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 The accuracy of electrocardiogram (ECG) delineation can affect the precise 
diagnose for cardiac disorders interpretation. Some nonideal ECG presentation 
can make a false decision in precision medicine. Besides, the physiological 
variation of heart rate and different characteristics of the different ECG waves 

in terms of shape, frequency, amplitude, and duration is also affected. This 
paper proposes a discrete wavelet transform (DWT), non-stationary signal 
analysis for noise removal, and onset-offset of PQRST feature extraction. A 
well-known database from Physionet: QT database (QTDB) is used to validate 
the DWT function for detecting the onset and offset of P-wave, QRS-complex, 
and T-wave localization. From the results, P-peak detection gets the highest 
result that achieves 2.19 and 13.62 milliseconds of mean error and standard 

deviation, respectively. In contrast, Toff has obtained the highest error value 

due to differences in the T-wave morphology. It can be affected by inverted or 
biphasic T-waves and others.  
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1. INTRODUCTION 

A cardiologist analyzes the electrical function of the cardiac via electrocardiogram (ECG). Analysis 

of critical segments of ECG is a crucial thing for diagnosing cardiac disorders. However, in some cases, an 

ECG-based diagnosis can be difficult [1]. For example, the diagnosis of myocardial infarction (MI), one of 

coronary heart disease due to a lack of oxygen demand in the cardiac muscle tissue [2, 3]. The ECG form 

changes in ST-elevation, T-waveform, and the ST interval length. In other cases, the detection of QT and 

RR-interval for calculating QT-corrected (QTc) to inform long QT syndrome (LQTS), and P-wave 

abnormality to diagnose Atrial Fibrillation, are difficult due to the lack of symptoms [4-6]. A cardiologist 

needs to analyze ECG recordings that are acquired over several hours or even days, making the task very 

troublesome and time-consuming [1, 7, 8]. Advanced computing systems can reduce such limitations permit 

the automatic interpretation of ECG. Precise ECG is essential in getting maximum benefits to interpret ECG 
recordings properly. The additional features of ECG need to be analyzed by the morphology of the different 

waves within the signal. The computing algorithms require specific points within the ECG wave 

segmentation, include the start (onset) to end (offset) of the QRS-complex, P, and T-waves.  

Automatic segmentation with a low complexity algorithm of the ECG is challenging due to the P-

wave's reduced amplitude, the high variability in the shape of the QRS-complex. The smooth transitions of 

the beginning and end of T-wave [9-11] The previous conventional algorithm is applied for automatic ECG 
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segmentation in many works of literature, such as the hidden Markov model [12], multiple higher-order 

moments (MHOM) metric [13], continuous wavelet transform [14] and a bandpass Butterworth filter and the 

first derivative [15]. Laguna et al. [16] first proposed a very successful ECG segmentation approach based on 

second-order bandpass filtering the ECG and then differentiating it. In the end, different waves would be 

detected based on their zero-crossings and finding the nearest points exceeding empirical thresholds.  

Then, Li et al. also implemented a discrete wavelet transform (DWT) for detecting ECG characteristic points 

[17]. Bazomenos et al. [18] employed DWT with the simplest wavelet function, Haar function, for the 

extraction of the fiducial points from the ECG. The aforementioned techniques such as an ideal algorithm to 
be efficient from a computational perspective in ECG signal processing tasks.  

This paper concerns developing a low-complexity algorithm for ECG delineation in PQRST 

detection. Wavelet transform (WT) function can be proposed on this approach because of its time-scale 

analysis nature [18]. Wavelet transform can be a promising function for time-frequency analysis. Besides, the 

wavelet transform can be characterized by the local regularity of signals. Another advantage of the wavelet 

transform is that it has limited energy because it is localized in time, allowing time and frequency analysis. 

Wavelet transform is divided into continuous wavelet transform (CWT) and discrete wavelet transform 

(DWT). However, in this paper, DWT is proposed for ECG signal denoising and feature extraction. DWT is 

an implementation of WT, which is promising in biomedical signal processing.  

 

 

2. RESEARCH METHOD 
This study experimented on the well-known physionet: QT database (QTDB), in which the training 

and testing set was generated. From the dataset, ECG raw has denoised by discrete wavelet transform 

(DWT), in which input signals are decomposed into wavelet levels and transferred to other layers as 

sequences. Then, a new input layer with a wavelet basis was designed for detection of start to the end  

P-wave, QRS-complex, and T-wave. The research methodology can be presented in Figure 1.  

 

 

 
 

Figure 1. The workflow of ECG delineation 

 

 

2.1.   Discrete wavelet transform  

Explaining wavelet transform (WT) is efficient when evaluating non-stationary signals such as 

ECG. WT can overcome the drawbacks of the fourier transform (FT) that only fits in stationary signals and 
able to analyze signals in the frequency domain. From computation complexity, WT is lower than FT, it was 

developed for signal compression and noise reduction [19]. WT uses a mother wavelet as a signal to be 

convoluted along with the original signal. Another advantage of WT is energy-efficient because it localized 

in time, which allows analysis of time and frequency [20]. In WT, there are also mother wavelets such as 

Haar, Daubechies, Biorthogonal, Coiflets, Symlets and Morlet. Then there is no absolute reason to apply a 

particular mother wavelet. The choice of the mother wavelet itself depends on the type of signal to be 

analyzed and applied. For ECG noise removal, there are two thresholding algorithms which applied when 

using wavelets popularized by Donoho and Johnstone [19], hard thresholding in (1) and soft thresholding  

in (2):  
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𝑐�̂�𝑗 ={
𝑐𝐷𝑗 , |𝑐𝐷𝑗| ≥ 𝑡

0, |𝑐𝐷𝑗| ≤ 𝑡
        (1) 

 

𝑐�̂�𝑗 = {
𝑠𝑖𝑔𝑛(𝑐𝐷𝑗)(|𝑐𝐷𝑗| − 𝑡), |𝑐𝐷𝑗| ≥ 𝑡

0, |𝑐𝐷𝑗| ≤ 𝑡
      (2) 

 

where 𝑐�̂�𝑗 and 𝑐𝐷𝑗 is the wavelet coefficient after and before the thresholding process. ECG signals 

will be an input for wavelets decomposed according to the specified level (8 levels). The decomposition 

process is a downsampling process that produces a coefficient with a particular frequency at each level 

represented in Figure 2. The signal frequency will be divided by two in DWT because it passes through the 

high pass and low pass filter. Frequencies that pass through the high pass filter will enter the detail 

coefficient. Then the low pass filter will enter the approximation coefficient. DWT uses a series of scales and 

translations by following specific rules. The general rule used in DWT is 2 to the power of 𝑛, where 𝑛 is an 

integer [21]. Wavelets in DWT work as bank filters that decompose the signal into subband and look like tree 

structures [21]. The features can distinguish ECG from electrode contact noise, baseline drift, and power line 
interference. An algorithm based on wavelet transform is proposed for detecting the start to end of QRS-

complex, P and T-waves.  

 

 

 
 

Figure 2. DWT results of ECG reconstruction 8 levels 

 

 

2.2.   Data preparation 
ECG raw data is obtained from the Physionet public dataset's open-access: The QT Database 

(QTDB) [22]. The database consists of 105 ECG records taken in 15 minutes with a sampling frequency of 

250 Hz from two-channel Holter ECG recordings. This database consists of 15 records of MIT-BIH 

Arrhythmia, six records of MIT-BIH ST Change, 13 records of MIT-BIH Supraventricular Arrhythmia, 33 

records of European ST-T, 24 records of sudden death patients from BIH, four records of MIT-BIH Long-

Term ECG, and ten records of MIT-BIH Normal Sinus Rhythm. For this study, the records of sudden death 

are excluded. This database provides the input to the WFDB function ecgpuwave(), which gives us the exact 

position of all the P, R, and T-peaks found in the signal. The output of the ecgpuwave is written as a standard 

WFDB-format annotation file associated with the specified annotator. It is utilized as “ground truth” or label 

for the proposed ECG segmentation algorithm. Otherwise, only a complete waveform pattern of P-wave, 

QRS-complex, and T-wave is utilized in this study. Points of interest within the ECG include the Pon-Poff, 
Poff-QRSon, QRSon-Rpeak, Rpeak-QRSoff, QRSoff-Ton, and Ton-Toff as shown in Figure 3.  
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Figure 3. ECG onset-offset morphology 

 

 

2.3.   ECG noise removal 

To analyze ECG signals, a clean ECG signal from noise is needed. DWT is used because it works as 

a bank filter that decomposite into several levels consisting of certain frequencies. The signal decomposition 

process is a signal downsampling process, whose function is to conduct frequency analysis at each level. The 

frequency will be accommodated on several coefficients according to the number of levels. After analysis of 

the coefficient of decomposition results, an upsampling or reconstruction coefficient will be carried out so 

that it produces a new signal. After the signal decomposition process, the baseline wander is removed by 
listing the level 8 approximation coefficient to 0. Signals with baseline wanders do not have consistency in 

amplitude, because the midpoint of the signal is not at point 0. Signals that have been processed by removing 

the baseline wander will be at the midpoint of 0. The comparison of signal with baseline wander can be 

presented in Figure 4. Last, there is still noise in the form of high-frequency signals from the electrode 

motion artifact (ema) and muscle artifact (ma). In the ECG signal, high-frequency noise can be seen in the 

form of a spike or some kind of serration along with the main signal. To eliminate noise from high 

frequencies, the decomposition results' coefficient will go through the thresholding stage by selecting the 

threshold using universal and soft thresholding methods. The result of ECG noise removal can be seen in 

Figure 4.  

 

 

 
(a) 

 

 
(b) 

 

Figure 4. ECG noise removal pre-processing, (a) ECG baseline wander removal, (b) ECG noise removal 
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2.4.   QRS-complex detection 

QRS-complex represents the most vital component for defining the condition of a human heart. 

However, to delineate R-peak in the QRS detector is not easy due to the non-stationary nature of ECG [23]. 

Initially, the QRS detector can be implemented by Pan and Thompkins algorithm [24], based on nonlinear 

transformations and the linear filtering techniques. Unfortunately, such an algorithm has a limitation of 

tracking time-varying ECG signal morphology and made detection of QRS-complex inaccurate. To 

overcome the problems, the method based on joint time-frequency analysis tools has been addressed, i.e. 

wavelet transforms [19, 23]. In previous [19], Lin et. al. proposed DWT and soft thresholding for ECG noise 

removal and feature detection, respectively. Bajaj et al. [23] implemented Stockwell transform that 

accurately identifies the QRS-complex of unclassifiable beats. From the results, the wavelet transform 
algorithm has the capability to QRS detector. Based on the results of 8 levels signal reconstruction in Figure 

2 above, for the QRS detector, only decomposition level 2 (DL2), 3 (DL3), and 4 (DL4) is proposed. Those 

three decomposition levels show the similarity of QRS-complex morphology [19]. For R-peak detection, the 

combination of all signal values (positive or negative) is used as absolute values (abs DL234). Then, the 

crossing window of 0.5 seconds has been implemented to look for the maximum value on the abs DL234. If 

the maximum value is between 0.15-0.35 seconds in the search window, the value is captured as a temporary 

R-value (𝑡𝑒𝑚𝑝_𝑅). Trace the search window by 0.1 seconds until the end of the signal. Find the maximum 

value on the abs DL234 signal with the search window of 5 seconds. Each maximum value obtained will be 

inserted into a temporary threshold list (𝑡𝑒𝑚𝑝_𝑡ℎ𝑟). Each value in 𝑡𝑒𝑚𝑝_𝑡ℎ𝑟 will be used in the following 

(3) to find the value of 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 1; 
 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 1 = 0.3 ∗ 𝑡𝑒𝑚𝑝_𝑡ℎ𝑟[𝑖] (3) 

 

In the next process, compare 𝑡𝑒𝑚𝑝_𝑅 value with the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 1. If the value of 𝑡𝑒𝑚𝑝_𝑅 is greater 

than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 1, then the value is taken as the R-peak. Do a last check of the obtained R-peak with a search 

window width of 0.16 seconds (0.08 for each backward and forward). If the absolute value of the original 

signal is greater than the value of R-peak, then the value of R-peak is replaced by the absolute value of the 

original signal.  

Furthermore, QRSon has been detected by the R-peak location. If the amplitude value of R-peak is 
negative, get the maximum value in signal DL234 as Q-peak. While, if the amplitude value of R-peak is 

positive (point of R-peak is above), get the minimum value in signal DL234 as Q-peak. Then, find the zero-

crossing point between two signals; denoised and DL234 reconstruction signal. The zero-crossing point is a 

condition where the point of the denoised signal intersects with the point of the DL234 reconstruction signal 

on the y-axis = 0. If there is a zero-crossing point, then capture it as QRSon. If there is no zero-crossing point, 

find the maximum or minimum value in 0.03s that represents the QRSon. For QRSoff detection, the process is 

similar to finding QRSon. If R-peak's value is negative, then get the maximum value in signal DL234 as S-

peak and find zero crossing point from S-peak to 0.1 seconds forward. Then, if there is a zero-crossing point, 

capture it as QRSoff, or find the minimum value in signal DL234 as QRSoff while there is no zero-crossing 

point. There is a condition where the value of R-peak is positive. Hence, get the minimum value in signal 

DL234 as S-peak and compare it with the threshold. If S-peak is greater than the threshold, then capture 

maximum value in signal DL234 as QRSoff. Last, when S-peak is less than the threshold, get the maximum 
value in signal DL3 as QRSoff. The definition of the threshold can be calculated by, 

 

𝑡ℎ𝑟(𝑖) = 0.4 × 𝑅𝑝𝑒𝑎𝑘(𝑖) (4) 

 

2.5.   P-wave Detection 

P-wave is the first deflection of ECG that reflects the depolarization of the atrial muscle cells. It 

does not represent the contraction of that muscle, nor does it represent the firing of the SA node [25]. P-wave 

appears before the QRS-complex or the left side of the QRSon. For the P-wave delineation flowchart 

algorithm, decomposition signal level DL4 and DL5 (DL45) are used. An adaptive window is used for P-

peak detection. An original searching window (OSW) has proposed before by [19]. The (5) of OSW can be 
explained by, 

 

𝑂𝑆𝑊 = [𝑄𝑅𝑆𝑜𝑛 − 0.33 × 𝑅𝑅𝑚𝑒𝑎𝑛20 × 𝑓𝑠: 𝑄𝑅𝑆𝑜𝑛 − 15]    (5) 

 

where 𝑅𝑅𝑚𝑒𝑎𝑛20 is average of the first twenty values of average RR and 𝑓𝑠 is frequency sampling. 

From OSW, find the maximum value in DL45 (Pmax45) and the denoised signal (Pmax) on OSW. Then, 

calculate the threshold P (𝑡ℎ𝑟𝑃) which defined as, 
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𝑡ℎ𝑟𝑃 = 0.125 × max (|𝑡ℎ𝑟𝐷𝐿4+𝐷𝐿5[𝑛])      (6) 

 

There is a condition for P-peak detector from (6) if Pmax and Pmax45 are greater than 𝑡ℎ𝑟𝑃  then 

calculate the difference between Pmax and Pmax45. Then, get the maximum value in the denoised signal as 

P-peak if Pmax and Pmax45 is less than 𝑡ℎ𝑟𝑃 . In addition, there is a condition that the difference in Pmax and 

Pmax45 is less than five points, so get the maximum value in denoised signal as P-peak, if not then capture 
the maximum value in signal DL45 as P-peak. Nevertheless, if the time difference between the maximum 

value noticed with the OSW and QRSon is too small, the searching window should be modified. Thus, the 

ration of 𝐸𝑝𝑠𝑃  is defined as, 

 

𝐸𝑝𝑠𝑃 =
𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 max 𝑣𝑎𝑙𝑢𝑒 𝑎𝑛𝑑 𝑄𝑅𝑆𝑜𝑛

𝑅𝑅𝑎𝑣
     (7) 

 

If 𝐸𝑝𝑠𝑃  is less than 0.12 seconds, make a new windows size called Narrow Searching Windows 

(NSW), then capture the maximum value in denoised signal as P-peak. Furthermore, if the position of P-peak 

is greater than 25 points from QRSon then change left OSW to (QRSon – 45) points. Obtain the maximum 
value in denoised signal on the new OSW as P-peak. The NSW can be defined as, 

 

𝑁𝑆𝑊 = 𝑄𝑅𝑆𝑜𝑛 − 0.18 × 𝑅𝑅𝑚𝑒𝑎𝑛20 × 𝑓𝑠:𝑄𝑅𝑆𝑜𝑛 − 0.12 × 𝑅𝑅𝑚𝑒𝑎𝑛20 × 𝑓𝑠]  (8) 

 

After the P-peak is detected in ECG delineation, take the position of P-peak and the left margin of 

OSW for searching P-peak. Then, get the minimum value in signal DL56 as Pon. If the difference of P-peak 

and Pon is greater than 20 points, then change the left margin of OSW to (P-peak – 20 points), capture the 

minimum value in signal DL56 as Pon.  

 

2.6.   T-wave detection 
T-wave on ECG represents typically ventricular repolarization. It can characterize variations of 

normal cardiac electrophysiology or signs pathology [26]. Many potential presentations that cause T-wave 

abnormalities are associated with high morbidity and mortality without emergent intervention. When the 

ventricular muscles begin to relax, T-wave shows the repolarization of the ventricles. If T-wave shows 

negative morphology, it can indicate that the patient has heart ischemia. For detecting the T wave, the first 

create a searching window, searching windows T (SWT) with a window size (9):  

 

𝑆𝑊𝑇 = [𝑄𝑅𝑆𝑒𝑛𝑑 + 𝑓𝑠 × 0.1 ∶  𝑄𝑅𝑆𝑜𝑛 + 0.46 × √𝑅𝑅𝑚𝑒𝑎𝑛20  × 𝑓𝑠   (9) 

 

Then, to determine the maximum absolute value in the noise removal results on the SWT or TMAX, 

need to define the limit of the amplitude of the T point, so that the threshold (𝛾𝑇) is made (10):  

 

𝛾𝑇 = 0.125 × max(|𝑦𝐷𝐿4+𝐷𝐿5[𝑛]|) , 𝑛 ∈ 𝑆𝑊𝑇     (10) 

 

where the value of 𝑛 is 20 samples before the main wave and 40 samples after the main wave. 

Furthermore, the amplitude value of TMAX is obtained. If the amplitude value of TMAX is positive, then 

take the maximum value on the DL45 reconstruction signal as T-peak. However, if the TMAX amplitude 
value is negative, then take the maximum absolute value on the reconstruction signal DL45 as a T-peak 

point. The value of the T-peak point must be more than the threshold value. If the value of the T-peak point 

when the TMAX is negative is below the threshold value, then repeat the step from the beginning with the 

reconstruction signal DL56. 

 

 

3. RESULTS AND ANALYSIS 

This study proposes symlet as mother function, sym5, for noise denoising and feature extraction. 

From the DWT reconstruction of 8 levels, the level of 2, 3, 4 is used for QRS-complex detection, then the 

level of 5 and 6, and level 4 and 5 for P-wave and T-wave detection, respectively. Based on DWT results, the 

result of onset-offset PQRST localization is compared to expert annotation (.q1c). Furthermore, to analyze 
the comparison of the DWT algorithm and annotation, the average errors and standard deviation is used, 

listed in Tables 1 and 2, respectively. Table 1 shows the mean error in all datasets of QTDB. From the 

results, the R-peak localization can be detected with minimum error in all datasets. This is also similar for  

P-wave detection, still, the result for specific MIT-BIH Long Term ECG is not good enough. However, for 

T-wave detection, all results are poor. The point gap between the DWT algorithm and annotation is hugely 
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significant. It can be seen n in MIT-BIH Arrhythmia and ST Change datasets, the difference obtains 13.30 

points and 13.41 points to the left (minus sign), respectively. The localization of T-wave is a difficult task, 

due to the variance of T-wave morphologies, such as inverted, only upwards, only downwards, biphasic 

negative-positive, and biphasic positive-negative. Overall, for all onset-offset PQRST detection, the best 

result of MIT-BIH Normal Sinus Rhythm is obtained. It is not surprising due to the morphology of ECG 

normal is easier to recognize.  

The standard deviation result of ECG delineation can be listed in Table 2. As seen in Table 2, the T-

wave value gets a high deviation value. A greater deviation value presents the data points that are far from 

the average value (mean). It can be concluded that T-peak or Toff detection is still must be explored. The 

misinterpretation of Toff localization can be affected the decision making for specific cardiac disease, such as 
the calculation of QTc that need the precise QRSon, R-peak, and Toff for LQTS diagnosis.  

 

 

Table 1. Mean Error of ECG Delineation for All Data 
Database Results Pon P-peak R-peak QRSon QRSoff T-peak Toff 

MIT-BIH Arrythmia Mean (point) 0.27 1.77 -0.68 -0.80 1.29 -4.09 -13.30 

Mean (milisecond) 1.08 7.10 -2.72 -3.20 5.16 -16.38 -53.18 

MIT-BIH ST Change Mean (point) -0.34 -1.12 -0.91 -1.75 1.32 -3.33 -13.41 

Mean (milisecond) -1.38 -4.49 -3.64 -7.01 5.26 -13.31 -53.65 

MIT-BIH Supraventricular Arrhythmia Mean (point) 2.59 0.62 -2.00 -2.30 2.12 -1.08 -7.45 

Mean (milisecond) 10.37 2.50 -8.00 -9.20 8.47 -4.31 -29.82 

European ST-T Mean (point) -0.647 -0.273 -0.099 -1.531 1.754 -0.468 -7.266 

Mean (milisecond) -2.59 -1.09 -0.40 -6.13 7.02 -1.87 -29.07 

MIT-BIH Long-Term ECG Mean (point) 4.91 5.25 -1.17 0.34 -1.53 6.98 -5.07 

Mean (milisecond) 19.65 21.00 -4.70 1.35 -6.13 27.94 -20.30 

MIT-BIH Normal Sinus Rhythm Mean (point) -1.42 0.89 -1.53 -2.46 0.50 -4.93 -5.95 

Mean (milisecond) -5.69 3.55 -6.12 -9.84 1.99 -19.73 -23.8 

All QTDB 
Mean (point) 0.25 0.55 -0.81 -1.61 1.38 -1.45 -8.22 

Mean (milisecond) 1.00 2.19 -3.23 -6.42 5.53 -5.78 -32.88 

 

 

Table 2. Standard Deviation of ECG Delineation for All Data 
Database Results Pon P-peak R-peak QRSon QRSoff T-peak Toff 

MIT-BIH Arrythmia Mean (point) 4.59 3.74 1.35 3.59 3.57 14.18 12.68 

Mean (milisecond) 18.38 14.96 5.40 14.35 14.28 56.71 50.74 

MIT-BIH ST Change Mean (point) 3.57 2.62 1.25 1.96 2.56 10.77 13.10 

Mean (milisecond) 14.28 10.48 4.99 7.85 10.23 43.06 52.40 

MIT-BIH Supraventricular Arrhythmia Mean (point) 6.58 3.84 1.15 2.10 2.40 13.44 11.17 

Mean (milisecond) 26.30 15.35 4.61 8.41 9.58 53.77 44.69 

European ST-T Mean (point) 6.006 3.609 1.052 2.208 2.543 9.835 8.930 

Mean (milisecond) 24.02 14.43 4.21 8.83 10.17 39.34 35.72 

MIT-BIH Long-Term ECG Mean (point) 6.58 4.62 1.12 2.04 3.04 13.51 12.66 

Mean (milisecond) 26.31 18.50 4.49 8.18 12.15 54.04 50.66 

MIT-BIH Normal Sinus Rhythm Mean (point) 4.93 1.74 0.60 2.06 2.07 10.55 9.37 

Mean (milisecond) 19.74 6.95 2.42 8.25 8.27 42.19 37.47 

All QTDB 
Mean (point) 5.64 3.40 1.07 2.33 2.62 11.39 10.35 

Mean (milisecond) 22.57 13.62 4.27 9.32 10.47 45.57 41.42 

 

 

The results of this study have compared to the previous studies in the literature for ECG delineation 

in Table 3 [16, 19, 27]. Table 3 lists the benchmark result of the onset and offset that is used in QTDB. All 

units are millisecond (ms). From the previous studies, our results show better results in P-peak detection, 2.19 

± 13.62. However, it still gets poor performance in Toff, -32.38 ± 41.42. The detection of P-peak can be 

related to determine of P-wave and PR-segment to interpret atrial fibrillation and myocardial infarction, 

respectively. The detection of P-wave signal-averaged ECG can detect atrial conduction delay. Also, for 

myocardial infarction, it can be used for analyzing the position of PR-segment to J-point (QRSoff).  
 

 

Table 3. The Benchmark Study of ECG Delineation with the Previous Literature 
Authors Pon P-peak R-peak QRSon QRSoff T-peak Toff 

Laguna et al. [16] 2.0 ± 14.8 3.6 ± 13.2 N/R 4.6 ± 7.7 0.8 ± 8.7 0.2 ± 13.9 -1.6 ± 18.1 

Lin et al. [19] 14 ± 13.3 4.8 ± 10.6 N/R -3.6 ± 8.6 -1.1 ± 8.3 -7.2 ± 14.3 13.5 ± 27 

Mart’inez et al. [27] 0.9 ± 11.5 4.5 ± 12.1 -0.1 ± 9.3 -2.2 ± 10.1 4 ± 9.8 -2.4 ± 12.5 -0.9 ± 17.1 

This Study 1 ± 22.57 2.19 ± 13.62 -3.23 ± 4.27 -6.42 ± 9.32 5.53 ± 10.47 -5.78 ± 45.57 -32.88 ± 41.42 
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4. CONCLUSION 

The precise ECG delineation is still a common issue for interpreting cardiac disease. Some nonideal 

effects usually affect experts for correct diagnoses, such as baseline wander, power-line noise, motion, and 

muscle artifact. DWT is efficient since analyzing non-stationary signals for noise removal and feature 

detection. In this paper, DWT is used for noise removal and PQRST onset and offset detection. From the 

experiment of this study validated in the well-known dataset, the highest result of feature segmentation is P-

peak that achieve 2.19 and 13.62 of mean error and standard deviation, respectively. Unfortunately, T-wave 

gets the poor performance due to the morphology of the T-wave itself is not always normal. It can be affected 
by inverted T-wave, biphasic T-waves, and others. For further research, it can be explored for the automated 

way feature representation using deep learning. The algorithm's improvement can be enhanced to detect some 

specific disease, such as QTc for LQTS.  
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