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a b s t r a c t

The most prevalent arrhythmia observed in clinical practice is atrial fibrillation (AF). AF is associated
with an irregular heartbeat pattern and a lack of a distinct P-waves signal. A low-cost method for
identifying this condition is the use of a single-lead electrocardiogram (ECG) as the gold standard
for AF diagnosis, after annotation by experts. However, manual interpretation of these signals may
be subjective and susceptible to inter-observer variabilities because many non-AF rhythms exhibit
irregular RR-intervals and lack P-waves similar to AF. Furthermore, the acquired surface ECG signal is
always contaminated by noise. Hence, highly accurate and robust detection of AF using short-term,
single-lead ECG is valuable but challenging. To improve the existing model, this paper proposes a
simple algorithm of a discrete wavelet transform (DWT) coupled with one-dimensional convolutional
neural networks (1D-CNNs) to classify three classes: Normal Sinus Rhythm (NSR), AF and non-AF (NAF).
The experiment was conducted with a combination of three public datasets and one dataset from an
Indonesian hospital. The robustness of the proposed model was evaluated based on several validation
data with an unseen pattern from 4 datasets. The results indicated that 1D-CNNs outperformed other
approaches and achieved satisfactory performances with high generalization ability. The accuracy,
sensitivity, specificity, precision, and F1-Score for two classes were 99.98%, 99.91%, 99.91%, 99.99%,
and 99.95%, respectively. For the three classes, the accuracy, sensitivity, specificity, precision, and F1-
Score was 99.17%, 98.90%, 99.17%, 96.74%, and 97.48%, respectively. Potentially, our approach can aid
AF diagnosis in clinics and patient self-monitoring to improve early detection and effective treatment
of AF.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Atrial fibrillation (AF) is the most common heart arrhythmia
n clinical practice. Early and accurate detection of AF can sig-
ificantly improve the prevention of complications associated
ith the cardioembolic event, such as stroke [1]. Nearly 25%
f all individuals with AF are asymptomatic. In these individu-
ls, screening with an electrocardiogram (ECG) may be the gold
tandard of AF detection. A typical waveform of ECG in sinus
hythm is composed of the P-wave, QRS-complex, and T-wave.
owever, in AF, chaotic fibrillatory waves can affect the mor-
hology of P-wave, and the RR-interval is not constant among
eats [2]. Some wearable or ambulatory 12-lead ECG cardiac
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monitoring devices are designed to ensure accurate AF detec-
tion. Unfortunately, these devices are expensive, time-consuming,
complicated, and require long-term exposure for AF measure-
ment. Currently, single-lead ECG with short-term detection is
prevalent in daily application. Regardless, AF detection using
short-term detection can be missed in many studies due to the
existence of other non-AF rhythms with irregular RR-intervals
and a lack of P-waves similar to AF [3,4]. Hence, a simple al-
gorithm for improving short-term AF detection with satisfactory
results is desirable.

AF episodes detection in several short terms ECG has the
variable signal quality and lengths. The ambiguities of labels
are due to multiple types of arrhythmia rhythms in the same
recording, variable human physiology, and difficulty in distin-
guishing the features of the ECG signal. Therefore, the selected
method must be robust with such conditions without declin-

ing system performance. The previous computer-aided detection
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algorithm proposed for improving AF performance in classical
machine learning (ML) indicates good results [5–7]. ML tech-
nique, however, based on hand-crafted feature extraction and
feature selection, requires multiple steps to finish the classi-
fication stage [8]. With deep learning (DL), AF detection can
be simply performed without hand-crafted feature engineering.
The selection of the best model of the DL algorithm, however,
is difficult because substantial data training is needed [9–12].
Currently, only a few public datasets about AF conditions exist
with the number of healthy amounts more than AF condition or
imbalance data [2,13–17]. Interest in the imbalanced condition is
generally concentrated on the correct classification of the ‘‘rare’’
class. The classical ML classification algorithms, unfortunately,
are commonly used to minimize the total error rate rather than
investigate the rare class or imbalanced data [18].

With the rapid development of DL, studies in solving the prob-
lems for AF condition, such as deep neural networks (DNNs) [19],
convolutional neural networks (CNNs) [20–23], recurrent neural
networks (RNNs) [14,16], and autoencoders (AEs) [12] has in-
creased. The CNNs are a type of DL that excels in processing 2D
data, such as images. However, studies have shown promising
results by considering ECG sequence signals as 1D data using
convolutions outperformed RNNs and DNNs [14]. The 1D-CNNs
were successfully classifying long-term ECG records in a fast and
accurate manner, and it can examine the morphological char-
acteristics and learn about the slit input signal variance during
a short-term ECG [22,24]. The CNNs can generate local features
(subsequence) of the signal sequence from the ECG to identify
regional patterns in the convolution window. Since the same
transformation is applied to every patch defined by the win-
dow, a pattern learned in one position may also be recognized
in another position, making the translation of 1D convolution
networks invariant.

Typically, the 2D-convolution window can be seen as a matrix
of tunable parameters that scans from left to right and top to
bottom through the image; this operation is capable of capturing
visual features. Due to the matrix operation, 2D-data needs high
computational power. A 1D-convolution process works on the
same principle, with the only significant difference being the
input and the filter layer dimensions. By compressing specific lay-
ers, the total number of weight parameters within the network is
diminished, which in turn increases training efficiency and reduce
the computational complexity. This finding suggests that 1D-
CNNs are well suited for real-time, and low-power/low-memory
devices, like mobile ECG with short term signal [24]. Unfor-
tunately, the main drawback of 1D-CNNs is the homogeneous
network, or it has the same neuron type in the whole struc-
ture [25]. In contrast, the neural network has a heterogeneous
network structure like the human nervous system. Therefore it
can be produce deficiency if it uses in multi-features with highly
sophisticated and diversity patterns [25]. Thus, the application of
1D-CNNs in ECG signal processing must be improved with tuning
hyper-parameter strategy to produce well-performance.

1D-CNNs technique is useful to extract features of time se-
quence data. As aforementioned, however, the acquisition of the
ECG signal contains high-gain instrumentation amplifiers, which
are easily contaminated by various sources of noise, with char-
acteristic frequency spectrums depending on the source [26]. All
these types of noise can interfere with the original ECG signal,
which can deform ECG waveforms and cause an abnormal sig-
nal [27], thus the AF episodes hard to recognize. Consequently,
to maintain as much of the AF signal as possible, the noise
must be removed from the original signal to ensure an accurate
diagnosis. The challenge in AF research is a robust detection to
recognize the AF signal pattern. Unfortunately, some ECG signals

have patterns with the same characteristics of the AF condition,
such as atrial flutter, atrial extrasystole, supraventricular tach-
yarrhythmia, etc. [28]. Patients with AF also frequently present
concomitantly with atrial flutter and/or atrial tachycardia [29]. In
order to achieve accurate and robust detection with several con-
ditions, the discrete wavelet transform (DWT) as noise removal
and the 1D-CNNs as a classifier are combined in this study.

To evaluate the performance of the proposed method, three
publicly well-known datasets – MIT-BIH Atrial Fibrillation [30],
Physionet Atrial Fibrillation [31], MIT-BIH Malignant Ventricu-
lar Ectopy [32]– and ECG data from an Indonesian hospital are
utilized to validate all results. We trained 1D-CNNs with 13 con-
volution layers using a 10-fold cross-validation scheme and re-
peated this evaluation against all the combinations of the hyper-
parameters. The research carried out to classify three classes:
normal sinus rhythm (NSR), atrial fibrillation (AF), and non-atrial
fibrillation (NAF). The data sample distribution reflects a real-
world dataset, where only a small percentage of abnormal ex-
amples are available. The purpose of this research is to develop
a simple and low computational classifier for AF detection with
high generalization power, robustness, and high performance.
Therefore, the implementation of 1D-CNNs can make AF detection
more direct, simpler, and feasible. To achieve such purpose, this
study has novelty and contribution as follow;

• Designing an automated AF detection with short-term ECG
signal based on combination DWT and 1D-CNNs models in
an efficient, high performance, and robust manner;

• Developing the best AF episodes classifier with high gener-
alization power of the selected algorithm;

• Presenting the simple segmentation technique to solve the
variable length of ECG sequence recording; and

• We are implementing the selected model for the non-AF
condition with the morphology similarly with an AF condi-
tion in terms of irregular R–R-intervals and a lack of P-wave
on four different dataset.

The rest of this paper is organized as follows: Section 2 explains
the related work of the research, Section 3 describes the material
and methods, and Section 4 presents the result and discussion.
Finally, the conclusions are presented in Section 5.

2. Related works

In this section, we describe other existing researches related
to this work. The hallmark of the AF condition is the absence of
P-waves and an irregularly irregular ventricular rate [1,2]. Over
the past decade, a variety of conventional methods based on the
ECG features such as QRS complexes, R–R intervals, different R
amplitude, and the heart rate variability was implemented to
detect AF segments from the ECG signal automatically [30,33].
By utilizing such a method for AF detection, however, produce an
unsatisfactory result, and the performance metric produces under
90%. Several analysis methods use classical ML that has been
developed to improve AF detection and classification [5–7,33–
36]. These algorithm structures are mainly consisting of three
parts: feature extraction, feature selection, and classification. For
instance, the artificial neural networks method was designed to
classify AF segments and normal sinus rhythm by using a combi-
nation of four statistical features based on R–R intervals and the
generalized linear classifier [37]. The coefficients of the discrete
wavelet transform and dual-tree complex wavelet transform are
combined with four morphological features for the analysis of
AF episodes [38]. The combination coefficients of discrete cosine
transform, empirical mode decomposition, and DWT with the
K-nearest neighbor for AF signal classification [39]. Heart rate
variability series and non-dominated sorting genetic algorithm to

separate optimization AF signals [40]. An ECG hand-held device
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uses a random forest classifier has been developed to detect
AF episodes [34]. Although these methods were demonstrated
to be helpful for AF signals analysis, they have many apparent
shortcomings such as, (i) due to the feature extraction and feature
selection need the manual design for a long time; (ii) it needs trial
and error strategy to solve the feature engineering; (iii) it fails
to guarantee the reliable robustness and easily cause the over-
fitting problems, especially validated against different types of
datasets; (iv) it is unreliable to ensure the generalization ability of
the method; and finally (v) all the previous studies show that the
ML algorithm produces an unsatisfactory result for AF detection
with accuracy values below 99% for multiclass classification.

In order to overcome the above problems, the DL approach has
been proposed in the detection and classification of AF episodes.
Unlike classical learning algorithms, DL approach has the feature
extraction and feature selection embedded into the network.
Furthermore, by using the deep structure of learning, the per-
formance of the DL model can be continuously improved. Their
typical architecture utilizes in ECG signal processing mainly in-
cludes CNNs, SAE, DBNs, RNNs, and a combination of them [13,14,
17,41–43]. AF classification and analysis have reported in some
literature that DL models are more effective and accurate than
classical machine learning algorithms [2,13,15,17,27,43–46]. The
previous studies by using a computer-aided detection system
proposed for AF detection with DL algorithm including, Yuan
et al. [42] proposed a DL framework based on sparse autoencoder
that using R-R interval time series with a window size of 10 s. For
the results, the accuracy is 75.15% and 98.30%, before and after
fine-tuning, respectively.

In the following year, Ghiasi et al. [2] proposed CNNs to
improve the accuracy of AF by understanding the occurrence of P-
wave, and the overall accuracy achieved 71%. Zihlmann et al. [17]
combined the long short-term memory (LSTM) in CNNs architec-
ture and obtained an F1 score of 82.1% on the hidden challenge
testing set. Yao et al. [27] proposed multi-scale CNNs (MCNNs)
based on AF detectors using public and private datasets. They
achieved the overall accuracy is 98.18% on the public dataset.
Rubin et al. [45] classified the normal sinus rhythm, AF, others,
and noisy signals with the CNNs. The best result achieved at
the official phase on the blind test set was 80%. On the other
hand, Teijeiro et al. [13] was enhanced by Rubin et al. work and
obtained a final score of 83%. Xiong et al. [14] proposed a 16-layer
one-dimensional CNNs to classify the ECGs, including AF seg-
ments. They compared RNNs and spectrogram learning. The final
results showed CNNs outperformed RNNs and spectrogram learn-
ing with an accuracy of 82% for AF. Limam et al. [16] were also
used RNNs as classifiers that combined with CNNs for classified
normal sinus, AF, an alternative rhythm, and noisy signal. They
only achieved 77% using the validation dataset. Acharya et al. [47]
used an 11-layer deep CNNs for representing the normal sinus,
AF, atrial flutter, and ventricular fibrillation class. They have used
ECG signals of two seconds and five seconds duration without
QRS detection. The results showed the accuracy was 92.50% and
94.90%, for two seconds and five seconds period, respectively.
All the studies by using their proposed method, unfortunately,
produce an unsatisfactory result with all performances under
99%.

In the previous two years of publication, Xia et al. [48] pro-
posed deep CNNs using input generated by the short-term Fourier
transform (STFT) and stationary wavelet transform (SWT), and
presented accuracy of 98.29% and 98.63%, for AF detection, re-
spectively. Warrick et al. [43] proposed an ensembling convo-
lutional and LSTM networks that predict an AF classification at
every 18th input sample. The newly proposed method improved
the test score of 82% in the follow-up phase of the challenge.

Erdenebayar et al. [49] designed a CNNs model and optimized
it by dropout and normalization for automatically predicting AF
using a short-term normal EG signal. However, all the results pro-
duce average accuracy is still under 99%. Therefore, improving the
performance of AF detection is needed to investigate deeply. Cai
et al. [15] built a novel one-dimensional deep densely connected
neural network (DDNN) to detect AF with a length of 10 s in
12-lead ECG recordings. The DDNN obtained high performance
with an accuracy of 99.35%. Nevertheless, for daily application,
the short-term mobile ECG more often used compare to 12-
lead ECG recording, due to simple and low cost. Thereby, simple
AF detection with short-term signals in an accurate and robust
manner is important for an in-depth investigation.

3. Materials and methods

3.1. Convolutional neural network

CNNs are composed of three common layers, i.e., convolutional
layer, pooling layer, and fully connected layer. The convolutional
layer aims to represent the features from the input, and the pool-
ing layer aims to reduce the resolution of the feature maps [50]. In
the fully connected layer, the classification function is performed,
the final class vector is generated [48]. All of the activation
neurons from the previous layer are connected to the neurons
in the fully connected layer to produce a decision. By using
the activation function, the network determines the classification
results. CNNs have a hierarchical architecture; starting from the
input x, each subsequent layer xj is computed as [51],

xj = ρWjxj−1 (1)

where Wj and ρ represent a linear operator and a nonlinear
operator, respectively. For CNNs, Wj and ρ represent a stack of
convolution filters and activation functions, respectively, ReLU
or sigmoid. Wj is learned by a stochastic gradient descent. For
computer gradients, a backpropagation algorithm is employed. A
sum of convolutions of the previous layers can be written as [51],

xj(u, kj) = ρ(
∑
k

(aj−1(., k)∗Wj,kj (., k))(u)) (2)

where (*) is the discrete convolution operator [51],

(f ∗g)(x) =

∞∑
u=−∞

f (u)g(x − u) (3)

A sequence of 1D convolutions comprises a linear weighted sum
of two 1D arrays, in which forward and backward operations
can be effectively executed in parallel. The forward process is
expressed as [24],

xlk = blk +

Nl−1∑
i=1

conv1D(wl−1
ik , sl−1

i ) (4)

where xlk is the input, blk is the bias of the kth neuron at layer l,
sl−1
i is the output of the ith neuron at layer l − 1, and wl−1

ik is the
kernel from the ith neuron at layer l−1 to the kth neuron at layer
l. The output ylk can be expressed by passing the input xlk through
the activation function [24]:

ylk = f (xlk) and slk = ylk ↓ ss (5)

where slk is the output of the kth neuron of layer l, and ↓ ss is
defined as the downsampling operation with the scalar factor ss.
or backward operations, assume l = 1 and l = L for the input
ayer and output layer, respectively. In the output layer for the
nput p, the mean squared error (MSE) Ep can be defined as [24],

Ep = MSE(tp, [yL1, . . . , y
L
NL

]
′) =

NL∑
(yLi − tpi )

2 (6)

i=1
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where tp represents the target vectors.
The delta error ∆l

k =
∂E
∂xlk

should be computed to obtain the
erivative of Ep. The chain rule is used to update the bias and
eurons, and all weights [24]:
∂E

∂wl−1
ik

= ∆l
ky

l−1
i (7)

and
∂E
∂blk

= ∆l
k (8)

When the weight and bias are calculated with the learning factor
ε, the biases and weights are updated as follows [24]:

wl−1
ik (t + 1) = wl−1

ik (t) − ε
∂E

∂wl−1
ik

(9)

blk(t + 1) = blk(t + 1) = blk(t) − ε
∂E
∂blk

(10)

3.2. Experimental results

In this section, the proposed framework in Fig. 1 is divided
by five processes: (i) normalization based on normalizing bound;
(ii) noise removal using a discrete wavelet transform (DWT); (iii)
segmentation based on a window size of 9 s; (iv) classification
with the proposed CNNs architecture; and (v) evaluation of the
proposed model with five performance metrics, i.e., accuracy,
sensitivity, specificity, precision, and F1-Score.

3.2.1. Dataset
In this paper, ECG raw data and NSR and AF data are obtained

from MIT-BIH Atrial Fibrillation [30], Physionet Atrial Fibrilla-
tion [31], MIT-BIH Malignant Ventricular Ectopy [32], and from
an Indonesian hospital. All data are listed in Table 1. The data
validation is performed using MIT-BIH Atrial Fibrillation, Phys-
ionet Atrial Fibrillation, and the Indonesian hospital. All data are
collected from a short single-lead ECG recording with different
frequencies. Regarding the data distribution, 5076 NSR samples,
758 AF samples, and 280 NAF samples creates a class imbalanced
condition. The samples of ECG signals and the NSR, AF, and NAF
samples are shown in Fig. 2.

3.2.2. Pre-processing
In this phase, three main processes – normalization, noise re-

moval, and segmentation – exist. Raw ECG signal records require
normalization because the features have different ranges (refer
to Fig. 3(a)). Moreover, this process can reduce the time com-
putation. The process of normalization implements a normalized
bound, which is constrained to the range between 0 (lower limit,
lb) and 1 (upper limit, ub). The normalized bound only changes
the amplitude scale of the signal in a certain range and does not
change the morphology of the signal. The mathematical function
of the normalization with the Normalized Bound is expressed
as [52],

f (x) = x∗coef − (x∗

midcoef ) + mid (11)

where

coef =
ub − lb

xmax − xmin
(12)

mid =
ub(ub − lb)

2
(13)

The normalization results are shown in Fig. 3(b). An ECG signal
is always corrupted due to the interference of different types of
artifacts and power lines [53]. Hence, raw ECG signals must be
improved by removing numerous kinds of noise and artifacts.
This paper reconstructs an ECG signal from a noisy signal by
using a DWT. Such an approach performs a correlation analysis,
and therefore, the output is expected to be maximal when the
input signal mostly resembles the mother wavelet. Unlike the
old denoising method (i.e., Fourier transform), the DWT provides
an analysis of the signal, which is localized in both time and
frequency.

Conversely, the Fourier transform is localized only in fre-
quency. The algorithm of the wavelet denoising contains three
steps: wavelet decomposition, coefficient processing, and wavelet
reconstruction [54]. Soft Thresholding is utilized for ECG noise
removal as [55],

thresholding(t) = σ
√
2 logN (14)

where σ = (median|cDj|/0.6457), N is the length of the ECG
signal, and σ is the standard noise deviation [55],

cD̂ =

{
sign(cDj)(|cDj|−t),|cDj|≥t
0,|cDj|≤t (15)

o remove the baseline wander and eliminate noise, the ECG
ignal will undergo denoising after normalization. The sample
esult of the ECG signal after denoising is shown in Fig. 3(c).
he baseline wander of the signal is corrected, and the ECG
ignal nears zero points. In a previous study [9], the biorthogonal
other function (bior6.8) has applied for noise removal in ECG
eartbeat. When such a function implemented in ECG rhythm for
his study, however, the reconstruction results are poor. Hence,
ased on some experiments, Sym5 is selected as the mother
avelet because it offers better denoising of the noisy ECG signal.
he DWT was designed with eight levels of decomposition for a
ow-pass filter and eight levels of decomposition for a high-pass
ilter (refer to Fig. 4), in which the largest frequency sequence
anges from level 1 to level 8 [55].

Before the classification process with the 1D-CNNs, the clean
CG signal is segmented. In the Physionet Atrial Fibrillation
ataset, the length of minimum signal recording about 2700
odes in 9 s and the maximum value of signal recording about
3 800 nodes (approximately 60 s). In this study, minimum length
s utilized, which is enough to analyze the ECG rhythm regarding
he possibility of AF conditions and to simplify the computation.
herefore, the length of the ECG signals with more than 2700
odes will be adjusted to 2700 nodes (window size). The result
f the ECG segmented sample, as depicted in Fig. 3(d).

.2.3. 1D-CNNs classifier
After the preprocessing phase, the ECG signal is classified to

chieve a satisfactory interpretation. As illustrated in Fig. 5, two
istinct layer types are proposed in 1D CNNs: (1) the CNNs-
ayers as feature learning, where both 1D convolutions and sub-
ampling (pooling) occur, and, (2) Fully-connected (FC) layers that
re identical to the layers of a typical Multi-layer Perceptron
MLP) as the classifier. In the feature learning, data that are
sed as a feature will pass through the stages of convolution,
on-linearity, and pooling. The proposed CNNs comprises several
yper-parameters that were cautiously selected after widespread
xperimentation. Each hyper-parameter was tuned by keeping all
ther network parameters constant and evaluating the effect of
ncremental adjustment of the value to the training set with 10-
old cross-validation. For each hyper-parameter, the values that
ielded the best cross-validation accuracy, sensitivity, specificity,
recision, and F1-score were selected for the final model. The
roposed 1D-CNNs architecture is shown in Fig. 5. The ECG fea-
ure map is constructed by using 13 convolutional layers, which
educes 2700 nodes to 78 nodes for the two classes NSR and AF.
o describe the convolution and max-pooling process to produce
feature map, we present all processes in Fig. 6. In the first stage,
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Table 1
ECG raw data resume.
Dataset Classes Training Validation Testing (unseen)

Physionet Atrial
Fibrillation

NSR 4556 520 148
AF 694 64 47

MIT-BIH Atrial
Fibrillation

NSR – – 285
AF – – 291
AFL 234 28 –
J 7 – –

MIT-BIH Malignant
Ventricular Ectopy

SVTA 5 – –
VFL 8 – –

Indonesian hospital NSR – – 50
AF – – 3

*Abbreviations: NSR (normal sinus rhythm), AF (atrial fibrillation), AFL (atrial flutter), J (AV
junctional rhythm), SVTA (supraventricular tachyarrhythmia), VFL (ventricular flutter).
Fig. 1. Research framework.
Fig. 2. Sample of ECG recording to describe NSR, AF, and NAF.
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Fig. 3. All phase of data preprocessing for NSR sample in terms of raw data, normalization, noise removal, and segmentation.
Fig. 4. Low-pass and high-pass filters for noise removal in ECG signal with Sym5.
a signal with a length of 2700 nodes will be convoluted with 64
filters or 3 × 1 kernels with stride 1.

The convolution process will produce a feature map that will
be utilized as new input data for the next process. All features will
be generated after the non-linearity process and only during each
convolution process; this step never occurs in the pooling process.
This allowed the model to generate 64 unique features on the first
layer of the network. We use ReLU as a non-linearity function
because of its ability to prevent vanishing gradient in the training
phase. The result of the convolution layer called the feature map.
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Fig. 5. Proposed 1D-CNNs architecture.
After the second convolution layer, we add the pooling layer. This
layer aims to reduce the complexity of the feature map. Max
pooling layer is used due to it can extract the most important
features from the feature map. In the fully connected part, we
define two hidden layers, each with 1000 nodes, while the output
layer we define a sigmoid function to classify the data.

The 1D-CNNs model with 13 layers comprises two fully con-
nected layers, with 1000 nodes for each layer and one node for
the output layer. This model requires 3D input, which consists
of n samples, n features, and time-steps, while a 2D ECG signal
nly consists of n samples and n features. Therefore, 2D data
s reshaped into 3D data. To achieve a good generalization ca-
ability, the CNNs training process requires large numbers of
atasets. To overcome this problem, we segment and combine
everal datasets. The results of the segmented signal become an
nput for the CNNs process.

All parameters, including the number of samples for the NSR,
F, and NAF condition, which is approximately 6116 samples;
he number of features, which is approximately 2700 nodes; and
he time steps, which is approximately 9 s. In a fully connected
ayer, classification consists of training, validation, and testing
rocesses. All data are validated with 10-fold cross-validation to
elect the best model. In the fully connected layer, an automatic
rediction of the classes is provided by learning these feature
aps. To implement the proposed CNNs model, Python 3.6 soft-
are on the Keras library with a Tensor-Flow background was
mployed. The model was trained and evaluated by using the
vidia graphics processing unit GeForce RTX 2080 TI with the
indows 10 operating system environment.

. Results and discussion

The 1D-CNNs classifier workflow consists of several stages:
etermining the number and size of the convolution layer, max
ooling, and the number of nodes in the fully connected layer. All
ata are splitting and resampling for training and validation with
0-fold cross-validation. Nine models of CNNs hyperparameters
ere compared to produce the best performance of the classi-

ier. The hyperparameters are tuned with different nodes, such
s 2700 nodes or 9 seconds, and 18300 nodes or 60 seconds,
nd 18300 nodes with a time step, as shown in Tables 2 and
. All models are conducted with three models of CNNs with
Table 2
Nine models of CNNs structure for tuning hyper-parameters.
Model Segmentation Convolution layers Fully connected and

output layers

1
9 seconds

7 (1000,1000,1)
2 10 (1000,1000,1)
3 13 (1000,1000,1)

4
60 seconds

7 (1000,1000,1)
5 10 (1000,1000,1)
6 13 (1000,1000,1)

7 60 seconds
with time step

7 (100,100,1)
8 10 (100,100,1)
9 13 (100,100,1)

Table 3
Results of model benchmarking of 1D-CNNs.
Model Performance results (%)

Accuracy Sensitivity Specificity Precision F1-Score

1 87.83 71.72 71.72 57.82 60.08
2 89.03 77.66 77.66 62.32 65.92
3 92.97 87.46 87.46 71.78 81.63
4 83.63 51.52 51.52 50.73 50.24
5 84.66 58.59 58.59 54.84 55.62
6 87.48 0 0 50.00 0
7 83.29 49.89 49.89 49.94 49.19
8 81.66 52.27 52.27 51.65 51.72
9 82.34 51.40 51.40 50.87 50.70

7, 10, and 13 convolutional layers. All models of CNN’s hyper-
parameters utilize activation function ReLUs in the hidden layers,
tanh-sigmoid in the output layers, a learning rate of 0.0001, a
batch size of 16, 100 epochs, and adaptive moment estimation
(Adam) as optimizers the weight of parameters. The objective
function in the output layer is binary cross-entropy. From Table 3,
the bold values at model 3 indicate the highest accuracy with
corresponding to sensitivity, specificity, precision, and F1-Score
for model benchmarking.

From the previously mentioned models, all performances of
model 3 outperformed other models in terms of accuracy, sen-
sitivity, specificity, precision, and F1-score. Model 3 produces
satisfactory results; therefore, this model becomes a baseline to
show the performance in three types of convolutional layers.
Adjusting the number of nodes of the CNNs layer produces a
significant change in the classifier performance. Based on the
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Fig. 6. Features map from convolution and max-pooling process.
esult, however, classifier performance with three models (7,
0, and 13 layers) produces an unsatisfactory result—all values
chieved under 90% because of the class imbalance. Therefore, the
raining model is enhanced by using k-fold to improve the results.
uch a procedure involves splitting the training dataset into k-
olds. Three schemes of splitting data were created, including
tratified, shuffle, and fixed sampling to evaluate the proposed
odel. Based on such a process, the proposed 1D-CNNs structure

s selected with k = 10-fold. It produces high performance in
ccuracy, sensitivity, specificity, precision, and F1-Score, which
eveals the ability of the classifier to predict the increase in the
inority class (refer to Fig. 7).
In this study, to support our proposed 1D-CNNs architecture,

e benchmark the algorithm with other DL techniques, including
NNs and RNNs. This section also discusses the use of the data
atio between imbalanced and balanced class. Although slight
kewness in the balance levels is acceptable, an increase in this
ap causes improper classifier training and inappropriate pre-
ictions. In an imbalanced class, a classifier tends to predict
he majority of classes effectively. However, the minority class
rediction levels are substantially reduced, which reduces the re-
iability levels of the model. An algorithm analysis in terms of the
evel of imbalance, data size, and their impact on classifier metrics
s presented. Three types of RNNs are implemented with a data
atio of 1:8 for the balanced and imbalanced classes. A variance
ampling technique was utilized: Synthetic Minority Oversam-
ling Technique (SMOTE) and Random Oversampling (ROS). In
able 4, with the RNNs imbalanced data ratio between classes,
ll performance metrics exhibit a downward decline. When the
ata are balanced by SMOTE, the results increased significantly
nd outperformed the CNNs, DNNs, and RNNs. RNNs with SMOTE
as accuracy, precision, sensitivity, specificity, and F1-Score of
4.83%, 94.94%, 94.95%, 94.78%, and 94.78%, respectively. This
esult was also obtained for the RNNs with a maximum ROS, the
ccuracy, sensitivity, specificity, precision, and F1-score of 88.93%.
Therefore, the partition of the data between classes is affected
by the performance of the classifier. The RNNs with balanced
data, achieve effective performance. However, this method can
increase the weight of the minority class by replicating the minor-
ity class examples. Although it does not increase the amount of
information, it increases the overfitting, which causes the model
to be too specific. The accuracy of the training set is high, but
the performance in new datasets is worse. When a 10-fold cross-
validation scheme is implemented, the performance of the CNNs
increases significantly (refer to Table 5). The imbalanced class
can be overcome with a k-fold cross-validation strategy because
it tunes the class weight with the resampling procedure for the
total data and reduces the bias. The CNNs approach is proven
to be sensitive to the ECG signal quality to present a promising
classifier.

In our study, the model is constructed by using two classes
condition (NSR and AF), and three classes (NSR, AF, and NAF). An
in-depth investigation is carried out to ensure the robustness of
the selected model. The proposed model was tested with other
datasets in the testing stage as the unseen patterns (refer to
Tables 5 and 6). Table 5 indicates the satisfactory performance
of the validation data of Physionet Atrial Fibrillation. For the NSR
class, a perfect sensitivity of 100% is achieved, which is similar
to the AF class for the specificity and precision. The performance
of all testing data produces consistent results for the NSR and AF
conditions, even though the imbalance ratio for the data between
NSR and AF is 1:8.

Our proposed model was implemented for three classes (NSR,
AF, and NAF). The characteristics of AF is the absence of P-
waves and irregular P-waves among beats. However, the baseline
fibrillatory waves (f-waves) can be characterized by other waves,
such as flutter waves, and can be misinterpreted. To ensure
the robustness of the proposed model, NAF only uses the ECG
signal with irregular RR-intervals and lacks P-waves, such as atrial
flutter, AV junctional, supraventricular tachyarrhythmia, and VFL
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Fig. 7. Sample validation results based on model 3 of CNNs structure.
Table 4
The average performance of the classifier with several DL models for AF and NSR classes based on
the model.
Classifier Pre-processing Performances (%)

Accuracy Precision Sensitivity Specificity F1-Score

DNNs DWT 83.54 51.56 52.95 52.95 51.42
RNNs DWT 84.23 62.21 65.72 65.72 63.55
RNNs DWT+ROS 92.65 89.16 88.99 94.55 88.93
RNNs DWT+SMOTE 94.83 94.94 94.95 94.78 94.78
1D-CNNs DWT 92.27 77.78 87.46 87.46 81.63
1D-CNNs DWT+10-fold 99.98 99.91 99.91 99.99 99.95
Table 5
Performance of each class of ID-CNNs for two classes.
Metrics Validation Testing 1 Testing 2 Testing 3

NSR (%) AF (%) NSR (%) AF (%) NSR (%) AF (%) NSR (%) AF (%)

Accuracy 99.98 99.98 99.50 99.50 86.18 86.18 98.33 98.33
Sensitivity 100.0 99.83 100.0 98.0 80.60 94.16 97.50 100.0
Specificity 99.83 100.0 98.0 100.0 94.16 80.60 100.0 97.5
Precision 99.98 100.0 99.38 100.0 95.32 77.90 100.0 96.70
F1-Score 99.99 99.91 99.68 98.89 87.10 87.10 98.57 98.00

*The validation process for two classes use Physionet Atrial Fibrillation dataset, and testing 1, 2, 3
process use unseen data from Physionet Atrial, MIT-BIH Atrial Fibrillation, and Indonesian hospital
data respectively.
able 6
erformance for each class of ID-CNNs for three classes.
Metrics Class

NSR (%) AF (%) NAF (%) Average (%)

Accuracy 98.90 98.94 99.87 99.17
Sensitivity 98.88 98.02 99.57 98.90
Specificity 99.02 98.99 99.88 99.17
Precision 99.88 92.96 97.39 96.74
F1-Score 99.36 94.68 98.41 97.48

*The Validation process NSR and AF using Physionet Atrial Fibrillation data,
and validation for NAF using MIT-BIH Atrial Fibrillation, and MIT-BIH Malignant
Ventricular Ectopy dataset (see Table 1).

ventricular flutter (refer to Table 1). As indicated by the results in
Table 6, our proposed 1D-CNNs model can be developed by three
classes. The average results in the three classes are 96.16% for all
performance metrics. Besides, the average performance for two
or three classes (refer to Table 7) with the training, validation,
and testing data is 86%. Our proposed 1D-CNNs remains robust
in other datasets. The model can be generalized and developed
for binary or multiclass classification.

The proposed model produces a receiver operating charac-
eristic (ROC) with an area under the curve (AUC) of 99% for
he validation/test set and is robust to motion artifacts that are
inherent to ECG signals (refer to Fig. 8(a) and (b)). Moreover,
the 1D-CNNs with hyperparameter tuning that employed 10-fold
cross-validation can overcome the imbalance classes, with high
accuracy for two and three classes (refer to Fig. 8(c) and (d)).
The performance of the 1D-CNNs for the two classes model does
not degrade when predicting other datasets as unseen patterns,
including MIT-BIH Atrial Fibrillation data, Physionet Atrial Fibril-
lation, and patient data from the Indonesian hospital. Similarly,
when the proposed model is employed again in three classes,
to validate the Non-AF rhythms with irregular RR-intervals and
a lack of P-waves similar to AF, it produces robust detection.
The f-waves amplitudes may vary from small to large. Large
f-waves should not be mistaken for flapping waves (f- waves) ob-
served in atrial flutter. Our proposed method successfully predicts
conditions, such as a Non-AF rhythm.

1D-CNNs operation complexities are proportional to the total
number of connections between two consecutive layers (convolu-
tional layer and pooling layer), which are the multiplication of the
number of neurons at each layer. In this study, we define a model
with seven convolution layers with three polling layers, ten con-
volution layers with four polling layers, and 13 convolution layers
with five polling layers. To reduce the complexity of the proposed
model, we add a more pooling layer. Therefore, the number of
feature maps can reduce before enter the fully-connected layer.
Based on such a combination, structure in consecutive layers
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Table 7
Average performances of ID-CNNs for two classes and three classes.
Classes Learning Performances (%)

Accuracy Sensitivity Specificity Precision F1-Score

NSR and AF

Training 99.97 99.88 99.88 99.98 99.93
Validation 99.98 99.91 99.91 99.99 99.95
Testing 1 86.18 87.38 87.38 86.59 86.00
Testing 2 98.33 98.75 98.75 98.33 98.29
Testing 3 99.50 99.00 99.00 99.68 99.28

AF and NAF Training 100.0 100.0 100.0 100.0 100.0
Validation 99.71 99.68 99.68 99.58 99.63

NSR, AF, NAF Training 100.0 100.0 100.0 100.0 100.0
Validation 99.17 98.90 99.17 96.74 97.48

*Testing 1 use unseen data from MIT-BIH datasets, testing 2 use unseen data from Indonesian
Hospital data, testing 3 use unseen data from Physionet Atrial Fibrillation dataset.
Fig. 8. Classifier performances based on ROC and accuracy curve.
produce the number of weight parameters, about 86 million, 87
million, and 45 million, respectively. However, in the 1D-CNNs
classification process, only a scalar (weight) multiplication and
addition are performed for each connection. Even though the
number of weight parameters is high, but it is quite negligible
in the implementation. That is, due to the scalar operation, so
that a minimal computational complexity is achieved against the
competing (conventional) methods. In this study, we evaluated
low computational complexity associated with processing time
utilize the ordinary computer to prove it can process with a
satisfactory result. There are five computers specification used to
implement the 1D-CNNs, including one core CPU, four-core CPU
with and without GPU, an eight-core CPU with and without GPU.
Amount of data about 5250, with input shape 2700 x 1, and 100
epochs.

Table 8 presents the processing times of both the training and
testing process. The result found with one core CPU with two
threads, 2.2 GHz, memory about 13 GB, and disk about 33 GB,
take 33 h for training, and 0.515 s for testing a single instance.
But with an eight-core CPU without GPU takes 7.7 h for training
and 0.1389 s to test a single instance which only 3.7 times faster,
the value does not significantly. Nevertheless, it can still process
all the AF classification phase with good performance. It proves
that the 1D-CNNs produce low computational complexities that
suitable for low cost and low power hardware.

In recent years DL has become increasingly popular, as it elim-
inates the need for extraction of features. An increasing amount
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Table 8
Processing time of 1D-CNNs results by using 13 layers.
Computer specification Processing time of training Processing time of

testing

CPU: 1 Core, 2 thread,
2.2 GHz
Memory: 13 Gb
Disk: 33 Gb
GPU: -

33 hours
(Around
1137 seconds per
epoch)

Single instance: 0.515
seconds
All test data (584
instances):
57.458 seconds

CPU: 4 Core, 8 thread,
@2.8 GHz
Memory: 16 Gb
Disk: 1000 Gb
GPU: -

73600 seconds

Single instance: 0.3026
seconds
All test data (584
instances):
29.0081 seconds

CPU: 4 Core, 8 thread,
@2.8 GHz
Memory: 16 Gb
Disk: 1000 Gb
GPU: GTX 1050 Ti, 4 Gb

6345 seconds

Single instance: 0.1826
seconds
All test data (584
instances):
1.6125 seconds

CPU: 8 Core, 16 thread,
@3.6 GHz
Memory: 32 Gb
Disk: 1000 Gb
GPU: -

27400 seconds

Single instance: 0.1389
seconds
All test data (584
instances):
3.5426 seconds

CPU: 8 Core, 16 thread,
@3.6 GHz
Memory: 32 Gb
Disk: 1000 Gb
GPU: RTX 2080 Ti, 11 Gb

1310 seconds

Single instance: 0.021
seconds
All test data (584
instances): 0.296 seconds
of research has applied the DL approach to AF classification and
other types of arrhythmia given their superior performance. How-
ever, high sensitivity and specificity are necessary for AF de-
tection to avoid causing many false negatives that can generate
needless apprehension in patients and additional costs of follow-
up inspections. The applications of 1D-CNNs on ECG signals and
a comparison between our model and other DL approaches were
summarized in Table 9. Some DL algorithms are an effective way
of defining discriminatory characteristics from a list of sorted RR-
intervals and analysis of atrial activity by understanding if the
P-wave is present in the ECG signal. This is done by investigating
the morphology of P-waves.

Ghiasi et al. [2] used the segments with 600 samples as the
nput of a one-dimensional CNNs. Whitaker et al. [7] learned a
2-element sparse coding dictionary on the sorted RR-intervals
f the ECG signals. Yuan et al. [42] are also proposed the stack
parse autoencoder with high accuracy of 98.30%. However, the
utoencoder model cannot develop a mapping that stores the
raining data since our input and target output have a different
hape. This is similar to sparse autoencoder, which requires that
he individual nodes of a trained model that activate are data-
ependent, and that different inputs will result in activations of
ifferent nodes through the network. ECG signal is categorized as
equence data, which is the order of the data is matters.
CNNs were implemented to AF classification and

utperformed the other DL techniques [2,14,27,45–49] In Acharya
t al. [47] used CNNs architecture with separated two different
urations of the window size of a fixed length instead of analyz-
ng one beat of ECG signal, i.e., two seconds and five seconds. They
sed ReLU as an activation function with 11 layers, and it vali-
ated using 10-fold cross-validation without the pre-processing
f QRS detection. Luo et al. [46] proposed a 52-layer CNNs as
he best performance and obtained 83.8% accuracy. They use 5-
old cross-validation to evaluate the proposed CNNs architecture.
ao et al. [27] trained the fast down-sampling residual CNNs
FDResNets) with a large difference in length is pre-segmented
nto short samples of 9 s. The [0, 9.375 Hz] reconstruction dataset
rained by FDResNet using 6-fold cross-validation and reached
est accuracy and F1 score, 92.1%, and 89.9% of the multi-scale
residual neural network, respectively. Unfortunately, their re-
searches have validated in limited datasets, i.e., 2017 Computing
in Cardiology (CinC) and MIT-BIH arrhythmia database. The possi-
bility of a proportion of occurrence and feature space distribution
is diverse. Therefore, the algorithms for AF detection are not
stable and robust. All the studies have an accuracy below 90%.
In [2,13–17,27,43–46], all reviews studies use imbalance data and
only produce F1-Score to show the comparison between false
positives and false negatives. The F1-score is perfect if close to
100%. However, all F1-score values reach under 90%, due to the
minority and majority class affect the overall performance.

Cai et al. [15] improved the algorithm for AF detection using
a private dataset from an intra-inter patient from 3 different
sources, i.e., the Chinese PLA General Hospital (301 Hospital); Car-
dioCloud Medical Technology (Beijing) Co. Ltd; and 11 hospitals
(The China Physiological Signal Challenge, 2018). They achieved
excellent performance based on Deep Densely Connected Neural
Network (DDNN); nevertheless, the data samples are balanced.
Our 1D-CNNs model produces values that are similar to those
in their work, but our data was imbalanced. The F1-score shows
that the 1D-CNNs architecture achieved 97.48% for an imbalanced
class, while Cai et al. performed 90.70% for a balanced class.
An imbalanced class does not affect our proposed model due to
its adequate performance with other datasets. All results of this
research indicate that our model is a promising screening tool
for AF. The accuracy of our model could be further improved
by adding further datasets of arrhythmia during training and
testing since our approach is completely data-driven and can only
improve with more data to learn from. This is especially the case
for improving AF detection, as our study only used 5076 NSR
samples, 758 AF samples, and 280 NAF samples, which is a small
number of standards of today.

In our study, we have shown the superiority of the 1D-CNNs
model for AF detection produces high performance with short-
term signal ECG, great ability of the automatic feature extrac-
tion, but low computational complexity. 1D-convolution works
on vector instead of matrix operation, thus during the process,
the number connection of the 1D-CNNs layer, which is a linear
weighted sum [25]. A 1D-CNNs are exceptionally viable to ex-
tract features from shorter (fixed-length) sections of the general
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Table 9
Comparison of previous studies of AF detection using 1D ECG signal.
Authors Method Features type Acc. (%) Sens. (%) Spec.(%) F1-Score

Oh et al. [41] CNNs+
LSTM

Beats 98.10 97.50 98.70 –

Erdenebayar et al. [49] 50 CNNs Rhythm 30s 98.70 98.60 98.70 –
Archarya et al. [47] CNNs Rhythm 5 seconds 94.90 99.13 81.44 –
Yao et al. [56] Multi-scale NN Beats 98.11 98.22 98.18 –
Xia et al. [48] SWT+

CNNs
Rhythm 5 seconds 98.63 98.79 97.87 –

Yuan et al. [42] AE Rhythm 10 seconds 98.31 95.56 98.04 –
Xiong et al. [14] CNNs Deep features – – – 81.80
Zihlmann et al. [17] FE+LSTM Deep features – – – 82.10
Warrick et al. [43] Ensembled CNNs+

LSTM
Beats – – – 84.50

Parvaneh et al. [44] Dense net Beats – – – 82.00
Rubin et al. [45] CNNs Rhythm 15 seconds – – – 80.0
Ghiasi et al. [2] CNNs Rhythm 2 seconds – – – 71.0
Limam et al. [16] CRNNs 0.5 ms before and after R peak – – – 77.0
Teijeiro et al. [13] RNNs Rhythm – – – 83.0
Luo et al. [46] CNNs Rhythm – – – 83.8
Cao et al. [27] CNNs Rhythm – – – 89.9
Cai et al. [15] DDNN Rhythm 10 seconds 99.35 99.19 99.44 90.70

Proposed model CNNs (3 classes)
(2 classes)

Rhythm 9
seconds

99.17 98.90 99.17 97.48
99.98 99.91 99.91 99.95

*two classes are AF and NSR, three classes are AF, NAF, and NSR, Acc is accuracy, Sens. is sensitivity, Spec. is specificity.
informational collection and where the area of the component
inside the portion is not of high pertinence. CNNs work a similar
way whether they have 1, 2, or 3 measurements. The thing that
matters is the structure of the information and how the chan-
nel, otherwise called a convolution piece or highlight identifier,
moves over the information. To define the architecture of CNNs
model, the number of filters and the depth of the model must be
considered.

These parameters determine the feature map as well as the
complexity of the model. If the model is to shallow, then it cannot
extract unique feature. On the other hand, if the model is too
deep, then the complexity of the model will increase, which slow
the training process. The proposed CNNs models that compressed
the input and the filter layer dimensions, based on two (for-
ward and backward) 1D arrays operation that can be effectively
executed in parallel. Therefore, the total number of weight pa-
rameters within the network is decreased, which in turn increases
training efficiency and reduce the computational complexity. The
proposed model contains several hyper-parameters that were
carefully selected after extensive experimentation. All parameters
of 1D-CNNs architecture selected to deliver a decent balance
between learning capacity and avoiding over-fitting to increase
the robustness and generalization capability.

From all performances of our proposed model, we can con-
clude that the advantage of our proposed model as follows;

• The proposed 1D-CNNs method for detecting atrial fibril-
lation can distinguish AF signal with another AF-like sig-
nal (atrial flutter, ventricular flutter, supraventricular tach-
yarrhythmia, and AV junctional rhythm) and normal sinus
rhythm with over 99% classification accuracy;

• The 1D-CNNs produce low computational complexity with
small dimension the input and the filter layer, but difficult
tasks involving AF signals can be learned;

• The proposed model has the generalization ability, due to
an imbalanced class does not affect the classification per-
formance; and

• The robustness is achieved in our proposed model caused
its adequate performance with other datasets, and the result
shows our model gives a satisfactory result on unseen data.

Although the results look promising, there are some limitations

of our study such as,
• We cannot detect the starting point of AF, and we can
predict AF episodes before the 9 s;

• To expand this study to other arrhythmia conditions might
add a great contribution to this line of research;

• In order to achieve a high generalization capability for other
arrhythmias condition aside of AF, larger and more varied
data are still needed for learning and training; and

• A recent analysis indicates that the standardization of ECG
diagnostic criteria is expected to increase the consent of
clinical experts and the efficiency of computer algorithms
concerning the ECG interpretation system.

5. Conclusion

A computer-aided AF detection based 1D-CNNs approach with
13-layers and 10-fold cross-validation is proposed in this study.
To improve the raw ECG signal from numerous kinds of noise
and artifacts, the eight levels of DWT decomposition used to
reconstruct the ECG signal from the noise with Symlet5. The 1D-
CNNs structure evaluates four datasets, such as MIT-BIH Atrial
Fibrillation, Physionet Atrial Fibrillation, MIT-BIH Malignant Ven-
tricular Ectopy, and from an Indonesian hospital. The experiment
shows that 9 s of signal segmentation produces a good result.
To prove that 1D-CNNs produce low computational complexities,
the experiment conducted with five CPUs. In the tuning process,
the size of filters was not evaluated, but the computational com-
plexities due to three consecutive layers (7, 10, and 13 layers)
are validated associated with processing time. The result found
that the combination between DWT and 1D-CNNs for AF de-
tection/classification not only allows the model to automatically
extract meaningful features from the raw ECG signals but also
helps to improve the performance of the final classification. The
results revealed that two classes (NSR and AF) have an accuracy,
sensitivity, specificity, precision, and F1-Score of 99.98%, 99.91%,
99.91%, 99.99%, and 99.95%, respectively, and 99.17%, 98.90%,
99.17%, 96.74%, and 97.48%, respectively, for three classes (NSR,
AF, and NAF). Moreover, the proposed model also produces ro-
bust detection with an unseen pattern in three testing processes
and high generalization ability with several datasets. We realize
that these results need more improvement in further research,
especially multiclass classification, with an imbalanced dataset.
Eventually, this study will encourage more precise diagnostic

assistance in places with scarce access to cardiologists or other
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medical resources. Hence, the proposed model has great potential
to expand to a hospital computer software platform to reduce
mortality and save lives. In the future, we will continue a more
depth investigation to detection atrial premature complex, atrial
flutter, and other arrhythmia conditions with similar ECG sig-
nal characteristic to AF by using deep learning-based 1D-CNNs
frameworks to improve the model robustness.
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