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Abstract: Accurate segmentation of fetal heart in echocardiography images is essential for detecting
the structural abnormalities such as congenital heart defects (CHDs). Due to the wide variations
attributed to different factors, such as maternal obesity, abdominal scars, amniotic fluid volume,
and great vessel connections, this process is still a challenging problem. CHDs detection with
expertise in general are substandard; the accuracy of measurements remains highly dependent on
humans’ training, skills, and experience. To make such a process automatic, this study proposes
deep learning-based computer-aided fetal heart echocardiography examinations with an instance
segmentation approach, which inherently segments the four standard heart views and detects the
defect simultaneously. We conducted several experiments with 1149 fetal heart images for predicting
24 objects, including four shapes of fetal heart standard views, 17 objects of heart-chambers in
each view, and three cases of congenital heart defect. The result showed that the proposed model
performed satisfactory performance for standard views segmentation, with a 79.97% intersection
over union and 89.70% Dice coefficient similarity. It also performed well in the CHDs detection,
with mean average precision around 98.30% for intra-patient variation and 82.42% for inter-patient
variation. We believe that automatic segmentation and detection techniques could make an important
contribution toward improving congenital heart disease diagnosis rates.

Keywords: fetal echocardiography; deep learning; fetal heart standard view; heart defect; instance
segmentation

1. Introduction

Fetal echocardiography examination is widely applied in clinical settings due to
its non-invasive nature, reduced cost, and real-time acquisition [1]. Such examination
is usually assessed by ultrasound after an approximate gestational (menstrual) age of
18 weeks to find the heart structural abnormalities [2]. Assessment and evaluation of fetal
heart abnormalities provide crucial information to families prior to the anticipated birth of
their children about diagnosis, underlying etiology, and potential treatment options, which
can greatly improve the survival rates of fetuses. One of the most common structural heart
diseases is congenital heart defects (CHDs), which affect 5–9 out of 1000 births; CHDs
cause 5% of all childhood deaths [2,3] and 18% of liveborn infants with CHDs die within
the first year [4].

The process of CHDs examination begins with determining the location of the fetal
heart based on four standard views, i.e., four-chamber (4CH), three-vessel and three-vessel
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trachea (3VV/3VT), and left and right ventricular outflow tract (LVOT/RVOT) [4]. The
4CH view is a basic standard fetal heart scan, whereas LVOT, RVOT, and 3VT views are
complex fetal heart scans [3]. By using such views, the fetal heart anatomy abnormalities
or CHDs can be detected. The previous result indicates that CHDs detection has improved
from 55–65% in 4CH view evaluation only, and increased to 80–84% with combination view
of LVOT, RVOT, and 3VT assessment [3,5]. However, physiological assessment to obtain
fetal heart anatomy abnormalities utilizing such standard views requires well-trained and
experienced maternal–fetal clinicians.

CHDs detection with expertise in general are substandard, the detection rates of only
30–50% [5]. Although a detailed quality control guideline has been developed to evaluate
fetal heart standard planes, the accuracy of measurements remains highly dependent on
humans’ training, skills, and experience [5]. Intra-observer and inter-observer variabilities
exist in routine practice produce inconsistencies in image quality [6], which can lead
to variances in the reading of specific heart anatomic structures [5,7]. In most cases
of missed CHDs, either the fetal heart view is not correctly obtained, or the defect is
clearly demonstrated but not recognized by the clinicians and operator [6]. Furthermore,
there is a lack of well-trained clinicians in areas with poor medical conditions, making
fetal echocardiography examinations impossible to perform. Previous work has shown a
positive impact of increasing the operator experience and clinicians training programs on
recognition of fetal heart anatomy [8–12]. Unfortunately, such programs are labor and time
intensive and need to be repeated with staff turnover. To this end, automatic approaches
to fetal echocardiography image quality assessment are needed to ensure that images
are captured as required by guidelines and provide accurate and reproducible fetal heart
biometric measurements.

Computer-aided diagnosis (CAD) with artificial intelligence (AI) can be used in fetal
echocardiography image assessment to automatically segment and classify the fetal heart
organ [11–13] and detect defects in the heart septum [7]. In the anatomically structure,
CHDs condition commonly is recognized by a hole in atria, ventricle, or both, named atrial
septal defect (ASD), ventricular septal defect (VSD), and atrioventricular septal defect
(AVSD) [3,5], respectively. These conditions are very dangerous, as they allow shunt of
blood flow from the right heart chambers to the left, and vice versa [3]. The deep learning
(DL)-based convolutional neural networks (CNNs) architecture is an AI approach that can
apply to fetal object diagnosis [6,7,9–18].

Several studies have reported powerful results regarding CNNs’ ability in segmen-
tation, classification, and detection based on medical imaging [15–21]. CNNs, which are
applications that perform adaptation functions without being specifically programmed,
learn from data and make accurate predictions or decisions based on past data [6–10].
However, in the fetal echocardiography study based on CNNs leaks through missing
boundaries caused by intra-chamber walls remain unresolved [11]. The previous stud-
ies proposed extracting heart structure patterns by selecting suitable regions of interest
(RoIs) [10]. However, in the experiment, the explored object detection methods work for
one candidate region only; they are hard to implement for detecting multiple candidates.
This issue has been solved using a classification approach [20]. However, in this case,
the CNNs is applied for only single task learning at a time, the process of segmentation,
classification, or object detection is conducted separately in other words, these processes
are not conducted simultaneously.

Multi-task learning in DL is essential for fetal heart imaging, as with the use of such
a combination task, a model can segment multiple regions, select multiple candidates,
classify multiple RoI, and detect multiple medical objects [11,12]. In this study, multi-task
learning in terms of segmentation, classification, and detection processes are performed
simultaneously for accurate fetal heart diagnosis. The contributions of this study are
as follows:

• Propose a methodology for automatic segmentation with two-dimensional fetal heart
echocardiography ultrasound images in normal and abnormal anatomic structure;
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• Develops an instance segmentation approach for multi-task learning;
• Implements the proposed model by conducting the experiment with 24 objects, in-

cluding 4 shapes of basic fetal standard views, 3 structural of congenital heart defect,
and 17 objects of fetal heart chambers in 4 views;

• Validates the robustness of the proposed model with intra- and inter-patient scenario.

The remainder of this paper is organized as follows: Section 2 presents the details
of the materials and methods. The experimental results and discussion are provided in
Section 3. Finally, Section 4 concludes the study.

2. Materials and Methods

The general methodology of our study can be seen in Figure 1, the proposed workflow
is divided into five main processes: data acquisition, data preparation, image annotation,
deep learning model, and model evaluation. The workflow used in this study is utilized
for automatic segmentation of the fetal heart standard view and heart defect detection. The
whole process as summarized in the sub section.

Figure 1. The proposes workflow of fetal heart standard view segmentation for heart defect detection with instance
segmentation approach.

2.1. Data Acquisition

In this study, the essential of anatomic structures used to evaluate image quality were
defined by two senior maternal–fetal clinicians with experience in fetal echocardiographic
examination at the Mohammad Hoesin Indonesian General Hospital. Four fetal heart
standard views in normal anatomy were used, 4CH, 3VT, LVOT, and RVOT, whereas in the
abnormal anatomy to assess CHDs, i.e., ASD, VSD, and AVSD conditions, only 4CH view
was used. The four steps performed to prepare 2-dimension (2D) echocardiography image
data are (i) data collection, (ii) ultrasound video conversion, and (iii) image cropping. The
whole process of data acquisition is summarized as follows:

• The fetal echocardiography image was based on ultrasound video data collected from
the Indonesian Hospital from 18–24 weeks pregnancy women in 4CH, 3VT, LVOT,
and RVOT views with normal anatomy. Such video was recorded using a GE Voluson
E6 with a loop length of 10 s to 5 min. An observational analytic study with a cross-
sectional design was conducted to detect normal and abnormal anatomical structure
fetal heart in utero. Due to the atrial and ventricular of the fetal heart are clearly visible
in 4CH view, thus the cross-sectional fetal heart image for heart defects analysis only
uses 4CH view.
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• The ultrasound video was taken with several size variations of 1.02 megabytes to
331 kilobytes. All ultrasound videos should be transformed into frames and then re-
sized to a resolution of 400 × 300 pixels. All fetal heart images were retrieved for retro-
spective analysis using the digital imaging and communications in medicine (DICOM)
format. The framing process from video to 2D images utilize the cv2.VideoCapture()
function. The ultrasound video was read frame by frame into the new size, and all the
generate frames were stored in frame storage using the cv2.imwrite() code to create
ground truth images.

• The whole fetal heart images generated by software are verified by maternal–fetal clin-
icians in the department of obstetrics and gynecology, General Hospital Mohammad
Hoesin Palembang, Indonesia. By using the cropping process, unnecessary informa-
tion of the raw images was removed. The outputs were coded after cropping from the
echocardiogram video using output_movie.release(). All processes were run on the
Python OpenCV library.

2.2. Data Preparation

The fetal heart ultrasound datasets collection comprised four views of imaging planes
of normal and defective fetal hearts. All images were labeled in accordance with widely
used fetal heart anatomical planes by a maternal–fetal clinician. The dataset represented a
real clinical setting and the ultrasound video data were acquired during standard clinical
practice in one year (between 2020 and 2021). However, due to the pandemic situation,
only about 100 pregnant women attending for routinary pregnancy screening during their
second and third trimesters (18–24 weeks) were included in this study. From the whole
data, the CHDs condition is hard to find, therefore only 20 pregnant women included in this
study exhibited abnormal anatomy, alongside 30 pregnant women with normal anatomy.

Each ultrasound video for one patient produces 40 images; thus, 50 pregnant women
produce about 2000 images in normal and abnormal anatomy. The maternal–fetal clinician
selected images belonging to the four anatomical planes most widely used in routine
maternal–fetal screening. The clinician selected only images complying with the minimum
quality requirements, only a clear cross-sectional scan image was included to process
further. It consists of 332 images for fetal standard view segmentation and 917 images for
heart defect detection (refer to Table 1). The training process randomly split the collected
cases into a training set and a validation set, and the model established by the training set
data was tested against the validation set in order to ensure the accuracy and stability of
the model.

Table 1. Data distribution of fetal heart view and CHDs images. All data are extracted from
ultrasound video from normal and abnormal anatomy.

Class Training Validation Testing Total

3VT view 58 8 6 72

4CV view 75 8 11 94

LVOT view 29 4 3 36

RVOT view 23 4 3 30

ASD 200 9 24 233

VSD 115 10 16 141

AVSD 168 9 18 195

Normal 303 10 35 348

Total 1149

Images with inappropriate anatomical planes (cropped or badly captured) and those
with calipers were excluded. The dataset composition was clearly imbalanced (some classes
were more frequent than others), as is usually the case in real clinical scenarios. The sample
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of the raw ultrasound image was based on four views in normal anatomy, as depicted in
Figure 2. In such sample, there are the left atrium (LA), left ventricle (LV), right atrium (RA),
right ventricle (RV), ductus arteriosus (DUCT), superior vena cava (SVC), aorta ascendens
(AoA), aorta descendens (Ao), and main pulmonary artery (MPA), whereas the sample of
the raw ultrasound image of abnormal anatomy structure, with the three heart defects such
as ASD, VSD, and AVSD condition, is compared to normal anatomy structure in Figure 3.
In the abnormal structure, there are hole (H) as heart defect in each condition. Each defect
has the variation of hole size; such hole size indicates the disease severity. However, in this
study, we only detected the hole, without measuring the hole size.

Figure 2. Fetal heart scan in four standard views of normal anatomy: (a) 4CH; (b) LVOT; (c) RVOT; and (d) 3VT.

2.3. Image Annotation

The anatomical heart structures are critical for the segmentation process. The maternal–
fetal clinician as the image annotator should drew precise boundaries around the heart
images manually with data annotation tool (LabelMe) [7]. LabelMe to provide an online
annotation tool to build image databases for computer vision research. The significant
variations in image quality, shapes, sizes, and orientations between the pregnant women
were used to create a database of ground truths. In the fetal echocardiography with normal
anatomy, each standard view has a different structure of heart chamber; therefore, the
annotation should be conduct for all standard views with their respective chamber such
as, 4CH standard view consists of five heart chambers, i.e., Ao, LA, LV, RA, and RV; 3VT
standard view consists of three heart chambers, i.e., DUCT, SVC, and AoA; LVOT standard
view consists of five heart chambers, i.e., AoA, LA, LV, RA, and RV; and RVOT standard
view consists of four heart chambers, i.e., DUCT, SVC, AoA, and MPA.
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Figure 3. Fetal heart scan in 4CH view for CHDs detection: (a) ASD; (b) VSD; (c) AVSD; and (d) Normal.

Especially for heart defect detection, only 4CH view was used to analyze ASD, VSD,
and AVSD images. Annotated images indicate the position of defect in the atrium, ventricle,
or both of them. Figure 4 depicts the sample of annotated images for a standard view of
4CH, 3VT, LVOT, and RVOT, and Figure 5 shows the sample annotated images of defect
position in ASD, VSD, and AVSD. Finally, the whole annotated images are labelled as the
ground truth database, and it was saved in the JSON file format (json).

Figure 4. The sample of annotated images by maternal–fetal clinician for standard fetal heart view segmentation in (a) 4CH
(orange: view, cyan: AoA, red: LA, grey: RA, green: LV, and red: RV); (b) LVOT (orange: view, cyan: LA, purple: RV, and
blue: LV); (c) RVOT (orange: view, green: MPA, red: DUCT, and yellow: SVC); and (d) 3VT (purple: view, yellow: AoA,
green: SVC, and red: DUCT); based on normal anatomy.
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Figure 5. The sample of annotated image by maternal–fetal clinician for heart defect detection in case: (a) ASD; (b) VSD;
and (c) AVSD. In the annotation, the green line is RA, the red line is LA, the purple line is RV, the blue line is LV, and the
yellow line is defect.

2.4. Deep Learning Model

In this study, the instance segmentation approach is developed based on Mask-RCNN
architecture (refer to Figure 6) [18,22]. The Mask-RCNN structure has two main processes,
region proposal networks (RPNs) as feature extraction and fully convolutional networks
(FCNs) as multi-task learning process in terms of simultaneous classification, detection,
and segmentation.

Figure 6. Instance segmentation approach.
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2.4.1. Region Proposal Networks

The input of the region proposal networks (RPNs) is 2D ultrasound images; all the
fetal hearts have the same size of resolution around 400 × 300 pixels. The ResNet50
architecture was applied as the backbone in the RPNs for the feature extraction mechanism.
It can represent more complex functions and learn features from different network levels,
from edges (shallower layers) to very complex features (deeper layers). The RPNs use to
generate RoIs, which will be used to predict classes and generate masks. Each RPNs had
five convolutional layers, which were used to process high-level feature inputs to low-level
outputs. The ResNet 50 structure as seen in Table 2, and the example feature map from
ResNet 50 as seen in Figure 7.

Table 2. ResNet50 Structure.

Layer Name Output Size Output Shape

Conv 1 112 × 112 7 × 7, 64 Stride 2

Conv 2 56 × 56

3 × 3 max pool, stride 2 1× 1; 64
3× 3; 64

1× 1; 256

× 3

Conv 3 28 × 28

 1× 1; 128
3× 3; 128
1× 1; 512

× 4

Conv 4 14 × 14

 1× 1; 256
3× 3; 256
1× 1; 1024

× 6

Conv 5 7 × 7

 1× 1; 512
3× 3; 512
1× 1; 2048

× 3

- 1 × 1 Average pool, 1000-d FC, Softmax

FLOPs 3.8 × 109

Figure 7. The example of feature map extracted from ResNet50 architecture in the RPNs back bone.

Mask-RCNN adds learning process for segmentation masks in each RoI. The segmen-
tation process is simultaneous with each of the other processes (bounding box regression
and class generation), using convolution arrays (feature map) from RPNs. The RPNs
classify the feature and tighten bounding boxes with region of interest (RoI) alignment
(RoIAlign). The hyperparameters used in the RPNs’ structure are batch size for each image
of 256; learning rate of 0.001; momentum of 0.9; non-maximum suppression threshold of
about 0.7; intersection over union (IoU) baseline of 0.5; and anchor sizes of 32, 64, 128, 256,
and 512. RoI alignment was performed to pool all RoIs remaining on the feature maps
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to a fixed size. As the regression model produced the RoI position, it was generally a
floating-point number; however, the pooled feature map required a fixed size.

2.4.2. Fully Convolutional Networks

Fixed-size RoIs were sent to the fully convolutional networks (FCNs) for object classi-
fication, detection, and segmentation. The mask branch module is a small FCN applied
to each RoI, and it predicts a segmentation mask for each pixel. In this study, fetal heart
area segmentation was a parallel branch to the wall-chamber classification and bounding
box regression of the heart position. The FCNs utilize stride 2 and 3 × 3 max pooling,
with the Softmax as the objective function. The general FCNs structure use in fetal heart
segmentation as seen in Table 3.

Table 3. FCNs architecture.

Layer Kernel Size. Feature Map Stride Output Shape

Input Image - - 256 × 256 × 1

Convolution Layer 1 28 × 28 × 256 2 3 × 3

Pooling Layer 1 2 × 2 14 × 14 × 256

Convolution Layer 2 14 × 14× 256 2 3 × 3

Pooling layer 1 2 × 2 7 × 7 × 256

Convolution Layer 3 7 × 7 × 7 × 256 × 7 × 256 2 -

Deconvolution 2 × 2 14 × 14 × 256

Convolution Layer 4 14 × 14 × 256 2 3 × 3

Deconvolution 2 × 2 28 × 28 × 256

Convolution Layer 5 28 × 28 × 256 3 × 3

Convolution 28 × 28 × C 28 × 28 × 1

Output Layer - - 1

2.4.3. Training and Validation Performance

By using Mask-RCNN approach, the system can recognize the objects’ classes, lo-
cations (the bounding box), and shapes [22]. The proposed model utilizes a multi-task
learning with the loss function that incorporates losses from predictions in classification,
detection, and segmentation for each instance [22]. The first term in the loss function is
Lcls, which measures the error in the predicted class label. The class prediction branch uses
a SoftMax layer to output the final class predictions for each instance. For instance, i, the
class prediction, is a vector denoted by p→i. Each element p→i

j exists in the interval (0, 1)
and is interpreted as the predicted probability that instance i belongs to class j. If the true
class of an instance i is u, then Lcls is given by the log loss function (Equation (1)).

Lcls(p
→i , u) = −logp→i

u (1)

The second term is Lbbox, which measures the error predicted bounding boxes. The
ground truth for the bounding box for an instance of class u is given by the vector
→
v = (vx, vy, vw, vh), where the four indices indicate the x and y coordinates of the center
of the box, w width of the box, and h height of the box. Detailed information about the
format of the bounding boxes is given in [22]. The predicted bounding box is denoted by
→
t and has the same form as

→
v . Lbbox is given by following equation:

Lbbox = ∑
i∈x,y,w,h

smoothL1(t
u
i −vi) (2)
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smoothL1(x) =
{

0.5x2

|x| − 0.5
, if |x|<1

, else
(3)

The third term is Lmask, which measures the error predicted segmentation masks for
each instance. In the mask prediction branch, a sigmoid activation is applied to every
pixel in the final feature map. The sigmoid value bounds at 0 to 1 and is interpreted as the
probability that a given pixel is included in the proposed segmentation mask. Then, Lmaskis
given by the binary cross-entropy between the predicted and ground truth masks. Let Yi

and
_
p i correspond to the ground truth pixel label (0 or 1) and the predicted probabilities

for pixel i, respectively. For ground truth and predicted masks with N total pixel Lmask is
presented in Equation (4).

Lmask= −
1
N

N

∑
i=1

Yi log>pi + (1− Y i) log(1−>pi) (4)

If the prediction is given by the categorical cross-entropy, then SoftMax activation
function is applied, and Lmask is presented as Equations (5) and (6) denotes the total loss of
the model.

Lmask= −
1
N

>
Σi

∑
i=1

log (5)

L = Lcls+Lbbox+Lmask (6)

2.5. Model Evaluation

In order to validate and evaluate the performance of the instance segmentation model,
the outputs of Mask-RCNN are validated by using six metrics, i.e., loss in classification, loss
in segmentation, loss in detection, overlapping between the annotated and predicted inputs
of each class in IoU, Jaccard index or Dice coefficient similarity (DCS) for segmentation,
and mean average precision (mAP) for object detection [7,17,19].

The DCS is a Jaccard similarity coefficient used for gauging the similarity and diversity
of sample sets. In this case, to measure the performance of predictive images with detailed
truth labels. The DCS is illustrated in Equation (7).

DCS (X, Y) =
2 ∑N

i XiYi

∑N
i X2

i + ∑N
i Y2

i
(7)

where N is the number of runs of the predicted results, Xi is the prediction result, and yi is
the truth label. The pixel index value of the DCS, which is in the interval [0, 1], measures
the match probability between the predicted and ground truth images.

The performance of the trained/validated Mask R-CNN model was quantitatively
evaluated by mAP. The mAP score is a widely adopted metric for assessing object detection
models. The mAP values of the various groups were computed, and their average was
obtained. Although the model would detect various objects, the classes to be assigned to
these objects were not always certain. However, even if the expected class for an object or
instance were correct, the output criterion must still look at how well the model locates it
spatially in the picture. Equation (8) depicts the commonly used mAP.

mAP =
1

ncl

∑i nii

ti
(8)

where ncl is the total of all the different classes and ti = ∑j nij is the total number of pixels
of class i.

3. Experimental Results and Discussion

In ultrasound examination, the position of fetal heart is difficult to predict due to
small size and unpredictable shape and orientation. Fetal–maternal clinicians conduct
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examinations to determine a fetus’ condition in the womb (whether it has a congenital
heart defect) before birth. In this study, we propose the comprehensive computer-assisted
echocardiographic interpretation is determining whether computers can learn to recognize
such condition. To ensure the performance of the learning process, all the networks are
trained in the computer specifications as follows: the processor was an Intel® Core™ i9-
9920X CPU @ 3.50GHz and 490191 MB RAM, the GPU was a GeForce 2080 RTX Ti, by
NVIDIA Corporation GV102 (rev a1); the operating system was Windows 10 Pro 64-bit
(10.0, Build 18363).

3.1. Fetal Heart Standard View Segmentation

We benchmarked widely used state-of-the-art CNNs-based Mask-RCNNs with three
different backbone architectures: ResNet50, ResNet101, and MobileNetV1. The networks’
original architecture of Mask-RCNN was maintained in all cases. All networks were first
pre-trained using the Microsoft common objects in context (COCO) dataset, then fully
retrained using our training data to produce the probability scores for each class. We
conduct the fetal heart standard view segmentation with normal anatomy of the 4CH
view, the expected normal appearance of the LVOT/RVOT view and the additional views
required for the complex ultrasound obstetric images with 3VT view. Whereas fetal heart
abnormality anatomy examination by using only the 4CH view.

The performance of Mask-RCNN in fetal heart standard view segmentation can be
seen in Table 2, which shows that ResNet50 outperformed ResNet101 and MobileNetV1 in
terms of the mAP, IoU, and DCS. ResNet50 produced average mAP, IoU, and DCS values of
96.59%, 79.97%, and 89.70%, respectively. All values exceeded 50%, given that the baseline
of IoU was 50%, and those of mAP and DCS were over 70%. Therefore, the Mask-RCNN
model with the ResNet50 architecture could detect all heart chamber in the four views.

Table 4 shows the performance of fetal heart standard view. The experimental result
showed that the heart chambers in the LVOT view were the most difficult to detect based
on three architectures. There were several ambiguities between the 4CH and LVOT cases,
as the appearance of the fetal heart is similar between these views. 4CH has four chambers,
whereas LVOT has five chambers with ascending aorta. However, ascending aorta looks
faint, as it is close to the valves in the fetal heart. It is differentiated only by subtle, indistinct
structures, such as heart valves, which varied significantly in the ultrasound image artefacts
and the relative movement between probe and fetus. It is a long-axis view of the heart,
highlighting the path from the left ventricle to the ascending aorta with five-part of the heart
chamber. The detection result produced a 60% IoU, but the DCS value reached 86.55%.

Table 4. The performance of fetal heart standard view.

CNNs
Architecture

Performance (%)

View mAP IoU DCS

ResNet 50

3VT

96.59

81.76 90.58

4CH 87.17 90.93

LVOT 66.29 86.55

RVOT 84.64 90.73

ResNet 101

3VT

91.85

84.85 81.76

4CH 79.63 87.17

LVOT 46.80 66.29

RVOT 83.55 84.64

Mobilenetv1

3VT

94.87

79.69 89.88

4CH 87.40 82.35

LVOT 68.59 80.78

RVOT 79.31 86.42
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Generally, maternal–fetal clinicians use their judgement to determine whether certain
heart substructures are in the correct anatomical localizations by comparing normal and
abnormal fetal heart images. Four standard views in the ultrasound images are used in
examinations to perform fetal heart diagnoses. In this study, the fetal heart view was
segmented automatically using the proposed model. Fetal heart chamber as an object
should be detected and segmented in the four fetal heart standard views namely, AoA,
AoD, LA, RA, LV, RV, DUCT, SVC, and MPA. Figures 8 and 9 presented the heart chamber
prediction performance for a standard fetal heart scan in terms of the IoU and DCS (Jaccard
index) performance. A total of 17 heart chambers are needed to be segmented and detected:
five objects for 4CH view, three objects for 3VT view, five objects for LVOT view, and four
objects for RVOT view.

Figure 8. The IoU performance in heart chamber segmentation in four fetal heart standard views.

Figure 9. The DCS performance in heart chamber segmentation in four fetal heart standard views.

The IoU and DCS performance shows that the instance segmentation with the ResNet50
architecture as the backbone produced excellent predictions for all chambers in each view.
Therefore, the Mask-RCNN with the ResNet50 architecture as the backbone of RPNs could
segmented and detected the object based on the annotated RoI. In Figure 10a, the sample
of segmentation result of fetal standard heart view is provided, and Figure 10b shows the
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heart chamber segmentation is presented separately. The standard view segmentation, to
mark the shape of the cross sectional of the fetal heart, and the heart chambers segmenta-
tion, to show the part of each cross-sectional, belong here, whereas in Figure 11a–d, we
experimented on two combinations, in such process a fetal heart view and heart chamber
is merged, with about 17 heart chamber objects and four heart standard views to predict.
Figure 11a,d shows the sample of segmentation results with different colors, but each object
has the same description as Figure 10a,b. Based on the proposed model, all objects can
be predicted with satisfactory performance (about 96.59% mAP, 79.97% IoU, and 89.70%
DCS). The high mAP shows that the object detection process based on the proposed model
obtained the overlapping area between the annotated and predicted RoIs of each bounding
box close to 100%. The proposed Mask-RCNN model with ResNet50 yielded a 3.41% error
in prediction between the annotated and predicted RoIs.

Figure 10. The sample segmentation result of standard view and heart chamber for normal heart anatomy structure: (a) red
color contour denotes the fetal heart boundary segmentation in each view, from left to right are 4CH, 3VT, LVOT, and RVOT;
(b) heart chamber segmentation in each view from left to right are 4CH (red: RA, purple: LA, yellow: RV, and blue: LV),
3VT (green: DUCT, blue: AoA, and red: SVC), LVOT (green: LV, red: AoA, blue: RA, and yellow: RV), and RVOT (green:
DUCT, cyan: MPA, red: AoA, and purple: SVC).

3.2. Heart Defect Segmentation and Detection in 4CH View

The fetal heart anatomy in 4CH view showed the expected normal appearance [23].
As apical 4CH is the original gold standard view in fetal echocardiography, inability to
image this should alert the scanner about a potential problem [24]. This view should
not be mistaken for a simple chamber count as it involves a careful evaluation of specific
criteria [24]. Based on such criteria, the detection of the fetal heart abnormality was screened
only by 4CH view [8]. Three CHD conditions (with defects in atria, ventricles, and both)
were measured with the IoU and DCS values. The minimum IoU value for detecting the
defect object in each fetal heart was 0.5. High IoU and DCS values indicated that the defect
prediction overlapped with the proposed architectural model, which is almost similar to
the ground truth.

Two scenarios for the learning processes were conducted in this study based on intra-
and inter-patient variation data. Intra-patient variations meant that a fetal heart image
coming from the same patient was split for the testing process. Inter-patient variations
meant that the tested fetal heart images were from different patients. In the intra-patient
data for ASD, VSD, and AVSD, the proposed model produced IoU and DCS values exceed-



Sensors 2021, 21, 8007 14 of 20

ing 50%. However, for the inter-patient data, although a 55.99% IoU was obtained for ASD,
the IoU values of VSD and AVSD were under 50%. The DCS value exceeded 50% for ASD
and AVSD, but that of VSD was only close to 50% (refer to Table 5).

Figure 11. Fetal heart view with heart chamber segmentation in (a) 4CH, (b) 3VT, (c) LVOT, and (d) RVOT for normal heart
anatomy structure. Fetal heart view boundary and heart chamber part as the same description with Figure 10.

Table 5. The IoU and the DCS performance for heart defect segmentation.

Position of Heart Defect
Intra-Patient Inter-Patient Intra-Patient Inter-Patient

IoU (%) DCS (%)

Hole in atria 62.72 55.99 77.74 67.69

Hole in ventricle 54.83 42.07 68.26 48.89

Hole in atria and ventricle 58.36 40.54 60.20 52.63

Overall, the defect detection performance reached over 50% in IoU and DCS for intra-
patient data. The inter-patient data were hard to detect due to large variations in fetal heart
images, size of defect, and image quality, especially in VSD and AVSD condition. The result
was under 50% IoU; all measurement decreased about 13 to 15% if the proposed model
was tested with unseen images.

The sample image of heart defect segmentation and detection is depicted in Figure 12.
In the 18–21 weeks of pregnancy, the fetal heart has size around 24 mm [23], thus the hole
(defect) size in the heart septum will have a size <24 mm. At this stage of development,
therefore, it remains difficult to visualize with precision the details of cardiac anatomy as
seen during fetal echocardiography. By using our proposed model, it can be segmented
and detected with IoU and DCS about 59% and 69%, respectively, in intra-patient, and
about 47% IoU and 57% DCS in inter-patient scenarios. This means our model has the
ability to segment and detect until a 50% overlap with the ground truth.

This study determined the mAP value for each defect condition (ASD, VSD, and
AVSD) in addition to the IoU and DCS values. A high mAP value indicated that the defect
prediction from the model was similar to the ground truth generated by the maternal–fetal
consultant. Table 6 shows the object detection results with mAP performance; the highest
mAP value (98.30%) was obtained from the intra-patient data; however, the mAP decreased
to 82.42% in the inter-patient data. CNN-based instance segmentation works using a simple
linear iterative clustering algorithm, which takes an image as input and outputs its division
into super-pixels. The proposed model measures the overlap between the annotated input
and predicted target, but it does not label all the image pixels, as it segments only the RoI.
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Therefore, if the input image is new (from inter-patient), the detection performance will
decrease, but its performance still satisfactory due to the reduction only 16% with the mAP
value over 80%.

Figure 12. Sample image result of CHDs detection with 4CH view. The white arrow indicates the defect, whereas red and
blue colors are the defect position in the heart septum.

Table 6. The mAP performance for heart defect detection.

Intra-Patient Inter-Patient

98.30% 82.42%

We also conducted heart chamber segmentation and detection in 4CH view with
abnormal anatomy image. The fetal heart chamber prediction with the proposed model
is presented in Figure 13. This experimental result differed from the IoU and DCS perfor-
mance in Figure 11, as the fetal heart images are taken from the patients with CHDs. The
experiment was conducted based on intra- and inter-patient data. The RoI was a segment
of four object classes, namely, LA, LV, RA, and RV. With the use of the Mask-RCNN model,
all classes can be segmented and classified in the three conditions. Overall performances
show that intra-patient data allowed better IoU and DCS performance compared with
inter-patient data.

As shown in Figure 13a,d, the proposed model produced satisfactory results, with a
large overlap between the ground truth and the predicted image. All IoU values exceeded
the baseline of 0.5, which is the gold standard value for ensuring that all processes can
be run with good performance. The IoU and DCS performances with the intra-patient
data were better than those with the inter-patient data, with scores of above 66.37% and
79.60%, respectively. The performance with the inter-patient data was poorer than that
with the intra-patient data. Due to the inherent differences in appearance across different
imaging modalities, it is challenging to construct accurate image similarity measures. As
the underlying anatomical components vary between patients, inter-patient registration
might be difficult. In future work, the detection performance for the inter-patient scenario
should be enhanced. The image sample for the heart chamber with a heart defect can
be seen in Figure 14 with the defect position marked in red and blue. In this detection
process, the defect can be small or large, depending on its severity. However, in this study,
the defect size parameter was not taken into account; for further research, it will be very
important to diagnose the severity of the condition.
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Figure 13. The performance in fetal heart chamber segmentation in 4CH view based on intra- and inter-patient scenario:
(a) IoU and (b) DCS.

Figure 14. The sample result of wall-chamber segmentation with 4 CH view in ASD, VSD, and AVSD condition based on
abnormal anatomy structure.
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The proposed instance segmentation model in RPNs and FCNs block can simulta-
neously perform three processes: classification, detection, and segmentation. Therefore,
three losses can be achieved, namely, object detection loss or bbox loss, classification or
class loss, and segmentation or mask loss. During the training phase, we added an early
stopping mechanism in order to prevent the model becoming overfit to the training data.
We monitor the change of validation loss in order to stop the training. As result, the loss
curve can be seen in Figure 15, all the response in RPNs and FCNs in the training and
validation processes decreased to the stability (zero) point; the gap between the two curves
of training/validation was relatively small. The RPNs’ response reaches around 0.1 to 0.25
detection loss in training and validation, and around 0.003 classification loss in training
and validation. In the FCNs’ response, produce detection loss in training and validation
was around 0.05 to 0.12, classification loss in training and validation was around 0.02,
segmentation loss in training and validation was around 0.07 to 0.1, and finally total loss in
the proposed model in training and validation was around 0.3 to 0.8. Hence, we concluded
that the proposed model did not experience overfitting during the training process, despite
the limitations in the training data.

Figure 15. Loss curve of heart defect detection with proposed instance segmentation model. RPNs and FCN loss in training
and validation set.

3.3. Benchmarking Our Model with Existing Studies

For benchmarking, we compared the proposed model with those from other authors
in medical cases, as presented in Table 7. For making a fair comparison, all selected
methods are based on the segmentation and object detection approach with Mask-RCNN
architecture, and the mAP was used. The mAP is a metric to measure the sensitivity of the
model, the high of mAP performance indicates a model that is stable and consistent across
difference confidence threshold.

Table 7 provides several existing segmentation studies for psoriasis skin [19], en-
doscopy disease [17], exudates and microaneurysms [25], brain tumor [26,27], lung nod-
ule [28], breast tumor [29], and nuclei [30]. Mask-RCNNs for medical imaging utilize the
instance segmentation models use super-pixels as the base for segmentation process, as
a graphical preparatory clustering method. It clusters pixels in the vicinity in geometric
and color spaces prior to object segmentation using a simple linear iterative clustering
algorithm [17,18]. However, it does not label all of the image pixels, as it segments only the
RoIs. From previous studies [17,25,31], the segmentation rate was unsatisfactory, producing
mAP values around 0.5. This happens as RGB images differ with a large pixel variation;
thus, they cannot follow a distribution in [17]. In Shenavarmasouleh et al. [25], exudates
and microaneurysms segmentation has minimum prediction confidence hyperparameter of
0.35 as standard threshold (normally about 0.50), whereas a completely correct prediction



Sensors 2021, 21, 8007 18 of 20

will result in 1.0. In Vuola et al. [30] nuclei have a variety of cells acquired under various
conditions produce the shift in different RGB datasets are significantly large. To improve
the performance, they ensemble Mask-RCNN with U-Net architecture, however more
pixel-wise processes are involved, which increases the time consumption and computation
cost. In addition, the masks from the models do not exactly fit the object image, and not
every image pixel is marked separately. From all studies, the masks that they had from
the datasets were only associated with one type of object and, for the most part, minimum
overlap between the two datasets.

Table 7. Research benchmarks with other medical object detection with CNNs techniques.

Author Method Object mAP

Rezvy et al. [17] Modified Mask-RCNN Endoscopy disease 0.51

Lin et al. [19] CNNs-based YOLACT Psoriasis skin 0.85

Shenavarmasouleh et al. [25] Mask-RCNN Exudates and
microaneurysms 0.43

Pai et al. [26] VGG16 and
Mask-RCNN Brain tumor 0.90

Masood et al. Mask-RCNN Brain tumor 0.94

Cai et al. [28] Mask-RCNN Pulmonary nodule 0.88

Chiao et al. [29] Mask-RCNN Breast tumor 0.75

Vuola et al. [30] Mask-RCNN
U-Net Ensemble Nuclei 0.52

Long et al. Probability-Mask-RCNN Pulmonary embolism 0.81

Our proposed model ResNet50 and Mask-RCNN Fetal heart defect 0.98

A different study produced a mAP of over 0.75; the super pixels of each object image
were similar between the ground truth and the prediction for the pixel-level instance
performed the same process [19,26–29,31]. However, in [19,26], they added data augmen-
tation and other preprocessing techniques; data augmentation arises from the data bias,
as the augmented data distribution can be quite different from the original one. This data
bias leads to a suboptimal performance. Study [27] produced satisfactory results with
higher mAP with only two classes, tumor and non-tumor. Similarly, with other studies
in [28,29,31] the instance segmentation approach can segment the object with best mAP
performance. However, they only use two classes, healthy and non-healthy lesion, whereas
the instance segmentation is prepared for multi-classes and multi object segmentation.

Our proposed model, the Mask-RCNN based on ResNet 50 backbone, performed
well with intra- and inter-patient data for two objects fetal heart views and fetal hear
defects. We conducted the experiment with multi-object and multi-class segmentation
for 24 medical objects. The heterogeneity of data types from the various modalities and
clinical challenges caused by variations in the local textures was not an obstacle to produce
satisfactory performance in identifying pathologies about 0.98 mAP. The RoI regions were
automatically delineated, and all features were extracted from raw images by CNNs
with ResNet 50 architecture, layer by layer, without previously giving the features. As
a result, the proposed method has the advantage of observation anatomical structure
comprehensively, not only by analyzing single features. This means the proposed model
can segment four fetal heart views and has the ability to classify the heart chamber and
aorta in each view, also detecting the hole as a defect in heart septum.

To our knowledge, no study has been conducted on fetal heart view segmentation
and heart defect detection using an instance segmentation technique. Although the results
are promising, this study has some limitations, (i) only fetal heart on 4CH view was used
in this study for the CHDs detection case, (ii) the defect size was not taken into account
to diagnose the CHDs severity, and (iii) the number of fetal heart image data population
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with normal and abnormal fetal heart structure should be added, in order to increase
the inter-patient performance result. Furthermore, many other methods could have been
benchmarked, and computational models could have benefited from the application of
previous steps, such as image segmentation, instead of analyzing images as a whole.

4. Conclusions

Deep learning is a data-hungry method, but we showed a surprisingly small number
of fetal echocardiography images can be used to significantly boost diagnosis from what
is commonly found in practice. We conducted the experiment by selecting the input data
according to clinical recommendations for only four fetal heart standard views rather than
the entire ultrasound. This strategy allowed us to reduce the size of the input data to our
diagnostic model and thereby achieve computational efficiency. Due to this, efficiency
in prediction is key to translating this study toward real-world, resource-poor settings.
Quantitative measures of fetal structure and function approximated clinical metrics and
followed patterns found in normal and abnormal structure. A straightforward model, ours
is an effective method of segmenting four fetal heart views, classifying the heart chamber
and aorta in each view, and detecting the hole as a defect in heart septum in intra-inter-
patient scenario. As a result, our proposed model achieved a remarkable performance, with
98.3% and 82.42% in intra-patient and inter-patient scenarios, respectively. We look forward
to testing and refining these models in larger populations in an effort to democratize the
expertise of fetal cardiology experts to providers and patients worldwide.
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