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Abstract

Background

The electrocardiogram (ECG) is a widely used diagnostic that observes the heart activities

of patients to ascertain a heart abnormality diagnosis. The artifacts or noises are primarily

associated with the problem of ECG signal processing. Conventional denoising techniques

have been proposed in previous literature; however, some lacks, such as the determination

of suitable wavelet basis function and threshold, can be a time-consuming process. This

paper presents end-to-end learning using a denoising auto-encoder (DAE) for denoising

algorithms and convolutional-bidirectional long short-term memory (ConvBiLSTM) for ECG

delineation to classify ECG waveforms in terms of the PQRST-wave and isoelectric lines.

The denoising reconstruction using unsupervised learning based on the encoder-decoder

process can be proposed to improve the drawbacks. First, The ECG signals are reduced to

a low-dimensional vector in the encoder. Second, the decoder reconstructed the signals.

The last, the reconstructed signals of ECG can be processed to ConvBiLSTM. The pro-

posed architecture of DAE-ConvBiLSTM is the end-to-end diagnosis of heart abnormality

detection.

Results

As a result, the performance of DAE-ConvBiLSTM has obtained an average of above

98.59% accuracy, sensitivity, specificity, precision, and F1 score from the existing studies.

The DAE-ConvBiLSTM has also experimented with detecting T-wave (due to ventricular

repolarisation) morphology abnormalities.

Conclusion

The development architecture for detecting heart abnormalities using an unsupervised

learning DAE and supervised learning ConvBiLSTM can be proposed for an end-to-end
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learning algorithm. In the future, the precise accuracy of the ECG main waveform will affect

heart abnormalities detection in clinical practice.

Introduction

Heart abnormality (HA) was responsible for less than one-tenth of all deaths worldwide at the

beginning of the 20th century [1]. Global HA deaths are projected to increase to 23.4 million,

comprising 35% of all deaths in 2030 [2]. Medical practitioners analyse information about the

electrical function of the heart via electrocardiogram (ECG) signals. The electrocardiogram is

a non-invasive, economic primary tool that can be used to diagnose HA [3–5]. The signals

come from the electrodes placed on the patient’s limbs and the surface of the chest [3]. Rele-

vant information from the ECG must be extracted from the physiological signal to support a

specific healthcare application [6]. However, noise or artifacts are merged with the ECG signal,

making it hard for the physicians to ascertain a true diagnosis. The unwanted signals encoun-

tered in ECG signals include powerline interference, baseline wander, electrode motion arti-

facts, and electromyographic noise [7]. These ontologies are unavoidable to contain conflicts

and inconsistencies in physicians’ observations. The changes in ECG waveforms indicate an

illness of the cardiac system that may occur for any reason. ECG signals are enhanced by

removing various noises and artifacts to avoid misunderstanding. As a result, applying ade-

quate signal processing methods is beneficial in eliminating noise from ECG signals.

Several signal processing applications, such as denoising, have been implemented in many

works of literature [8–11]. ECG signal denoising aims to eliminate as much noise as feasible

while preserving as much signal as possible. Daqrouq used discrete wavelet transform (DWT)

to reduce the ECG baseline wandering [12]. Discrete wavelet transform is used for ECG signal

pre-processing because of the properties of good representation, nonstationary signals and the

possibility of dividing the ECG signal into different frequency bands. Sayadi and Shamsollahi

[8] presented the adaptive bionic wavelet transform (BWT) for ECG baseline correction. The

resolution in the time-frequency domain can be adaptively adjusted, not only by the signal fre-

quency but also by the signal instantaneous amplitude and its first-order differential. Jenkal

et al. [9] explored DWT to improve the filtering of the ECG signal. The study combines the

DWT and an efficient method using the adaptive dual threshold filter (ADTF). In the results,

the ADTF-DWT method offered high performance compared to an adaptive algorithm using

a mean filter [10] and an ADTF and Riemann–Liouville integral [13]. Fasano et al. [14]

intended to preserve the ST-segment when removing baseline wander. The study carries out

an approach based on quadratic variation reduction. The quadratic variation is a well-known

property used to analyse stochastic processes. Kaur et al. [15] used parameters such as power

spectral density (PSD), average power, and signal-to-noise ratio (SNR), which calculated sig-

nals to compare the performance of different filtering methods. In addition, some studies pro-

pose the implementation of wavelet networks for ECG noise reduction. Zhang and Benveniste

[16] first introduced the performance of wavelet networks. Poungponsri and Yu [17] presented

an adaptive filtering technique based on wavelet transform and an artificial neural network for

ECG signal noise reduction. The neural network employed in this approach performs the

inverse wavelet transform (IWT) for signal reconstruction and also serves as a nonlinear adap-

tive filter to further reduce noise.

The applications mentioned above for signal denoising are capable of reducing ECG noise.

Outside of the ECG signal frequency band, an adaptive filter can properly eliminate noise; nev-

ertheless, it will fail when the signal and noise have the same frequency range. Also, by shrink-

ing the wavelet coefficients in the transformed domain, the wavelet transform can effectively
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suppress noise. Unfortunately, obtaining a suitable wavelet basis function and threshold tech-

nique requires prior information, which is time-consuming in practice [18]. Therefore, those

analyses show that there are still chances to improve the conventional ECG denoising tech-

niques further.

Recently, denoising algorithms based on deep learning (DL) have been explored for per-

forming the ECG signal denoising [19–23]. The deep learning algorithms can generalise for

the scenarios of numerous noises using a single model. Those models learn their parameters

for different noisy conditions, and an individual model can denoise various noises [24]. As

computing power improves, many DL algorithm-based ECG denoising studies appear promis-

ing due to their improved generalisation capacity in various noise scenarios. The signal denois-

ing algorithm based on the denoising auto-encoder (DAE) has had an outstanding

performance compared to conventional denoising algorithms [19–23]. The DAE, a variant of

the auto-encoder (AE), is composed of encoding and decoding layers; the encoding layer

keeps the lower dimensional representation in the hidden layer, and the decoding layer

extracts features to reconstruct the input [25]. With the excellent performance of the DAE to

enhance the ECG signal conditions from noise and artifacts, this study aims to combine the

DAE as the ECG denoising technique with our previous model, ConvBiLSTM, for detecting

heart abnormalities [26]. The convolution layer as the feature extraction, part of convolutional

neural networks (CNN) [27, 28], focused solely on one-dimensional ECG signal data. BiLSTM

can be proposed as the classifier with both forward and backward phases to predict the ECG

waveform (P-wave, QRS-complex, T-wave and isoelectric lines).

The paper’s structure follows: Section 2 discusses the experimented data, DAE-Conv-

BiLSTM architecture, and used hyperparameters. Section 3 presents the results and visualisa-

tion of the reconstructed ECG signal using trained DAE and the performance of ECG

delineation based on ConvBiLSTM. In the last section, we offer the conclusion.

The contributions of the study

In our previous study [26], we generated the stacking of the convolutional layer and the bidi-

rectional long short-term memory (BiLSTM) for delineating the ECG waveform. In the instant

study, we combined the DAE-ConvBiLSTM to detect heart abnormalities. We propose a novel

denoising algorithm for ECG signals utilising ConvBiLSTM. The study’s contributions can be

summarised as follows:

• To propose end-to-end learning using DAE for single-lead ECG signal denoising and Con-

vBiLSTM for delineating the ECG waveform. DAE will be optimised to eliminate noise from

ECG signals because it was trained on ECG data. ConvBiLSTM, a hybrid deep learning

model, has been proposed to classify the waveform of P-wave, QRS-complex, T-wave, and

isoelectric lines.

• To detect heart abnormalities in the ECG surface by T-wave (due to ventricular repolarisa-

tion) observation to identify abnormalities and diseases associated with it.

Material and method

The proposed methodology of the manuscript can be presented in Fig 1. The raw ECG signal

of QTDB has been experimented with for a delineation task. The raw data has been denoised

using the encoder and decoder phases using DAE. The reconstructed signals are the input for

ECG feature extraction in convolution layers. The representation of feature maps can be calcu-

lated in forward and backward stages to classify the P-wave, QRS-complex, T-wave and Iso-

electric line.
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Data preparation

The QT Database (QTDB) has been widely explored to generate the ECG delineation model,

i.e., DAE-ConvBiLSTM [29]. The QTDB has 105 records, all digitized at 250 Hz. Among the

records, the MIT-BIH Normal Sinus Rhythm Database were the only one experimented on in

this study due to its complete and normal ECG waveform pattern. The QTDB contained a

beginning (onset), peak, and end (offset) of each of the P-wave, QRS-complex, and T-wave in

signals 0 and 1, respectively, using the ecgpuwave.

After the ECG delineating process using the DAE-ConvBiLSTM model, the model was

used to detect the presence of T-wave alternans (TWA). The T-Wave Alternans Challenge

Database is a challenge database for TWA identification with a wide variety of data that might

be appropriate for the challenge [30]. There are 100 records sampled at 500 Hz. All records

include patients with heart abnormalities and other risk factors and synthetic cases with cali-

brated amounts of TWA. The summary of data preparation can be seen in Table 1.

DAE-ConvBiLSTM

The AE comprises one input, one hidden, and one output layer. The encoder and decoder are

the basic architecture of an AE. The AE takes unlabeled inputs, encodes these inputs, and

Fig 1. The proposed methodology of DAE-ConvBiLSTM.

https://doi.org/10.1371/journal.pone.0277932.g001

Table 1. ECG database description.

Dataset Frequency sampling Number of records Description

Physionet: QT Database (MIT-BIH Normal Sinus Rhythm Database) 250 Hz 10 Delineation model for training and validation test

T-Wave Alternans Challenge Database 500 Hz 100 TWA Quantification

https://doi.org/10.1371/journal.pone.0277932.t001
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subsequently reconstructs the inputs as precisely as possible [6]. Vincent et al. [31] originally

invented a variant of the classic AE applied in ECG processing tasks, denoising auto-encoder

(DAE). The DAE was first explored to obtain robust features from a corrupted input and play

the role of denoising. The DAE created a corrupted copy of the input by introducing some

noise. Denoising refers to intentionally adding noise to the raw input before providing it to the

network. Unlike AE, DAE had to remove the corruption to generate an output similar to the

input. The initial input, x, is corrupted to ~x by a stochastic mapping ~x � qð~xjxÞ. The DAE

used corrupted ~x as the input data, which first mapped to a hidden representation using the

encoder:

y ¼ φðWxþ bÞ ð1Þ

Then, it was reconstructed using a decoder,

z ¼ φ0ðW 0yþ b0Þ ð2Þ

where W is a weight matrix and b is the bias vector of the encoder, then W’ is a weight matrix

and b’ is the bias vector of the decoder, and nonlinear functions were represented by φ and φ’.

To minimise the error of reconstruction, all parameters are trained to make z as the uncor-

rupted input of x. It can be formulated as:

L ¼
argmin

y

1

N

XN

i¼1

kxi � zik
2

2
ð3Þ

where θ is a parameter set {W,b,W’,b’}, N is the number of data samples, and i is the sample

index.

The previous study proposed the ConvBiLSTM as the delineation model for the ECG sin-

gle-lead [26]. The four convolution layers and BiLSTM are generated to onset and offset the P-

wave, QRS-complex, T-wave, and other ECG segment classifications. In this study, we propose

DAE for ECG noise cancellation and ConvBiLSTM for the delineation model. The hyperpara-

meter tuning for DAE-ConvBiLSTM can be listed in Table 2. Table 2 listed the filter and kernel

sizes, epochs, batch size, optimisation, loss function, and learning rate as the optimisation to

obtain the best hyperparameter for a learning algorithm. In this study, we have tuned two

DAE model with disctinct architecture. In the first model of DAE, there were 370 and 185

nodes, for encoder and decoder layers. In addition, for the second model of DAE, there were

370 nodes for the encoder and decoder layers for the DAE model, respectively. Table 2 also

shows the comparison of SNR result of both the DAE model. As we can seen, the SNR of the

second model of DAE achieve the highest of 36.94 decibels (dB) and the first model of DAE

Table 2. The hyperparameter optimisation of DAE-ConvBiLSTM.

Hyperparameters DAE (Noise Cancellation) ConvBiLSTM (Delineation)

Model 1 Model 2

Layer (370–185) (ReLU-Sigmoid) (370–370)

(ReLU-Sigmoid)

Convolution 8 x 3, 16 x 3, 32 x 3, 64 x 3, strides = 1 + ReLU—BiLSTM

Epochs 400 300

Batch size 64 8

Optimisation Adaptive moment estimation (Adam)

Loss function Mean Square Error (MSE) Categorical cross-entropy

Learning rate 0.00095 10−5

Reconstructed SNR (dB) 34.28 36.94

https://doi.org/10.1371/journal.pone.0277932.t002
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only get 34.28 dB. As a result, the second model outperformed of the first model of DAE. In

the second model of DAE, the rectified linear unit (ReLU) is commonly used with the activa-

tion function (nonlinear) in the encoder layer and the output layer (the last layer) contains a

sigmoid in the range [0, 1]. The ConvBiLSTM consisted of four convolutional layers (8, 16, 32,

and 64 filter sizes), the stride of one, kernel size of three, and single layer BiLSTM. The output

of DAE-ConvBiLSTM predicts the start and end of the P-wave, QRS-complex, T-wave, and

isoelectric line. The pseudocode of DAE-ConvBiLSTM can be presented in algorithm 1.
Algorithm 1. DAE-ConvBiLSTM
Parameter: input x(370,1), output yt(370,5)
1: For each epoch do:
2: If a length < 370 do:
3: Apply zero-pad to am

ij

4: #Dimension of a is (370, Filtersize)
5: End if
#Denoising Autoencoder (DAE)
6: For each sample in X do:
7: Calculate Encoder of a by y = φ(Wx+b)
8: Calculate Decoder of a by z = φ0(W0y+b0)
9: End for
10: End for
11: For each epoch do:
#CNNs Feature Extraction
12: For each convolutional layer do:
13: For each sample in X do:
14: Calculate am

ij from X by

am
ij ¼ φðbi þ

XM

k¼1

Wik Xkj þ k � 1Þ ¼ φðbi þWT
i XjÞ

15: End for
16: #Dimension of a is (370—KernelSize + 1, FilterSize)
17: End for
18: #Dimension of a is (370, 64)
#BiLSTM Classifier
19: For each sample in a do:
20: Calculate Forward Pass of a by LST
* M1

ft ¼ tanhðW1
i*hxt þW1

*h*hLSTM
*1

t� 1
þ b1

*hÞ

21: Calculate Backward Pass of a by LST
( M1

bt ¼ tanhðW1
i(hxt þW1

(h(hLSTM
(1

tþ1
þ b1

(hÞ

22: #Dimension of the output a is (370,2�Neuron Size)
23: Calculate y, by y1

t ¼ tanhðW1
h*oLST* M1

t þW1
h(0

LST( M1
t þ b1

0
Þ

24: End for
25: End for

To generate the DAE-ConvBiLSTM model, we have run all experiments with Windows 10

Pro 64 Bit, one Intel(R) Core (TM) i9-9900K CPU@ 3.60Ghz processor (32 RAM), and one

NVIDIA GeForce RTX 2080 8GB GPU. The programming language is Python in the Spyder

5.2.2 DL framework and libraries, i.e., tensorflow, keras, numpy, pandas, sklearn, matplotlib,

and the native Python WFDB package.

Results and discussion

The DAE algorithm was trained with noise injected with a SNR of 35 dB. The injected noise

was a signal target. There were 370 input nodes representing one beat (from the start of P-

wave1 to the start of P-wave2). The mean squared error (MSE) and adaptive moment estima-

tion (Adam), with a batch size of 64, were used as a loss function and optimiser for the DAE

model’s compilation (refer to Table 2). The noisy ECG sample ~x is supplied to the encoder
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phase, which then concatenates the encoder output with the latent vector z and feeds it to the

decoder phase. The decoder outputs the denoised ECG samples ~x. The trained DAE was con-

structed by encode and decode layers, with 370 nodes, respectively. The proposed DAE

achieved 99.71% accuracy. The visualisation of the ECG signal target (denoised signal) and

result (the trained DAE) can be seen in Fig 2.

The result of the trained DAE (decode layer as reconstructed signal) is used as an input of

ConvBiLSTM. The delineation of the ECG signal can be classified as the start and end of the P-

wave, QRS-complex, T-wave, and isoelectric line. The zero-padding is represented by class if

the beat length is smaller than 370 nodes, which the technique was done by adding the value

zero (0). Table 3 lists the average performance of all waveforms obtained above 98% in all met-

rics. Among the three main ECG waveforms, the highest accuracy and precision were achieved

by the QRS-complex, corresponding to sudden depolarisation of ventricles at a rate of 99.86%

and 98.57%, respectively. Our DAE-ConvBiLSTM showed promising results in detecting the

R-peak. The R-peak is one of the essential sections of the QRS-complex and is used to diagnose

heart rhythm abnormalities and determine heart rate variability (HRV).

Fig 2. The samples of visualisation of the target and results of DAE.

https://doi.org/10.1371/journal.pone.0277932.g002
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To analyse the misclassified performance, the confusion matrix (error matrix) can be used

to visualise the performance of a classification algorithm. Fig 3 presents the number of true

and predicted labels of the P-wave, QRS-complex, T-wave, and isoelectric lines. All of the diag-

onal elements represent outcomes that have been correctly classified. The confusion matrix’s

off diagonals represent the misclassified outcomes. As a result, the best classifier will have a

confusion matrix with only diagonal members and zero values (0) for the rest of the elements.

Fig 3 represents the misclassified outcomes, mostly from the isoelectric line, due to the over-

lapping of the ECG interval and segment around the P-wave, QRS-complex, and T-wave. The

isoelectric line, or baseline (no deflections), is a straight line where there are no positive or neg-

ative charges of electricity.

Fig 3. The confusion matrix of DAE-ConvBiLSTM.

https://doi.org/10.1371/journal.pone.0277932.g003

Table 3. The performance of ECG delineation using the proposed DAE-ConvBiLSTM model.

Metrics Performance (%)

P-wave QRS-complex T-wave Isoelectric line Zero-padding Average

Accuracy 99.81 99.86 99.35 99.03 99.90 99.59

Sensitivity 98.55 99.26 97.49 98.62 100 98.79

Specificity 99.89 99.90 99.62 99.28 99.90 99.72

Precision 98.26 98.57 97.37 98.82 99.90 98.59

F1 98.41 98.91 97.43 98.72 99.90 98.68

https://doi.org/10.1371/journal.pone.0277932.t003
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A technique to visualize classifier based on their performance and to evaluate the prediction

accuracy of a model, the receiver operating characteristic (ROC) curve is the most popular tool

in medical research. The popularity comes from several well-studied characteristics, such as

easy comparison of multiple models and the area under the curve (AUC) as a single-value

quantity [32]. The application of ROC curve analysis to visualizing and examining the behav-

ior of diagnostic systems has been extended. Fig 4(A) shows the ROC curve to visualize the

DAE-ConvBiLSTM based on class of PQRST wave and isoelectric line. The AUC value has the

range between 0 and 1.0, due to AUC is a portion of the area of the unit square. All class of

ECG waveform present the well-performance due to the curve approaches the point 0.1.

In addition, to organize the decision problems in machine learning while dealing with

highly skewed datasets, Precision-Recall (PR) curve could give a more information graph for

the performance of algorithm [32]. The area under the precision-recall curve, or AUC-PR, is

determined, with each point on the curve defined by a distinct value of the threshold to convert

continuous to binary predictions. Different to ROC, the PR curvers plotprecision vs. recall,

due to precision is influenced by imbalanced class. In imbalanced scenario, the AUC-PR will

be more sensitive than AUC-ROC. Fig 4(B) shows the PR curve of all waveform class near to

Fig 4. The ROC and P-R curves of DAE-ConvBiLSTM. (a) ROC curve and (b) PR curve.

https://doi.org/10.1371/journal.pone.0277932.g004
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1.0 (area = 0.99), as a perfect classifier. From the results of AUC-ROC and AUC-PR, it reflects

the true quality of the DAE-ConvBiLSTM’s performance.

In this study, we have compared the accuracy and precision of our proposed model DAE-

ConvBiLSTM to recent works related the ECG delineation using DL with QT Database (refer

to Table 4). Table 4 shows that CNN and LSTM/BiLSTM have mostly explored ECG delinea-

tion tasks [33–36]. It can be claimed that CNN and LSTM/BiLSTM perform excellently in clas-

sifying three primary ECG waveforms, i.e., P-wave, QRS-complex and T-wave. However, our

proposed model (DAE-ConvBiLSTM) outperformed the accuracy of P-wave, QRS-complex

and T-wave in the previous studies [33, 34].

Most techniques decompose the ECG signal into a beat-to-beat time series that includes the

T-wave’s characteristics. The measurement of the T-wave of the ECG signal is hard to obtain

due to a precise mathematical formulation at the end of the T-wave that does not exist. How-

ever, in this study, we experiment with the ECG delineation to detect the onset and offset of

the T-wave. In the case study, we detected the TWA. The TWA reflected the ECG T-wave

beat-to-beat fluctuations and correlated with repolarisation dispersion and sudden cardiac

arrest (SCA) mechanisms. The TWA quantification is in the range of microvolts. To detect the

presence of TWA, the best model of the DAE-ConvBiLSTM is required to obtain the R-peak

and T-wave. The TWA magnitude is acquired from the maximum variation between a row’s

even and odd beats. After successfully separating the T-waves, the even and odd T-peaks are

separated into two groups. The difference between these matrices determines whether or not it

would be termed a TWA (refer to Algorithm 2). If the zero-crossing value is smaller than 0.35

times the length of the total difference between the even and odd T-peaks, the heart rate value

is greater than 80 beats per minute (BPM). If the difference values tend to gather closely

around some particular value with a limited number of zero-crossings, then TWA is assumed

to be present.
Algorithm 2. TWA Quantification
1: initiate all_twave as array
2: for data all_t_peak do:
3: initiate odd_data and even_data as float number
4: If data %2 do:
5: move data to even_data
6: else
7: move data to odd_data
8: end if
9: TW = odd_data—even_data
10: if zero-crossing < 0.35 � length(TW) & Heart Rate > 80
11: all_twave (index) = max(|TW(2:end-1)|)

#TWA detected
12: else
13: all_twave(index) = 0

Table 4. The benchmarking study of recent works using DL with QT database.

Authors Method Performance (%)

Accuracy Precision

P-wave QRS-complex T-wave P-wave QRS-complex T-wave

Londhe and Atulkar [33] CNN-BiLSTM 98.20 98.56 96.17 - - -

Malali et al. [34] LSTM 94.87 96.66 92.73 - - -

Jimenez-Perex et al. [35] CNN - - - 90.12 99.14 98.25

Peimankar and Puthusserypady [36] CNN-LSTM - - - - 99.52 -

Proposed work. DAE-ConvBiLSTM 99.81 99.86 99.35 98.26 98.57 97.37

https://doi.org/10.1371/journal.pone.0277932.t004
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#TWA not detected
14: end if
15: end for

We have calculated the TWA quantification using the experimented data presented in the

T-Wave Alternans Challenge Database. Out of 30 records with synthesized ECGs with TWA,

the DAE-ConvBiLSTM successfully achieved 20 records. The results of the TWA quantifica-

tion can be listed in Table 5, which shows the calculation of zero-crossing, the difference

between even and odd T-peaks, heart rate, and the results of TWA quantification. There are

ten records that cannot be detected as records with the TWA’s synthesized ECGs due to over-

lapping between the isoelectric line. Our model has misclassified the isoelectric line to P-wave

and QRS-complex, but mostly misclassified occur in T-wave (refer to Fig 3). The TWA quanti-

fication relies on precise and accurate T-wave detection. Our delineation model (Con-

vBiLSTM) defines the T-wave position based on ecgpuwave software (as the ground truth).

The morphology of the T-wave tends to present an abnormal pattern, such as biphasic,

inverted, and only downwards.

Table 5. The results of T-wave abnormalities in TWA quantification.

Records (synthesised with TWA) Zero-crossing Difference between even and odd T-peaks Heart Rate TWA Quantification Result

twa01 31 (103,) 103 375.62 Detected

twa06 35 (123,) 123 150.68 Detected

twa09 17 (131,) 131 152.21 Detected

twa13 0 (130,) 130 18.99 Detected

twa15 48 (110,) 110 0 Non-detected

twa17 45 (124,) 124 0 Non-detected

twa21 29 (126,) 126 147.5 Detected

twa25 4 (122,) 122 2.76 Detected

twa28 50 (107,) 107 0 Non-detected

twa29 41 (131,) 131 373.89 Detected

twa30 45 (132,) 132 148.84 Detected

twa33 59 (126,) 126 0 Non-detected

twa34 18 (127,) 127 2.061 Detected

twa35 41 (133,) 133 1.726 Detected

twa50 34 (127,) 127 1.375 Detected

twa51 39 (130,) 130 1.374 Detected

twa64 29 (126,) 126 1.374 Detected

twa67 37 (128,) 128 147.764 Detected

twa69 38 (103,) 103 0 Non-detected

twa70 24 (123,) 123 148.095 Detected

twa72 0 (133,) 133 6.226 Detected

twa73 1 (124,) 124 5.186 Detected

twa76 34 (125,) 125 1.374 Detected

twa78 54 (126,) 126 0 Non-detected

twa79 33 (134,) 134 3.436 Detected

twa82 3 (130,) 130 3.453 Detected

twa88 42 (106,) 106 0 Non-detected

twa91 43 (110,) 110 0 Non-detected

twa97 60 (126,) 126 0 Non-detected

twa98 59 (126,) 126 0 Non-detected

https://doi.org/10.1371/journal.pone.0277932.t005
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Conclusion

Interference or noise (unwanted signals) can contaminate an ECG with external and internal

physiological processes in the body, and the morphology changes over time. The presence of

unwanted signals arduous extracting accurate features from the ECG signal. It would affect the

reliability of diagnosing heart abnormalities in clinical practices. This paper aims to develop an

end-to-end learning algorithm for heart abnormality detection, using unsupervised learning

DAE and supervised learning ConvBiLSTM. The proposed method, DAE-ConvBiLSTM, has

been implemented to detect the abnormality of T-waves related to heart abnormalities (due to

ventricular repolarisation). As a result, for the ECG denoising algorithm, DAE has obtained

99.71% accuracy. The DAE reconstruction is learned, in which the AE attempts to produce a

representation as close to its original input as possible from the reduced encoding. It may aid

the AE’s understanding of the main data features. The AE algorithm is progressively being

used to learn generative models of data. In addition, the DAE-ConvBiLSTM has successfully

achieved an average performance above 98% in all performance metrics. The proposed DAE-

ConvBiLSTM can therefore detect the T-wave abnormality related to TWA.

Although the results of our study look promising, some limitations can be explored in the

future:

1. To generate the DAE-ConvBiLTM, we only used the single ECG database with the normal

sinus rhythm records with the complete and normal pattern of the ECG waveform.

2. The proposed model, DAE-ConvBiLSTM, has only been tested to detect the presence of

TWA. In the future work, there will be more chances to enhance the performance of end-

to-end learning to detect several heart abnormalities related to ECG morphology besides

TWA. The precise accuracy of the ECG’s main waveform will affect the detection of heart

abnormalities in clinical practice.
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