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Abstract 
 

Weekly sea surface height (SSH) in the tropical Indian Ocean (20°S - 20°N) was analyzed for the period of January 
1993 – December 2007 using an empirical orthogonal function (EOF) and a self-organizing maps (SOM) analysis. The 
EOF analysis identifies four patterns and three of them are contained in the SOM patterns. The SOM, on the other hand, 
characterizes the sea level variability, which shows twenty-five patterns. The patterns with low (high) sea surface height 
anomaly (SSHA) in the southern (northern) hemisphere associated with the monsoonal winds dominate the variation in 
both two methods. The SOM is also able to separate typical patterns associated with the ENSO and or the Indian Ocean 
Dipole (IOD) events. Low SSHA occupied the western half of the basin while high SSHA loaded in the eastern basin 
when the La Niña event is taking place. The El Niño event is characterized by low SSHA in the northern hemisphere, 
along the equator and along the eastern boundary, while high SSHA in the southwestern part of the basin. The IOD 
event shows a dipole like pattern with low SSHA in the east and high SSHA in the west. When the IOD co-occurred 
with El Niño, a distinct dipole pattern is clearly observed.  
 
Keywords:  empirical orthogonal function, Indian Ocean Dipole, sea surface height, self-organizing maps, Southern 
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1. Introduction 
 
The Indian Ocean is unique compare to the Pacific and 
Atlantic Oceans. Its northern boundary is located in the 
tropics and blocked by Asian landmass. One 
consequence of this geography is that the surface winds 
experience a dramatic seasonal change due to varying 
land-ocean temperature contrasts. These strong winds 
forced surface ocean circulations that modulate the 
evolution of sea surface temperature (SST) [1]. In 
addition, the Indian Ocean also receives heats from the 
Pacific Ocean through the Indonesian throughflow (ITF) 
[2] and exporting heats to the Atlantic Ocean via the 
Agulhas current [3]. 
 
Over the equator within a zonal band of few degrees, 
strong westerly winds blow during the transition period 
between the two monsoons in  April-May  and  October- 
November. As consequence of these distinct wind 
patterns, the swift eastward upper ocean currents, 
known as the Wyrtki jet, are observed during these 
periods [4]. It is widely accepted that the jet plays an 
important role on the zonal redistribution of water mass, 
heat, and salt, which in turn modify SST of the warm 

water pool in the eastern equatorial Indian Ocean. A 
slight change in the SST there results in a large 
variations of the air-sea interactions, thus affecting the 
regional and global climate system through the 
atmospheric teleconnections. 
 
Due to a limited in situ data, study on the dynamics as 
well as thermodynamics of the Indian Ocean is far 
behind those in the other two oceans. Most of previous 
observational efforts only conducted sporadically and 
did not leave a significant legacy of sustained ocean 
observation in this peculiar ocean.  
 
Recent discovery of an inherent coupled ocean-
atmosphere phenomenon in the tropical Indian Ocean, 
so-called Indian Ocean Dipole (IOD), however, has 
been considered as a stimulated interest of the study in 
the Indian Ocean [5,6]. Moreover, progress in satellite 
observations has provided continuous and nearly global 
surface ocean data, such as sea surface height (SSH), 
SST, sea level pressure (SLP), and surface winds. 
 
In the present study, an empirical orthogonal function 
(EOF) and an artificial neural network, so-called Self 
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Organizing Map (SOM), analysis have been applied to 
the merged satellite-retrieved SSH in the tropical Indian 
Ocean to elucidate characteristics of its spatial as well 
as temporal variations. More information on the data 
and analysis method is given in the following section. 
Main finding of the saptio-temporal variations of the 
SSH is described in section 3. Special attention is paid 
to the interannual variations of the SSH and their 
relation with IOD and El Niño Southern Oscillation 
(ENSO). Summary and discussion are presented in the 
last section. 
 
2. Methods 
 
Data. The SSH data used in this study were derived 
from the weekly merged data from multi-satellite 
sensors (TOPEX/Poseidon, ERS and Jason) over the 15-
year period from January 1993 to December 2007. The 
data have spatial resolution of 1/3° and are available at 
http://www.aviso.oceanobs.com 
 
In order to reduce the impact of the seasonal cycle on 
the data analysis, the SSH Anomaly (SSHA) is 
generated by subtracting both the temporal mean map 
and the spatial mean SSH time series from the original 
dataset. Assume that the dataset is arranged in a m × n 
matrix, where m is the spatial dimension and n is the 
temporal dimension, then the temporal mean SSH is 
calculated as 
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This temporal mean is removed from the original 
dataset following 
 )(),(),( xSSHtxSSHtxSSHA −= .               (2) 
 
The time series of spatial mean SSH is, then, obtained 
by 
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Finally, we obtained the SSHA field by removing both 
temporal and spatial mean from the original SSH data as 
 )()(),(),( tSSHxSSHtxSSHtxSSHA −−= .(4) 
 
Empirical Orthogonal Functions (EOF). The EOF 
method is a useful technique for analyzing the 
variability of time series data [7]. The method finds the 
spatial patterns of variability, their temporal variations, 
and gives a measure of the importance of each pattern. 
Typically, the lowest mode explains much of the 
variance and these spatial and temporal patterns will be 
easiest to interpret.  
 

The EOF analysis uses a set of orthogonal functions to 
represent a time series of spatial pattern, such that  
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where T(x,t) is the original time series as a function of 
time (t) and space (x). Fn(x) is a dimensional spatial 
pattern of the major factor that can account for the 
temporal variations of the original time series, and αn(t) 
is a nondimensional principal component that describes 
how the amplitude of each spatial pattern varies with 
time. 
 
Self-Organizing Maps (SOM)’ The SOM is one type of 
unsupervised Artificial Neural Network (ANN) that is 
mainly used for pattern recognition and classification 
[8]. It is a nonlinear, ordered, smooth mapping of high-
dimensional input data onto the elements of regular, 
low-dimensional array. The SOM has been applied 
widely to climate and meteorology [9,10] and 
oceanography [11-15]. All these studies suggested that 
the SOM is a powerful tool for identifying patterns of 
continuous, dynamic processes in complex data sets. 
 
Since the SOM is relatively new to oceanography, a 
brief description of the method is discussed here. Prior 
to the analysis, the input data are arranged into two-
dimensional array with dimensions equal to number of 
pixels per time step × number of time steps. The SOM 
algorithm is then initiated by defining the shape and 
dimension of the SOM array, which depends on the 
complexity of the studied problem and the level of 
details desired in the analysis. Each node in the SOM 
array is associated with a weight vector iwv  that is equal 
in dimension to the input vector xv . Prior to the training 
process, the weight vectors are assigned with starting 
values, which can be chosen to be random values.  
 
The training process starts by presenting the first input 
vector to the SOM, and the activation of each unit for the 
presented input vector is calculated using an activation 
function. Here, the minimum Euclidian distance criterion 
is used as the activation function. The node responding 
maximally to a given input vector (i.e. the smallest 
Euclidian distance) is selected to be the “winner” ck: 

ikk wxc vr
−= minarg                 (6) 

where “arg” denotes index, kxv  indicates the present 
input vector and iwv  is the weight vector. The weight 
vector of the winner is moved toward the presented 
input vector by a certain fraction of the Euclidean 
distance as shown by a time-decreasing learning rate α. 
In this study, a linear time function is used for the 
learning rate α,   

)/1()( 0 Ttt −=αα                 (7) 
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where α0 is the initial learning rate and T signifies the 
length of training. 
 
The weight vectors of units in the neighborhood of the 
winner are also modified according to a spatial-temporal 
neighborhood function ε. The neighborhood function ε 
also shrinks over time and decreases spatially away 
from the winner. There are two types of the 
neighborhood function available in the software; bubble 
and Gaussian functions. In this study, a bubble function 
is used for the neighborhood function: 
 

)()( cit dFt −= σε                 (8) 

where σt is the neighborhood radius that also linearly 
decreases between the initial and the final step, dci is the 
distance between a node and the winner node. F is a 
step function and it is defined as: 
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The learning rule, then, is defined as: 
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where t denotes the current learning iteration and xv  
indicates the currently presented input vector. 
 
The training is performed in two phases. The first phase 
had a learning rate of 0.5, an initial update radius of 4 
and a training length of 4000 cycles. Then, the second 
phase had a learning rate of 0.1, an initial update radius 
of 1 and a training length of 100,000 cycles. At the end 
of the training processes, a SOM array is obtained 
which consists of a number of patterns characteristic of 
the input data, with similar patterns nearby and 
dissimilar patterns further apart. Several dimensions of 
the SOM array have been tested to find the most 
sufficient array that covers the original data space. It is 
found that a 5 × 5 SOM array is sufficient to describe 
the SSH variability in the tropical Indian Ocean.  
 
Pre-processing of the data has been done before 
performing SOM analysis. The SHHA data have been 
regridded by calculating average in 2° × 2° boxes from 
30°E to 120°E and 20°S to 20°N.  The land was 
removed from the analysis, so that the input data 
consists of 808 sea pixels. The final input matrix 
consists of 808 columns (pixels) × 783 rows (weeks). 
 
3. Results and Discussion 
 
EOF results. The results from EOF analysis indicate 
that the first EOF mode spatial pattern, which represents 
20.3% of the total variance, consists of large negative 
SSHA off equator along 5°S and 5°N, in the western 

Arabian Sea and moderately large negative SSHA along 
the equator (Fig. 1a). Positive SSHA observed in the 
central-south and southwestern basin is considered as 
downwelling mid-latitude Rossby waves emanating 
from the eastern Indonesian and Australian coasts [16, 
17].  
 
The second EOF mode explaining 14.8% of the total 
variance represents a dipole pattern, with negative 
SSHA in the east and positive SSHA covers the western 
half of the basin (Fig. 1b). The spatial pattern of the 
third EOF mode, which accounts for 13.1% of the total 
variance, is a mirror of that of the first mode. Extremely 
low SSHA is found along 10°S, while positive SSHA is 
observed along the equator, off Sumatra and Java and 
along the coast of the Indian Peninsula (Fig. 1c).  
 
The fourth mode, on the other hand, explains 4.2% of 
the total variance (Fig. 1d). The spatial structure 
associated with this mode shows a typical pattern of 
equatorial waves: Kelvin and Rossby waves. The 
negative SSHA associated with the upwelling equatorial 
Kelvin waves along the equator is accompanied by a 
saddle-formed of positive SSHA; north and south of the 
equator; indicative of a typical structure of the 
downwelling Rossby waves. 
 
The corresponding time series (Principal component – 
PC) of each mode are shown in Figure 2, together with 
the time series of zonal wind index, Southern 
Oscillation Index (SOI) and Dipole Mode Index (DMI). 
Note that the SOI is calculated as a difference in surface 
air pressure between Tahiti, French Polynesia minus 
Darwin, Australia [18]. Its positive (negative) value is 
associated with La Niña (El Niño) phase of ENSO. The 
DMI, on the other hand, is the east-west temperature 
gradient  across  the  tropical  Indian Ocean [5]. Positive 
 

 
Figure 1. Spatial Patterns of the First Four EOF Modes for 

the Sea Surface Height Anomaly (Temporal and 
Spatial Means Removed). Contour Interval is 3 
cm and Positive Values are Thaded 
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DMI refers to positive IOD event, while negative IOD 
event is represented by negative DMI. 
 
The time series of the first (Fig. 2a) and the third (Fig. 
2c) modes exhibit a robust annual signal. This annual 
variation is associated with the monsoonal wind 
indicated by large correlation between the PCs and the 
zonal wind index. Note that the correlation coefficient 
between the PC1 (PC3) and the zonal wind index is -
0.89 (-0.78; the zonal wind index leads by ~3 months) 
and both are significant at the 99% level.  
 
The time series of the second mode (PC2), on the other 
hand, reveals interannual variation (Fig. 2b). The 
positive peaks occurred in 1994, 1997/98 and 2006, 
while the negative peaks were observed during 1996, 
1998/99 and 1999-2000. The correlation between the 
PC2 and the SOI is -0.62 (significant at the 99% level) 
with the SOI leading by ~4 months. The PC2 also has 
significant correlation (0.45 - significant at the 99% 
level) with the DMI. The high correlation between the 
PC2 and both SOI and DMI suggests that both ENSO 
and IOD events contribute to the interannual variation 
of the SSHA in the tropical Indian Ocean. This result is 
consistent with the early studies in the tropical Indian 
Ocean [5, 19]. 
 
The time series of the fourth mode (PC4) reveals long-
lasting positive peaks occurring during 1999-2001, and 
strong negative peaks during 1995, 1998 and 2005. The 
 

 
 
Figure 2. Time Series (Black-Gray Shade) Corresponding 

to the Modes on Figure 1. Thin-Curve in (a) and 
(c) is Time Series of Zonal Wind Average 
between 40°E-100°E and 5°S-5°N. Thin (Thick) 
Curve in (b) is Southern Oscillation Index 
(Dipole Mode Index) 

 
 

correlation between the PC4 and the SOI is 0.6 
(significant at the 99% level) with the SOI leading by 
~7 months. However, the PC4 has no significant 
correlation with the DMI, which may suggest that the 
variation of PC4 is solely associated with the ENSO. 
 
SOM results. The SOM array that obtained from the 
observed sea surface height is shown in Fig. 3. The 
array consists of 25 nodes, where each node represents a 
typical structure of the input data. Frequencies of 
occurrence of each SOM node are shown in the above 
of each node. The lower-right corner of the array is 
populated by low SSHA in the southern hemisphere 
while high SSHA in the northern hemisphere, along the 
equator and along the coast of Sumatra and Java. These 
nodes (i.e. nodes 15, 19, 20, 23, 24 and 25)  are the most 
common patterns throughout the whole record 
representing 30.1% occurrence. The spatial pattern of 
these modes is very similar to that of the first mode 
from EOF analysis, and they are major patterns in each 
method.  
 
Conversely, the center-left corner (nodes 7, 8, 11, 12, 16 
and 21) shows high SSHA in the south and low SSHA 
in the north, which are compatible with the third mode 
of EOF analysis. These patterns are accounting for 
15.5% of occurrence.  
 
In the center of the array (nodes 9, 13, 14, 17, 18, 21, 
and 22), the patterns show a dipole structure with low 
SSHA in the east and high SSHA in the west. Note that 
the spatial structures of the nodes 13 and 14 are very 
much compatible with that of the second mode of the 
EOF analysis. The nodes reflect 22.7% of the 
occurrence. On the other hand, the upper-left corner 
(nodes 1, 2 and 6) shows opposite structure, with high 
SSHA in the east and low SSHA in the west.  
 
The upper-right corner (node 3, 4, 7, 8, 11 and 12) 
represents low SSHA in the south and along the eastern 
boundary, while high SSHA in the northwestern part of 
the basin. However, these nodes have no counterparts in 
the EOF modes. Similarly, the fourth mode of EOF 
results does not appear in the SOM patterns. 
 
The relative frequency of each particular pattern can be 
viewed monthly (Fig. 4). Thus, this map indicates how 
frequent each particular node in the SOM array appears 
in the original data. It is shown that a dominant pattern 
can be identified for most months. This changes from 
 node 3 in January to nodes 4 and 5 during February to 
March. From April to June, the node changes from 10 to 
20 and then to 25. The node again changes from 23 in 
July to node 22 in August and then to node 21 in 
September. Finally, the trajectory on the change during 
October to is December in from node 11 to node 1. 
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Figure 3.  A 5 × 5 SOM Representation of the SSHA Time Series from January 1993 trough December 2007. The Frequency 

of Occurrence is Shown Above Each Panel 
 
 

 
 
Figure 4. Monthly Frequency Map, Showing the 

Frequency that SOM Patterns Identified in Fig. 3 
Occurred for Each Month. Note that Percentage 
for Each Month Sum to 100 and the Coordinates 
Correspond to those at Fig. 3 

 

To examine the interannual variations in SSHA, a 
relative frequency map was constructed for some 
contrasting years, which are identified as the ENSO and 
or the IOD years. Figure 5 shows the annual frequency 
maps during La Niña, El Niño, IOD and El Niño co-
occurring with IOD events. Note that for the El Niño 
and La Niña events, the frequency maps were calculated 
from September to February of the following year to 
encompass the peak of the events. On the other hand, 
the frequency maps for the IOD event were constructed 
from June to November, since the peak of the IOD 
event is during the northern fall (i.e. September to 
October). 
 
The most frequent pattern during the IOD events (1994 
and 2006) is node 12, which has a negative SSHA in the 
eastern basin and positive SSHA in its western counter 
part. This can be understood since the winds are 
anomalously westward during the IOD event which 
generate upwelling Kelvin waves along the equator and 
along the eastern boundaries. These waves suppress sea 
level in the east and uplift sea level in the west. 
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Figure 5.  Annual Frequency Map, Showing How Many 

Time Each Particular Node in the SOM Array 
Appear During Each Event: ENSO and IOD 

 
 
During La Niña event, on the other hand, the node 1 
dominates the variations, which represent positive 
SSHA in the east while negative SSHA is observed in 
the western basin, showing opposite pattern to that of 
the IOD event. The mechanism generating this pattern is 
also opposite to that of the IOD event. 
 
The El Niño event is mostly dominated by node 7 
showing negative SSHA in the northern part, along the 
equator and along the eastern boundary, and positive 
SSHA in the southwestern part of the basin. The 
mechanism generating this pattern is similar to that of 
the IOD pattern. 
 
Interestingly, during 1997/98 when the IOD and El 
Niño took place in the Indian Ocean, node 13 dominated 
the pattern, which indicates a robust dipole pattern with 
low SSHA in the east and high SSHA in the west. 
 
Spatial and temporal variations of SSHA in the tropical 
Indian Ocean are examined with the EOF and SOM 
analysis. The EOF analysis identified only four patterns, 
in which three of them are included in the SOM array. 
The first and the third modes of the EOF accounting for 
33.4% of the total variance explain much of the 
variability in the tropical Indian Ocean. This variation is 
associated with the monsoonal winds, which vary 
annually. The second mode of the EOF, on the other 
hand, explains 14.8% of the total variance. This mode 
showing a dipole structure is significantly correlated 
with the ENSO and the IOD events. The fourth mode 
only explains 4.2% of the total variance and it is likely 
related to the ENSO variation. 
 

A 5 × 5 SOM array also shows characteristic sea level 
patterns. These group into three composite categories: a 
pattern with low (high) SSHA in the southern (northern) 
hemisphere, a dipole pattern and a pattern with low 
SSHA in the southern hemisphere and along the eastern 
boundaries, while high SSHA is observed in the 
northwestern basin. 
 
A significant finding identified herein by the SOM, and 
not by the EOF, is that the patterns of sea level 
variability associated with the ENSO and or the IOD 
events. The pattern associated with the La Niña event is 
characterized by low SSHA in the west and high SSHA 
in the east. The El Niño event is characterized by low 
SSHA in the northern hemisphere, along the equator 
and along the eastern boundary, while high SSHA in the 
southwestern part of the basin. The IOD event shows a 
dipole like pattern with low SSHA in the east and high 
SSHA in the west. In 1997/98 when the IOD and El 
Niño events took place in the tropical Indian Ocean, a 
distinct dipole pattern is observed with low SSHA in the 
eastern half of the basin and high SSHA occupied the 
western half of the basin. 
 
4. Conclusion 
 
The use of the SOM to characterize the sea level 
patterns in the tropical Indian Ocean has provided a 
clear description of the main sea level patterns 
associated with the monsoon, ENSO and IOD. From 
this point of view, the (nonlinear) SOM is more 
convenient to use than the (linear) EOF. 
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