine absorbed of SiO, /Zr and their modification is presented in Figure 8.
It can be seen that the intensity of SiO»/Zr and SiO»/Zr-CEDTA at specific wavelengths were
increased after pyridine was absorbed, whereas 5105 /Zr-TEDTA showed no appreciable inten-
sity change, which is mnsistﬂ with the gravimetric analysis, as reported earlier. The broad
absorption band at ca. 1630 cm™~! was attributed to the Bronsted acid site initiated by the
pyridinium ion [12], whereas the Lewis acid site was observed at ca. 1450 em ™! absorption
band [56]. The strong intensity of the Lewis acid site was noticed on the Si0, /Zr-CEDTA,
suggesting that the chelate method promoted a high catalyst acidity.

021
Si0,/21 after pyridine absarbed
Si0,/Zr-TEDTA

Si0,/2r- TEDTA after pyridine absorbed
Si0,Z-CEDTA

Si0,/Zr-CEDTA after pyriding absorbad

Absorbance (a.u)

T T T T T
1700 1650 1600 1550 1500 1450 1400
Wavelenght (cm™)

Figure 8. FTIR spectra of SiOa/Zr, SiO»/Zr-TEDTA, and SiO,/Zr-CEDTA before and after
pyridine adsorption.
2.2, ﬁrocmcking Test

The catalytic activity of all catal{ff was evaluated for CPPO hydrocracking by using
a catalyst weight of 0.5 g, a hydrogen flow rate of 30 mL/min, a feed flow rate of 20 mL/h,
and a hydrocracking temperature of 500 °C for 1 h. The conversion and product yield of
the hydrocracking process are presented in Table 4.

Table 4. Conversion and product yield from CPO hydrocracking with various catalysts.

Yield (Y%.wt)

Catalyst Conversion (%)
Liquid Gas Coke Residue
S0, 77.10 53.44 17.971 0.09 28.58
SIO, /Zr 82.75 4593 40.23 0.21 13.63
SI10,-TEDTA 60.33 62.84 12.99 0.02 2415
S10,/Zr-TEDTA 62.17 4745 3843 0.12 14
SI0, /Zr-CEDTA 87.73 66.29 23.33 0.34 10.04

It can be seen that the 5i0»/Zr generated a much higher conversion compared to
5i0;. The presence of Lewis acid from Zr species presumably promoted the increase of
m:lmcracking conversion. Similar findings were also reported by mc.ha etal. [64], which
showed that the addition of metal species on the support (Mo/SBA-15) promoted the
conversion of waste palm cooking oil to hydrocarbon. The low conversion of triglycerides
through the hydrocf§king process catalyzed by silica was also reported by other stud-
ies [55]. Meanwhile, the catalyst prepared by the EDTA template method likely decreases
the conversion of both, Si0, and 5i0; / Zr catalysts. On the contrary, SiOZ/ZrEpared
by the chelate method promoted high conversion up to 87.73%. These results indicated
that the acidity of the catalyst affected the hydrocracking conversion, whereby the chelate
method preparation promoted the synergetic effect towards high conversion. Based on
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Table 3, all catalysts relatively generated high yields due to high-temperature hydrocrack-
ing. The 5i0,/Zr had the lowest liquid yield with high gas yield compared with other
catalysts. The high gas produced over the 510,/ Zr catalyst was presumably due to high
pore acidity, which promoted the excessive hydrocracking process, thereby increasing the
gas yield. The gas product commonly consists of the uncondensable gas such as CO, CO»,
and other C;-Cs hydrocarbons. It seemed that the SiO»/Zr prepared by the template and
chelate method higher the liquid yield and reduced the gas yield as well, with pronounced
activity observed by the 5i02/Zr -CEDTA catalyst. Similarly, the SiO,-TEDTA had a higher
liquid yield compared with the parent SiO;. The porous structure of the catalyst prepared
by this method assumably promoted the high liquid yield rather than its acidity. According
to these results, the SIO, /Zr-CEDTA generated the highest liquid compared with another
catalyst. 5i0; catalyst had low coke due to the low acidity of the catalyst, whereas the
510, /Zr-CEDTA generated high coke yield compared with others. Wijaya et al. [55] stated
that high catalyst acidity could induce coke formation. Based on Table 4, the residue yield of
the hydrocracking process for all catalysts ranges from 10.04-28.58%. The residue product
consists of the unreacted triglyceride, and the lowest residue yield (10.04%) was achieved
by the S10, /Zr-CEDTA, which suggested that the SIO» /Zr prepared by the chelate method
was the most effective for CPO hydrocracking compared with other prepared catalysts.

Table 5 show@ffle selectivity product towards bio-gasoline and bio-aviation with
different catalysts. It can be seen that the SiO; catalyst provided high selectivity towards
the bio-diesel product, with the lowest bio-gasoline fraction. The lowest bio-gasoline
fraction was generated, presumably due to low catalyst acidity [55]. Compared with the
parent Si0,, the 510 /Zr catalyst increased the bio-gasoline and bio-jet selectivity and
decreased the bio-diesel selectivity. Furthermore, the bio-jet selectivity increased after the
510, catalyst was prepared by the template method. This condition suggested that the
porous structure of Si0,-TEDTA provided effective diffusion towards the bio-jet product.
During the CPO hydrocracking process, triglycerides and hydrogen gas diffused to the
surface or pores of the catalyst and were followed by adsorption to the active site of the
catalyst. This step would crack the triglycerides into carbon atomggfgith lower chains
forming the biofuel fraction and some gases. After that, the product was desorbed from
the surface of the catalyst and subjected to diffusion into the gas phase. Meanwhile, the
selectivity of bio-jet, as well as bio-diesel, is relatively the same when employing the
510, /Zr-TEDTA catalyst. Moreover, the SiO» /Zr prepared by the template and chelate
method generated no significant change in the bio-gasoline selectivity.

Table 5. Biofuel product selectivity from CPO hydrocracking over various catalysts.

Selectivity (%)

Catalyst

Bio-Gasoline Bio-Jet Bio-Diesel
Si0, 2313 31.64 4523
Si0,/Zr 24.58 34.47 40.95
5i0,-TEDTA 27.23 44.67 28.1
510,/ Zr-TEDTA 26.94 36.88 36.18
Si02/Zr-CEDTA 26.80 41.77 3143

The reusability study of catalysts was evaluated to understand the catalyst’s stability
towards CPO conversion. Table 6 compares the reusability performance of SiO, / Zr-TEDTA
and 510, /Zr-CEDTA toward CPO conversion. As can be seen in Table 2, the catalytic
performance of Si0O, / Zr-TEDA after the second run decreased up to 8.73%, and continually
decreased up to 21.28% compared with the first run. Meanwhile, only 11.79% of the
decrease in catalytic performance was observed when employing the 5i0, /Zr-KEDTA,
which suggested that the chelate method provides a relatively stable conversion towards
CPO. The decrease in the conversion during the consecutive run was presumably due to
coke deposition [7]. It has been known that the catalyst could deactivate through coke
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formation. This coke blocked the catalyst’s active site to initiate the reaction, thereby
reducing the catalyst’s performance [62].

Table 6. Reusability study of 510 /Zr-TEDTA and SiO, /Zr-CEDTA catalysts.

Conversion (%)

Catalyst
1st Run 2nd Run 3rd Run
S5i0s / Zr-TEDTA 61.25 56.12 48.21
S0,/ Zr-CEDTA 85.63 8223 75.53

3. Materials and Methods
3.1. Preparation of SiO»/Zr Using EDTA Template-Assisted

All chemicals are earned from Merck and utilized without purification. In this typical
procedure, tetraethyl orthosilicate (25 mL) was mixed with ethanol (50 mL) and stirred for
15 min at RT. Afterward, sodium ethylenediaminetetraacetic solution (10%, 20 mL) was
added, and the ammonium hydroxide solution was gradually Bpped (28%, 2 mL) and
stirred for 3 h. The gel was left at RT for 30 min and subsequently dried in the oven at 85 °C
for 24 h. The dried powder was later calcined in the muffle furnace at 850 °C for 3 h under
an oxygen atmosphere (30 mL/h). The as-prepared catalyst was denoted as SiO,-TEDTA.
The SiO,-TEDTA wasffijpeatedly washed with deionized water through centrifugation
(35(8rpm) for 10 min until the pH reached 7. The solution was later heated to evaporate
the water and subsequently dried at 120 °C for 24 h. Finally, the dried 5i0,-EDTA powder
wasmxecl with the ZrOCl5-8H,O solution (200 mL, 0.04 B)I/L) and stirred for 1 h at
RT. The temperature was gradually increased up to 80 °C for 3 h. The paste was dried
at 120 °C {2 3 h and was later calcined at 850 °C for 3 h under an oxygen atmosphere
(30mL/h) and reduced at 600 “C for 3 h under a hydrogen atmosphere (30 mL/h). The as-
prepared catalyst was denoted as S5i02 /Zr-TEDTA. The 5i0; /Zr and Si0; without an EDTA
template-assisted were also prepared.

3.2. Preparation of SiO»/Zr Using EDTA Chelated-Assisted

In this procedure, the Zr precursor with the chelating agent is reacted by forming a complex
bond. Briefly, ethanol (50 mL) was mixed with TEOS (25 mL) and stirred for 15 min at RT. Next,
the solution containing ZrOCl, -8H,0 (2.578 g) and sodium EDTA (10%, 20 mL) was mixed with
the as-prepared previous solution and stirred for 3 h. Afterward, the ammonium hydroxide
alution (28%, 2 mL) was gradually added. The gel was left at RT for 30 min and subsequently
dried in the oven at 85 °C for 24 h. The dried powder was later calcined in the muffle furnace at
°C for 3 h under an oxygen atmosphere (30 mL/h). The SiO, /Zf},-EDTA was washed
until the pH reached 7. The solution was later heated to evaporate the water and subsequently
dried at 120 °C for 24 ) The powder was later calcined at 850 °C for 3 h under an oxygen
atmosphere (30 mL/h) and reduced at 600 °C for 3 h under a hydrogen atmosphere (30 mL /h).
The as-prepared catalyst was denoted as Si0, / Zr-CEDTA.

3.3. Characterization of Catalyst

The particle sizes of the catalysts (ranging from 0.01 pm to 5000 pm) were analyzed
using Horiba Partica LA-960 equipped with a static light scattering method. The diffrac-
tograms of catalysts were assessed using a Rigaku SmartLab X-ray diffractometer. SEM-
EDX mapping analysis was employed using JSM-IT200. The functional groups of catalysts
were investigated using Shimadzu FT'1R-8201PC Infrared Spectrophotometer. The textu-
ral features of catalysts were evalfffed using N; physorptions by NOVA Quantachrome.
The total and surface acidity were determined using the gravimetric method with pyridine
and ammonia as a probe [65], respectively, whereas the pore acidity was calculated using
the subtraction of total acidity with surface acidity. The pyridine-adsorbed catalysts were
also analyzed using FTIR.
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3.4. Catalytic Hydrocracking Tes

Catalytic hydrocracking wi§karried out in a continuous system micro-cylindrical
reactor with an inner diameter of 2.5 cm, a length of 40 cm, and a capacity of 196.43 cm? [66].
Prior to the hydrocracking process, the reactor is satuiffJ3d with hydrogen gas. CPO
feed (38% of palflitic acid and 45.16% of oleic acid) is injected using a syringe pump
into the reactor with a feed flow rate of 20f)./h. 0.5 g of catalyst was employed, and
the hydrocracking was conducted at 500 °C for 1 h with an H; flow rate of 30 mL/h.
The product was then analyzed using GCMS. The product was then analyzed using GCMS
(Thermo Scientific (Waltham, MA, USA)), equipped with TG-5MS columns. The products
analysis was calculated according to the Equations (1)—(6):

By (%.wt) = L x 100% (1)
ap
B (%.wt) =& 100% 2)
&F
Be (%.wt) =2€ % 100% 3)
(58
Y (%.wt)=100% — (B, +Br+Bc)%.wt )

% GCMS Cx — Cy fraction area
% GCMS total area

S (%) = % 100% (5)

Cr(%.wt) :“La_—” % 100% 6)
F

where B, fr, Bc, and g are liquid, residue, coke, and gas yield, respectively, whereas Sp.
and Cy are the biof @ product selectivity and the total conversion, respectively. oy is the
ght of liquid, oy is the weight of residue, xc is the coke, and of is the weight of the feed.
To investigate the stalE}y of the catalyst towards CPO conversion, the spent catalyst was
washed with hexane. The catalyst was dried at 105 °C for 1 h, and subsequently calcinated
and followed the reduction, as the same method with the fresh catalyst.

4. Conclusions

The preparation of 510,/ Zr with different methods, i.e., chelate and template-assisted
methods, was successfully conducted. These catalysts were employed for the crude palm
o0il (CPO) conversion to biofuels via hydrocracking. Different preparation revealed different
physicochemical properties of catalysts, leading to different catalytic activities towards the
CPO hydrocracking process. Among the catalysts e\!smted, Si0, /Zr-CEDTA showed the
highest performance towards the CPO hydrocracking. This catalyst was able to attaina CPO
conversion of 87.73% with a liquid yield of 66.29%.wt. The highest selectivity towards bio-
jet was achieved up to 41.77%, followed by bio-diesel (31.43%) and bio-gasoline (26.80%).
The 5i0, / Zr-CEDTE provided sufficient stability toward CPO conversion compared with
5i0, /Zr-TEDTA, as indicated by only an 11% decrease in the catalyst performance of CPO
conversion after three runs.
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