Indonesia_Sign_Language_Recognition

By Bhakti Suprapto



(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

Indonesia Sign Language Recognition using
Convolutional Neural Network

Suci Dwijayanti*, Hermawati, Sahirah Inas Taqiyyah, Hera Hikmarika, Bhakti Yudho Suprapto

Department of Electrical Engineering, Universitas Sriwijaya
Indralaya, Indonesia

18

Abstract—In daily life, the deaf g sign language to
communicate with others. However, the non-deaf experience
difficulties in understanding this communication. To overcome
this, sign recognition via human-machine interaction can be
utilized. In Indonesia, the deaf use a specific language, referred
to as Indonesia Sign Language (BISINDO). However?m a few
studies have examined this language. Thus, this study proposes a
deep learning approach, namely, a new convolutional neural
network (CNN) to recognize BISINDO. There are 26 letters and
10 numbers to be recognized. A total of 39,455 data points were
obtained from 10 respondents by considering the lighting and
perspective of the person: specifically, bright and dim lightning,
and from first and secon n perspectives. The architecture
of the proposed network consisted of four convolutional layers,
three pooling layers, and three fully connected layers. This model
was tested against two common CNNs models, AlexNet and
VGG-16. The results indicated that the proposed network is
superior to a modified VGG-16, with a loss of 0.0201. The
proposed network also had smaller number of parameters
compared to a modified AlexNet, thereby reducing the
computation time. Further, the model was tested using testing
data with an accuracy of 98.3%, precision of 98.3%, recall of
984%, and Fl-score of 99.3%. The proposed model could
recognize BISINDO in both dim and bright lighting, as well as
the signs from the first-and second-person perspectives.

Keywords—Indonesia sign language (BISINDO); recognition;
CNN; lighting

I. INTRODUCTION

Humans use language to communicate with others.
However, a communication disorder may occur because of
various factors that cause an impairment in understanding oral
speech [1]. Such factors can arise from a hearing disorder or
deafness. Thus, deaf people use sign language or hand gestures
to communicate. However, most non-deaf people experience
difficulties in understanding sign language. A computerized
sign recognizer could be emplh] as an important tool to
enable mutual understanding between deaf and non-deaf

people.

Various studies have been proposed to recognize hand
gestures or sign languages in different countries because
country has a different sign, such as the American sign
language [2], Arabic sign language [3], Bengali sign language
[4], Peruvian sign language [5], and Chinese sign language [6]
using various methods.

Indonesia has two sign languages: Indonesia Sign
Language System (SIBI) and Indonesia Sign Language
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(BISINDO). In 1994, SIBI became the language used in formal
schools for students with impairments. However, the deaf
prefer to use BISINDO instead of SIBI in their daily lives.

Certain studies have been performed to recognize the SIBI.
Uiind gestures recognition approaches can be divided into
vision based and sensor-based [7]. In vision-based approaches,
images are acquired through a video camera. Meanwhile,
sensor-based recognition needs an instrument to capture the
motion, position, or velocity of the hands. Studies in
Indonesian sign languages implemented the vision-based
approach. A. Anwar et al. used a leap motion controller to
recognize Indonesian sign language using feature extraction
captured from hand movement [8]. In [9], a Myo Armband tool
é used, which has five sensors, namely accelerator,
gyroscope, orientation, orientation Euler, and
electromyography (EMG). Both vision and sensor-based
approaches need the data acquisition and classification stages.
Various classification methods have been progfed to
recognize patterns carried by input data. The k-nearest
neighbor classificatiorfshethod was used to recognize the SIBI
[10]. In this study, the distance between the coordinates of each
bone distal to the position of the palm was measured using
Euclidean Zljtance. Meanwhile, Khotimah et al. implemented
weighted k-nearest neighbor classification for dynamic sign
language recognition [11]. Rosalina et al. used artificial
intelligence to recognize SIBI [12]. Other studies utilized
Hidden Markov Model [lnd Naive Bayes [14] methods.
Meanwhile, [15] used the generalized learning vector
quantization model to recognize BISINDO and [16] utilized
Scale Invariant Features Transform (SIFT) algorithm to
recognize Indonesian Sign Language numbers. Igbal et al.
implemented a mobile device using a Discrete Time Warping
for recognizing SIBI [17].

Most studies above discussed SIBI; however, BISINDO is
the most common sign language used by the deaf in Indonesia.
Thus, this study aims to convert hand gestures to text in
BISINDO to improve communications between deaf and non-
deaf people. In addition, the methods used in other studies
depended on feature extraction. To improve performafle) this
study proposes a method to recognize BISINDO using a
convolutional neural network (CNN) which uses the
convolution layer as the feature extraction layer [18]. In other
studies, a CNN was used by [2] t “ognize American Sign
Language. They employed a CNN xtract the features from
the sign images, and the classifier used was a multiclass
support vector machine. Hayani et al. also utilized a CNN
coupled with an Adam optimizer to recognize Arabic sign
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language [3]. Hossen et al. used a deep convolutional neural
network to recognize Bengali sign language [4].

However, not many previous works have addrﬁd
converting BISINDO sign language to text. Furthermore, there
is a need to develop CNN models that have lower computation
costs for converting sign language to text. This study addressed
both needs by developing a new CNN architecture to perform
the BISINDO hand gesture to text, and reduced computation
costs by using fewer parameters thawlfie common CNN
architectures. The experimental research objective of this study
was to compare the BISINDO recognition performance of this
simplified CNN model to AlexNet and VGG-16 which are
other architectures commonly used in CNNs. We tested the
performance using BISINDO standard hand signs recorded by
a webcam unﬁﬂght and dim lightning, and from first and
second-person perspectives.

This paper is organized #EPBllows: Section II provides a
brief summary of BISINDO, followed by a description of the
CNN architecture i ction III. The methods used in this
study are described in Section IV. The results and discussion
are presented in Section V. Finally, the paper is concluded in
Section VI.

II. INDONESIAN SIGN LANGUAGE

Sign language is a language that is expressed using body
gestures and facial expressions as a symbol of the meaning of
spoken language [19]. The sign languages of Indonesia can be
categorized into two ty SIBI and BISINDO. SIBI was
adopted from American Sign Language and is used as the
formal sign language in schools for deaf students. However,
the deaf prefer to use BISINDO instead of SIBI owing to its
better applicability. The signs for the letters and numbers in the
BISINDO language are shown in Fig. 1.
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Fig. 1. BISIINDO Alphabets [20] and Numbers [21].
16
II. CONVOLUT L NEURAL NETWORK (CNN)

A CNN is typically used to detect ognize images. It
has an architecture that consists of a feature extraction layer
and a fully connected layer. The feature extraction layer

priscs a convolution layer and pooling layer. The general

architecture of the CNN is illustrated in Fig. 2.

Classes:
Letter A
Letter B
Letter C

08 O e

Flatten Fuilly-
conmected

Softmax

Classification

Fig. 2. Architecture of the CNN

The convolution layer extracts t atures of images. This
results in a linear transformation from the input, which is
suitable for the spatial information of the filter. The weights in
this layer determine the kernel convolution. Thus, kernel
volution can be trained based on the CNN input. The
pooling layer comprises a ﬁltcmlh a stride and a certain size
that passes through the path in the feat ap. It aims to
reduce image size. There are two types of pooling layers: max
pooling and average pooling. In this study, max pooling was
utilized by determining the maximum value in the vector
dimension. After passing the convolution and pooling layers,
the output of this process is used as the input to the fully
connected layer. However, before this process, the input must
be converted into one dimensional data. Finally, the process is
performed using Softmax. Softmax calculates the probabilities

for all target classes to determine the classes based on the input
[22].

IV. METHODS

This section provides detailed descriptions of several steps
used in our methods. This study was performed using primary
data obtained from people who had no prior knowledge of sign
language. Here is an overview of the steps. A webcam was
used to gather sets of hand sign data from ten people to use as
training data. The data were obtained by considering two
conditions: lighting and perspective of the person. Then, a new
CNN model was designed and trained, which was named
model C. For comparison, we trained modified versions of
AlexNet and VGG-16. Then, the three models were tested and
evaluated against the test data.
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A. Data

The data used in this study were obtained using the
webcam Logitech C922 with a resolution of 1080p and 30 fps.
Ten respondents were asked to perform hand gestures, which
consisted of 26 letters and numbers from 1 to 10, adhering to
the BISINDO standard. Data were acquired 30 ¢cm from the
camera, as shown in Fig. 3. A green screen was placed as a
background to minimize noise. Data were obtained by
considering two conditions: lighting and perspective of the
person.

Fig. 3. Overview of the Data Retrieval Process.

B. gchifecrum of CNN

The CNN architecture used in this study consisted of three
architectures, namely, models A, B, and C. Model A was a
modified version of AlexNet [23]. The original AlexNet has
24 884 005 parameters, whereas the modified one has
1,432261. Model B was a modified architecture of the VGG-
16 [24]. It was modified to 2,140405 parameters from its
original value of 33,748.837. AlexNet and VGG-16 were
chosen because they are the most common architectures used
in CNNs. The architectures of models A and B are shown in
Fig. 4 and 5, respectively.

This study proposed a new architecture, naﬂa; model C.
Model C is a simpler architecture that consists of convolutional
layer 1, max pooling 1. convolutional layer 2, convolutional
layer 3, max pooling gonvoluﬁonal layer 4, max pooling 3,
flattened layer, and 3 fully connected layers. The visualization
of model Cis shown in Fig. 6.

C. Evaluation 21

This study utilized accuracy, precision, recall, and F1
scores to evaluate the performance of the three models. These
parameters were calculated as follows:

TP+TN (1)
TP+TN+FP+FN

where True Positive (TP) is the number of positive data
correctly predicted as positive, true negative (TN) is the
number of negative data correctly predicted as negative, false
positive (FP) is the number of negative data incorrectly
predicted as positive, and false negative (FN) is the number of
positive data incorrectly predicted as negative.
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Fig. 5. Architecture of Model B.
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Fig. 6. Architecture of the New Model C.
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In addition, precision and recall are also utilized as
evaluation parameters. These can be calculated as.
™"

precision = (2)

and

recall = —2— (3)
TP+FN

The balance between precision and recall is determined
using the F1-Score, which is obtained as follows.

F1 score = 2( (4)

precisimxreca!!)
precision+recall

V. RESULT AND DISCUSSION

A. Image Dataset

The data used in this study were obtained from 10
respondents under two lighting conditions: dim and bright
conditions. The position of the camera was also considered to
be from the direction of the object considered (first-person
perspective) and from the directions of others who observe the
hand gesture (second-person perspective). Both lighting and
viewpoints were considered in this study because illumination
and viewpoints are challenges in gesture recognition [7]. Each
respondent performed 37 hand gestures, consisting of 26 letters
and 11 numbers (0—-10). The data were recorded in a video
format (.mp4) to obtain multiple data varieties. Subsequently,
the data obtained were converted into images in the format of
Jpg. The total data obtained through this css comprised
39,455 data points. Examples of the data are shown in Fig. 7.

Vol. 12, No. 10,2021
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Fig. 7. Examples of Hand Gestures Obtained, (a) From the First-Person
Perspective, (b) From the Second-Person Perspective, (¢) Images Captured in
Dim, and (d) Images Captured in Light.

B. Data Preprocessing

Before using the data in the CNN, the image data were
preprocessed. This stage was performed by resizing the image
and scaling the features. The image was resized to the same
size of 60 x 60 pixels. Thereafter, feature scaling was
performed by dividing the values at each point in the image by
255 such that the data value interval in the image was 0-1.
Fig. 8 shows the preprocessed results of the image data.

C. Data Split

The preprocessed data were then fed as input to the CNN.
In total 39,455 data were obtained, which wi rther divided
using the stratified shuffle split method into three parts:
training data, validation data, %{est data. The division of the
data was: 60 % training data, 20 % validation data, and 20 %
test data, as shown in Fig. 9.

Before Preprocessing After Preprocessing

500

1000

500 1000 1500 0 2 a0

Fig. 8. Example of Preprocessed Result of Image Data.

Data Splitting
Faining Data

EEE Taining Data
Validation Data
Testing Data

Testing Data

Validation Data

Fig.9. Data Splitting.
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D. Training Process

The training process was conducted using the CNN
algorithm. The training parameters for the three models are
listed in Table 1.

ol. 12, No. 10,2021
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TABLE L PARAMETERS OF TRAINING
Parameter Value
Image size 60x 60
Optimizer Adam
Epoch 100
Learning Rate 0.001

LoSS

36055

36050

316045

0.0376 4

100

he loss and accuracy of the training results using models
A, B,and C are shown in Fig. 10, 11,and 12,res ively.

As shown in Fig. 10, model A exhibited training and
lidation losses of 0.011 and 0.096, respectively. Further, the
training and validation accuracies were 0997 and 0.984,
respectively. As shown in the loss graph, the model tends to
fluctuate, indicating instability. Nevertheless, the model can
learn the patterns as shown by the loss values, which tend to
zero in each epoch, and the accuracy is improved. In contrast,
model B has a high loss value and low accuracy, as shown in
Fig. 11. This implies that the model cannot learn the patterns
given by hand gestures becaustithe loss wvalues are high.
Fig. 12 shows that model C has training and validZfion losses
of 0.020 and 0.079, respectively. In addition, the training and
validation accuracies were 0.995 and 0.984, respectively. Thus,
model C can learn the hand gestures given because the loss
value goes to zero and the accuracy increases. A comparison of
these models is shown in Table II.
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Fig. 10. |!55 Value and Accuracy of Model A.
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Value and Accuracy of Model B.
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Value and Accuracy of Model C.

TABLEI.  COMPARISON OF TRAINING IN HODELA,B,AND C

Parameter Maodel A Model B Maodel C
Training Loss 00113 36049 0.0201
jdation Loss 00967 36045 (L0785
mg)lccurmy 09972 00376 0.9948
Validation Accuracy (19839 00376 (1.9839
Total Parameter 1432261 2.140.405 177373
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As shown in Table II, Models A and C have low loss
values and high accuracy compared to ModelZ®l Overall,
Model A has the lowest training loss value, and high training
and validéfion accuracy. Model C has the lowest validation
loss, and high training and validation accuracy. In addition, the
total number of parameters used in Model C was 177,383 while
Model A had 1432261 parameters. Therefore, the
computation time in Model C was the smallest compared to the
other models. In addition, although Model C still exhibited a
fluctuation in validation loss and validation accuracy (Fig. 12),
it is lesser than that of Model A (Fig. 10). Thus, Model C has
more stable validation loss. Based on these results, Model C
exhibited the best performance compared to the other models.
Consequently, these models were used to test whether the
model is optimal and can generalize the testing data.

E. Testing

Testing was performed after training to determine the
ity of the model to predict the class of hand gestures. The
test results are shown in Table III.

TABLE II1. EVALUATION OF TESTING DATA

Average

prediction -
Model Total time per Ace. F Precision | Recall

Param. Score

data

(second)
i’[ode] 1432261 | 00002 0986 | 099 | 0.987 0987
;'Iode] 2140405 | 00001 0038 | 0002 | 0.001 0027
([\é[ode] 177373 0.0001 0983 | 0993 | 0.983 0984

a As shown in Table III, model A has an accuracy of 0.986,
F1 score of 0.996, precision of 0987, and recall of 0.987. The
results of testing using Mod are very similar to model A,
with an accuracy of 0983, F1 score of 0.993, precision of
0.983, and recall of 0.984. Since model B failed to learn, its

Vol. 12, No. 10, 2021

test results were very low. Thus, Models A and C obtained the
best results. However, Model C has fewer parameters, thereby
requiring less time to predict the data compared to Model A.
The average prediction time per data for Model C was half the
time for Model A: 0.0001 s for Model C and 0.0002 s for
Model A. Therefore, Model C is twice as efficient as Model A
while achieving near-equivalent performance levels.

1) Test results by lighting: This study used two lighting
conditions: bright and dim. The performances for both
conditions are shown in Table IV.

As shown in Table IV, both Models A and C could
recognize the testing data in the two different lighting
conditions, and they both had high performance. Meanwhile,
Model B performed poorly in recognizing the signs.

2) Test results by perspective: This study used the first-
and second-person perspectives. The position of the camera
was considered to be from the direction of the object
considered (first-person perspective) and from the directions of
others who observe the hand gesture (seccnl-person
perspective). The performances for both conditions are shown
in Table V.

Table V shows that Model A and C can recognize the signs
in both the first and second-person perspectives with high
performance levels. There was a slight improvement with the
second-person perspective.

F. Hand Gesture Prediction Results

The performance of the proposed model for predicting hand
gestures was evaluated as well. Each class of hand gestures
was performed, and the results obtained are shown in Fig. 13.
The proposed model can recognize new data. Further, the hand
gesture in the dim condition yielded a higher accuracy than in
the light condition for the first-person perspective. In contrast,
the second-person perspective exhibited the same performance
under both dim and bright conditions. Certain samples of hand
gesture recognition are listed in Table VI

TABLE IV.  TESTING RESULTS FOR DIFFERENT LIGHTING CONDITIONS
M
0 Bright Dim
D
E Accuracy FI Score Precision Recall Accuracy FI Score Precision Recall
A 0985 0.985 0.986 0984 0.987 0987 0988 0.987
B 0038 0.002 0.001 0027 (1038 0002 0001 0.027
C 0979 0.980 0.981 0981 0.987 0987 0.987 0.988
TABLE V. TESTING RESULTS FOR DIFFERENT PERSPECTIVES
M
0 First-person perspective Second -person perspective
D
E !wumcy F1 Score Precision Recall Accuracy F1 Score Precision Recall
A 0984 0.984 0.985 0984 0.987 0987 0988 0.987
B 0031 0.002 0.001 0027 0,043 0002 0.001 0.027
C 0978 0.979 0.980 0980 0.987 0987 0987 0.988
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Recognition Results Using Proposed Model

__ 100
= 80
o 60
E a0
c
@ 20
o 0 | — — —
o
first person  second  first person  second
person person
Light Dim
ETRUE M FALSE
Fig. 13. Recognition Results using Proposed Model C.
TABLE VL.  SAMPLE OF HAND GESTURES PREDICTION RESULTS
Lighting . Actual Result of
Data Test Condition | Perspective | oocs Prediction
Bright First-person 4 4
(True)
. Second- H
- Dim person H (True)
. Second- S
- Bright person 5 (True)
Di First-person 8 8
im St-pers (True)
Dim First-person B B
! St-pers (True)
. Second- 3
- Bright person 3 (True)
Dim First-person 2 v
! Stpers - (False)
Bright First-person M M
rig stpers (False)
. M
- Dim First-person N (False)
. Second- I
- Dim person T (False)

As shown in Table VI, the proposed CNN model C works
well in predicting hand gestures that were not included in the
training data. This implies that the CNN can be implemented to
recognize hand gestures. However, certain prediction errors
occurred in certain classes, such as 2, M, N, V, and J. The

Vol. 12, No. 10,2021

occurrence of prediction errors due to hand gestures from these
classes 1s almost the same or similar to other classes. The
numbers 2 and V have the same hand gesture, thus, an error
occurred in the CNN while predicting the class. From the first-
person perspective, no difference was observed between the
letter M and N hand gestures, thereby resulting in an error in
the prediction. Further, the hand gesture for the letter J is not
static, thus a prediction error occurred wherein the letter I was
predicted because the initial movement of the signal letter I
resembles that for the letter I.

VI. CONCLUSION

The results of this study demonstrated that our new
simplified CNN model exhibited good performance in
recognizing BISINDO hand gestures. The CNNZarchitecture
used was a simple architecture consisting of convolutional
layer 1, max pooling 1, convolutional layer 2, convolutional
layer 3, max g 2, convolutional layer 4, max pooling 3,
flattened layer, and 3 fully connected layers. The parameters
used were the Adam Optimizer, an iteration parameter of 100
epochs, and a learning rate of 0.001. During the training
process last epoch resulted in a training loss value of
0.0201, validation loss value of 0.0785, and training accuracy
value of 0.9948 with a wvalidation accuracy value of 0.9839.
The results of hand signal recognition testing using the CNN
model on test data obtained performance results of 98.3%.
Thus, this new simplified CNN model can recognize the
BISINDO hand gestures well under dim and bright lighting and
fromgthe first- and the second-person perspective.

In the future, we will improve Model C to address those
performance factors. We also expect to conduct the process of
data retrieval with different backgrounds and do further
research on real-time implementations of BISINDO hand
gestures.
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