In vitro Inhibitory HMG-CoA Reductase Activity of Purified Polyphenol Compounds from Water Lettuce (Pistia stratiotes) Leaf Extract

Sabri Sudirman *, Miftahul Janna, Herpandi, Indah Widiastruti

Fisheries Product Technology, Faculty of Agriculture, Universitas Sriwijaya, Indramayu 30862, Dijati 6 Regency, South Sumatra, Indonesia

ARTICLE INFO

Abstract

The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is an enzyme that plays a role in the synthesis of cholesterol. The side effect of synthetic anti-cholesterol drugs has led to the demand for natural HMG-CoA reductase inhibitors such as plant extract. Therefore, this study aimed to determine the inhibitory HMG-CoA reductase activity of polyphenol compounds from water lettuce (Pistia stratiotes) leaf extract. The research was conducted using the crude and purified extracts of water lettuce. The total polyphenols, flavonoids, and HMG-CoA reductase inhibitory activity assay were carried out in vitro analysis. The values obtained were analyzed quantitatively followed by the use of an independent sample t-test and presented in graphical form. The results showed that the total polyphenols in each crude and purified extracts were 29.03 mg GAEE/g dry sample and 65.63 mg GAEE/g dry sample, respectively; while the total flavonoids were 27.58 mg QE/g dry sample and 88.02 mg QE/g dry sample, respectively. The inhibitory activity of the HMG-CoA reductase enzyme showed that the purified extract showed percentage inhibition of 34.74% which was higher than that of the crude extract which was 2.61%. This indicated that the purified extract of water lettuce has higher levels of polyphenols and flavonoids that can inhibit the HMG-CoA reductase enzyme more effectively than the crude extract.

Keywords: Anti-hypercholesterolemia, HMG-CoA reductase, Polyphek, Water lettuce.

Introduction

Currently, society’s lifestyle is experiencing significant changes such as high consumption of fast food and lack of physical activity including exercise. This condition usually leads to a metabolic imbalance in the body that can cause the accumulation of fat and increase cholesterol. A previous study reported that cholesterol is a very important compound in human life. However, high cholesterol is closely linked with many other medical problems, especially elevated levels of low-density lipoprotein cholesterol (LDL-C). It was also discovered that high cholesterol levels or hypercholesterolemia can cause cardiovascular diseases (CVDs), such as atherosclerosis, stroke, and heart disease.

A treatment for reducing cholesterol levels in the body by inhibiting the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase enzyme. The HMG-CoA reductase is an enzyme that is involved in cholesterol synthesis. However, the use of this drug has shown some adverse effects, which include headache, muscle pain, and digestive system problems. Therefore, investigations are being carried out using plant extract as a functional or food supplement to discover an alternative inhibitor of the HMG-CoA reductase. A previous study also reported polyphenol compounds show lowering cholesterol activity by inhibiting the HMG-CoA reductase enzyme.

*Corresponding author. E-mail: sabrisudirman@umc.ac.id
Tel: +62 7112580924

Citation: Sudirman S, Janna M, Herpandi, Indah Widiastruti J. In vitro Inhibitory HMG-CoA Reductase Activity of Purified Polyphenol Compounds from Water Lettuce (Pistia stratiotes) Leaf Extract. Trop J Nat Prod Res. 2022;6(7):1131-1134. doi:10.38633/tjpr.v6i7.15

Official Journal of Natural Product Research Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria.

© 2022 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License.
Purification process

The purification process was performed by solid-phase extraction (SPE) and a HyperSep Retain PEP cartridge (Part, No. 60107-212, Thermofisher Scientific) as described by Pérez-Magallón et al.1 Briefly, 2 ml of distilled water was added to the cartridge and the sample was eluted by using 2 ml of n-hexane and 2 ml of 1 N H2SO4. The cartridge was washed with 2 ml of absolute methanol to obtain purified polyphenol extract in an aqueous form and dried with a freeze dryer to obtain the powder form of purified extract.

Total polyphenol and flavonoid analysis

The total polyphenol and flavonoid contents were analyzed according to Chandra et al.30 Moreover, total polyphenol content was analyzed using Folin-Ciocalteu’s phenol reagent. Briefly, 50 mg of dried extract was dissolved in 10 ml of methanol. Then 0.2 ml of this solution was mixed with 0.2 ml of Folin-Ciocalteu’s phenol reagent. After 5 min, the mixture was added with 1 ml of 8% sodium carbonate and then volume up to 3 ml with distilled water. The mixture was incubated at room temperature and in dark conditions for 30 min. Subsequently, the absorbance was measured at 765 nm by a spectrophotometer (Genesys 150 ThermoScientific, Massachusetts, USA). The gallic acid (GA) was used as a standard and the total polyphenol content (TPC) was expressed as mg gallic acid equivalent (GAE) per g of dry sample.

Total flavonoid content was analyzed using the aluminum chloride method. Briefly, 50 mg extract was dissolved in 10 ml of methanol. Then, 1 ml of extract solution was mixed with 1 ml of 2% aluminum chloride and allowed to react at room temperature for 60 min. After the reaction time, 1 ml of mixture was made up to 10 ml and kept for 5 min. After that, the absorbance was measured at 420 nm by a spectrophotometer (Genesys 150 ThermoScientific, Massachusetts, USA). The quercetin was used as a standard and total flavonoid content (TFC) was expressed as mg quercetin equivalent (QE) per g of dry sample.

HMG-CoA reductase inhibitory activity assay

The 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase inhibitory activity was measured using commercial kits from Sigma-Aldrich Co. (CS1090-1KT, Merck) and performed according to the manufacturer’s protocol. Briefly, 50 mg of each crude and purified extract was dissolved in assay buffer. The solution was centrifuged at 3,000 rpm for 5 min, filtered and the supernatant was kept for the next steps. Then, 5 µl of each extract and 0.5 µl of pravastatin were pipetted into reaction tubes according to the Reaction Mixed (Table 1). The reaction was observed at 340 nm by using a spectrophotometer every 20 s for 10 min. The HMG-CoA reductase activity and percentage of inhibitor were calculated according to these formulas:

\[
\text{Enzyme activity (Units/mgD)} = \frac{\text{Abs}_{450\text{nm}} - \text{Abs}_{450\text{nm}}\text{control}}{12.44 \times 5 \times 0.5 \times 10^3} \times 100\%
\]

Where: TV = Total volume of the reaction in ml (1 ml for cuvettes and 0.2 ml for plates); V = volume of enzyme used in the assay (ml); LP = Light path in cm (1 for cuvettes).

Table 1: Reaction Mixture of HMG-CoA reductase inhibitory activity (for 1 ml of cuvette)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Assay buffer</th>
<th>Crude extract (CE)</th>
<th>Purified extract (PE)</th>
<th>Pravastatin (Prav)</th>
<th>NADPH</th>
<th>HMG-CoA Reductase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanko</td>
<td>920 µl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>HMG-CoA Reductase activity</td>
<td>915 µl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>CE inhibition</td>
<td>910 µl</td>
<td>5 µl</td>
<td>-</td>
<td>-</td>
<td>20 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>PE inhibition</td>
<td>910 µl</td>
<td>-</td>
<td>5 µl</td>
<td>-</td>
<td>20 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>Prav inhibition</td>
<td>910 µl</td>
<td>-</td>
<td>-</td>
<td>5 µl</td>
<td>20 µl</td>
<td>60 µl</td>
</tr>
</tbody>
</table>

Results and Discussion

Total polyphenol and flavonoid content

The results showed that the purified extract has significantly higher total polyphenol and flavonoid contents compared to the crude extract as shown in Figure 1. Total polyphenol contents (TPC) of the crude and purified extracts were about 29.03 ± 4.15 mg GAE/g dry sample and 65.63 ± 6.51 mg GAE/g dry sample. Meanwhile, total flavonoids were about 27.58 ± 5.20 mg QEU/g dry sample and 88.02 ± 6.07 mg QEU/g dry sample, respectively. It was also found that the purified extract is majorly composed of polyphenol and flavonoid compounds due to unwanted compounds are being removed during the purification process. A previous study reported that the quality or bioactivity of crude extract was increased after purification.14 This is because unwanted and undesirable substances have been removed, thereby improving the overall quality of the crude extract.14 A solid-phase extraction (SPE) method was used for the purification process due to its rapid, simple, and economic.22 The n-hexane was applied for the removal of non-polar from the crude extract and a low concentration of sulfuric acid was used to remove non-polyphenol polar compounds; such as sugar and organic acids.23 A previous study reported that the total polyphenol of crude extract of Inga edulis increased from 496.5 mg GAE/g to 518.8 mg GAE/g after purification process.24 Furthermore, the luteolin (a flavonoid compound) increased from 0.68 mg/g to 3.52 mg/g and some flavonoids compounds of olive pomace also improved after the purification process.25

HMG-CoA reductase inhibitory activity

Figure 2 showed the representative reduction of absorbance at 340 nm during the measurement of the HMG-CoA reductase activity assay. After the calculation, it was found that purified extract with a value 34.74±5.40% showed HMG-CoA reductase activity significantly higher than crude extract (26.1±26%) as shown in Figure 3.

The increased inhibition of purified extract to HMG-CoA reductase due to it composed of high concentrations of polyphenol and flavonoid compounds. A previous study reported that polyphenols and flavonoids from Malabar spinach (Basella alba) leaf have the ability to inhibit HMG-CoA reductase activity.26 A previous reference also reported that isoflavon (a flavonoid compound) inhibits HMG-CoA reductase activity as an inhibitor competitive during cholesterol synthesis.19 According to Chen et al., catechin (a polyphenol compound) successfully reduced cholesterol levels through in vitro and in vivo experiments.27 Additionally, Islam et al. reported that these compounds can block the electron transfer on the substrate HMG-CoA and bind on HMG-CoA reductase on the NADP+ binding site. The HMG-CoA reductase is an important enzyme that is involved in cholesterol synthesis. This enzyme catalyzed HMG-CoA to

© 2022 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License

ISSN 2616-0868 (Print)
ISSN 2616-0692 (Electronic)
Coenzyme A and mevalonate. The mevalonate then was converted to cholesterol by the mevalonate pathway. Therefore, inhibited HMG-CoA reductase is an effective way to reduce cholesterol levels in human and animal experiments.

Conflict of Interest
The authors declare no conflict of interest.

Authors’ Declaration
The authors hereby declare that the work presented in this article is original and that any liability for claims relating to the content of this article will be borne by them.

Acknowledgements
This work was financially supported by the Universitas Sriwijaya within the framework of the Indonesia Directorate General of Higher Education, Research and Technology Project, Ministry of Education, Culture, Research, and Technology, SPKK No. 142/E5/PG.02.IOPT/2022.

References

SIMILARITY INDEX

10%

PRIMARY SOURCES

<table>
<thead>
<tr>
<th>#</th>
<th>Source</th>
<th>Website</th>
<th>Words</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>www.researchgate.net</td>
<td>Internet</td>
<td>106</td>
<td>4%</td>
</tr>
<tr>
<td>2</td>
<td>journals.plos.org</td>
<td>Internet</td>
<td>39</td>
<td>2%</td>
</tr>
<tr>
<td>3</td>
<td>works.bepress.com</td>
<td>Internet</td>
<td>22</td>
<td>1%</td>
</tr>
<tr>
<td>4</td>
<td>Amal Dbeibia, Fadia Ben Taheur, Khadijah A. Altammar, Najla Haddaji et al.</td>
<td>www.orientjchem.org</td>
<td>20</td>
<td>1%</td>
</tr>
<tr>
<td>5</td>
<td>ir.unilag.edu.ng</td>
<td>Internet</td>
<td>18</td>
<td>1%</td>
</tr>
<tr>
<td>6</td>
<td>www.myfoodresearch.com</td>
<td>Internet</td>
<td>18</td>
<td>1%</td>
</tr>
<tr>
<td>7</td>
<td>www.cureus.com</td>
<td>Internet</td>
<td>17</td>
<td>1%</td>
</tr>
<tr>
<td>8</td>
<td>www.orientjchem.org</td>
<td>Internet</td>
<td>13</td>
<td>1%</td>
</tr>
</tbody>
</table>