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ARTICLEINFO ABSTRACT

Echocardiogram examination is important for diagncag cardiac septal defects. With the development of Al-
based technology, an echocardiogram examination previously performed manually by cardiologists can be
done automatically. Automatic segmentation of cardiac septal defects can help a physician to make an initial
diagnosis before referring a pediatric cardiologist for further treatment. In previous studies, automatic object
segmentation using convolutional neural networks (CNNs) was one of the DL applications that have been
developed for cardiac abnormalities. In this study, we propose a CNN-based U-Net architecture to automatically
segment the cardiac chamber to detect abnormalities (holes) in the heart septum. In this study, echocardiogram
examinations were performed on atrial septal defects (ASDs), ventricular septal defects (VSDs), atrioventricular
septal defects (AVSDs), and normal hearts with patients undergoing echocardiogram examination at Moh Hoesin
Hospital in Palembang. The results show that even for the relatively small number of datasets, the proposed
technique can produce superior performance in the detection of the cardiac septal defects. Using the proposed
segmentation model for four classes produces a pixel accuracy of 99.15%, mean intersection over union (IoU) of
94.69%, mean accuracy of 97.73%, sensitivity of 96.02%, and F1 score of 94.88%, respectively. The plots of the
loss and accuracy curve show that all the errors were small, with accuracy rates reaching 99.05%, 98.62%,
99.39%, and 98.97% for ASD, VSD, AVSD, and normal heart, respectively. The comparison accuracy of contour
prediction for U-Net was 99.01%, while V-Net was 93.70%. This shows that the U-Net has better accuracy than
the V-Net model architecture. It can be proven that the architecture of CNNs has been successful in segmenting
the cardiac chamber to detect defects in the heart septum and support the work of cardiologists.
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1. Introduction common as ASD and VSD cases, generally, the symptoms are more se-

vere and overdue for detection [3,4]. Likewise, although there are many

Congenital heart disease (CHD) is the most common congenital
anomaly in new-borm babies [1]. Anatomical abnormalities of the heart
and blood vessels have even occurred since the first trimester intra-
uterine. There are many types of C arying from mild to severe, with
both frequent and rare cases [2]. A Cardiac septal defect is one type of
CHD that is marked by a hole in the atrial, v icular, or both the atrial
and ventricular septa, which correspond to atrial septal defect (ASD),
ventricular septal defect (VSD), and atrioventricular septal defect
(AVSD), respectively [1]. ASD and VSD are the most common CHD le-
sions, while AVSD is less common [2]. Even though AVSD is not as
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cases with ASD and VSD, they are still detected too late, so that treat-
ment becomes delayed and ineffective [3].

Delay in early detection occurs because not all cases suspected with
cardiac septal defects can be detected by an echocardiogram, whereasan
echocardiogram is the gold standard examination to establish a diag-
nosis of CHD [5]. To resolve the problem of late detection, every case
suspected of having a cardiac septal defect should be performed with an
echocardiogram examination by a physician [5]. However, not all
physicians can perform echocardiograms because this examination re-
quires special skills to avoid misdiagnosis [6]. Moreover, cardiologists

* Corresponding author. Intelligent System Research Group, Faculty of Computer Science Universitas Sriwijaya, Palembang, 30137, Indonesia.
E-mail addresses: rialuthfan@ yahoo.com (R. Nova), sitinurmaini@gmail.com (8. Nurmaini), radiandinadr@yahoo.co.id (R.U. Partan), sukmanputra@yahoo.com

ﬁT. Putra).

https://doi.org/10.1016/j.imu.2021. 100601

Received 27 January 2021; Received in revised form 12 May 2021; Accepted 12 May 2021

Available online 23 May 2021
2352-9148/©@ 2021 The Authors.

(e ereal e commences cog Al con s by -a cad 4.0 ).

Published by Ekevier Ltd.

This is an open access article under the CC BY-NC-ND license




R Novaet al

Informatics in Medicine Unlocked 24 (2021) 100601

TISON W14

NORMAL

Fig. 1. Sample of raw data for ASD, VSD, AVSD, and normal heart from apical 4 and 5 chamber view in 2-D echocardiogram.

Data source of RSMH medical records, November 7,
2019.

do not yet exist in every peripheral health service, as their numbers are
still limited. For this reason, even though echocardiograms are available
in peripheral health services, their use for the detection of CHD is still
suboptimal [} Based on all these limitations, improving screening
examinations with advanced technology to achieve accurate, automatic
abnormal cardiac septum detection using echocardiograms has become
a major issue.

To identify cardiac septal defects, the physician performs ausculta-
tion using a stethoscope to listen for heart sounds and murmurs [7].
Although tR&first heart sound is normal, the second heart sound is
typical of a wide fixed split and a soft systolic ejection murmur is heard
over the pulmonary area in the left upper sternal border [8], misdiag-
nosis of ASD is still common [3]. Misdiagnosis of VSD also frequently
occurs because the sound of a typical holosystolic murmur in the mid-to
lower-left sternal border varies depending on the type and size of VSD
[9]. The same problem occurs with AVSD, and murmurs may often not
be heard [1]. Therefore, echocardiogr is needed to confirm the
diagnosis of cardiac septal defects. E

These days, computer-based diagnosis %stems have been developed.
In other words, echocardiogram interpretation is done digitally, aided
by a computer device (computer-aided diagno&l) using artificial intel-
ligence (AI) [10-12]. With the development of Al-based t ology, an
echocardiogram examination for the detection of cardiac septal defects
previgelly performed manually by cardiologists can be done automati-
cally. An automatic echocardiogram examination can be used to assist
physicians in early detection before referral to a cardiologist for further
management. Deep leamning (DL), as a part of Al, has demonstrated great
potential in recent years for medical imaging. The most common ap-
plications of DL in medical imaging have been for image classification
[13-15], detection [16], and segmentation [17-19].

Although DL has been widely applied to 2D cardiac images with high
accuracy, to the best of our knowledge, there has been limited research
until now that developed it for cardiac septal defects. Object segmen-
tation is one of the DL applications that can be developed for cardiac
septal defects. Contouring lesions can be identified through segmenta-
tion so that cardiac septal defects can be diagnosed accurately.

Therefore, improving the 2D segmentation performance for cardiac
septal defects using CNNs is important for a deep investigation. This
study’s novelty and contributions are as follows:

» To design a CNN model for segmenting cardiac septal defect condi-
tions of the heart images with high accuracy;

s To develop a CNN-based U-Net architecture for segmenting the
contour regions of ASD, VSD, AVSD, and normal condition; and

+ To validate selected models with a V-Net architecture in terms of
pixel accuracy, mean intersection union, mean accuracy, precision,
recall and F1 score.

The rest of this paper is organized as follows: Section 2 explains the
materials and methods, section 3 presents the results, and section 4 of-
fers a discussion. Finally, the conclusions are presented in section 5.

2. Methods
2.1. Data acquisition

Echocardiogram examinations were performed on eight patients,
consisting of ASD, V5D, AVSD, and normal heart patients. The age of
subjects ranged from one to five years old, all of whom visited the
children’s heart clinic at Moh Hoesin Hospital between November 2019
and January 2020. All patients were examined fora 2-D echocardiogram
with six standard views, namely, parasternal long and short, apical 4-
(A4C) and 5-(A5C) chamber, subcostal, and suprasternal views. In this
study, we have focused on A4C and A5C views, as can be seen in Fig. 1.
This selection of focus is due to the atrial septum, ventricular septum and
the four chambers of the heart being clearly visible in one view. We
covered 200 images obtained from eight videos each of two videos of
ASD, VSD, AVSD, and normal heart for training and validation.

2.2, Pre-processing

The pre-processing of infant video for segmentation consists of four
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Fig. 2. The main steps of data pre-processing.

Fig. 3. Conversion of US video of AVSD to frames.
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Fig. 4. Image cropping process for AVSD.

main steps, as shown in Fig. 2; (i) intiaaiidco to image framing. The
type of file.avi and length is 5s. We used cv2.VideoCapture (J; a infant
video was then read frame by frame, where the frame will be stored in
frame storage using cv2.imwrite () code to create a ground truth of in-
fant images. Subsequently, we (ii) performed the data filtering process
with a closed valve case; (iii) cropped all infant images from the frame
based on an 800 = 600 pixel; (iv) and annotated the labels of infant
images with a data annotation tool (Adobe Photoshop). The label con-
sisted of a hole and a heart chamber. If there were only the chambers of
the heart, it was identified as normal. The output of labels was saved in
image thresholding.

For videos that have been obtained previously, the next step is to
convert videos into frames or images. From the raw video data inserted
into the Python library with OpenCV, the video will be converted into
many frames. The data is recorded in the video in the.avi format and
then converted into frames with the jpg format. Fig. 3 shows the video
being converted into frames of AVSD.

The results obtained in the process of converting the video to the
frame will produce many frames based on the output obtained by the
Python library. The data frame results obtained have a size of 800 = 600
pixels, and there is still much unnecessary information in the data frame.
Thus, the next stage is to cut the image frame that has been performed
before. This stage is performed the same as in the process of converting
the video to the frame using library Python software. In the process of

cropping the frame with the Python library, the crop range is adjusted to
the right, left, top and bottom to remove unnecessary information, as

shown in Fig. 4. Because the size of the pixel frame is maximal, it is
enough to be used for the next process, so image cropping is not
performed.

The final step taken in the pre-processing of this data is to label the
data that has been cut before. The process of labeling images or ground
truth uses the help of Adobe Photoshop and illustrator because PSD
Photoshop software supports labels getting good results in the process of
labeling image data. Fig. 5 shows the ground truth of the original ASD,
VSD, AVSD and normal heart frames.

Eight echocardiogram videos were converted to become several
frames (images)}—about 100 to 500 images—which were used as the
source of information. The total number of images was about 4000.
However, in the process designed to obtain a good model of segmenta-
tion, only good quality images were selected, leaving 2609. From the
selected images, ground truth was performed for each of the 50 images,
as shown in Table 1.

The 200 ground truth dataset used for training and testing and the
prevalence of different classes as can be seen in Table 2.

To ensure that the process of object detection was run in a good
performance, an Intel i9-9900 k CPU with NVIDIA GPU RTX 2080ti 11
GB was used as the testing server. The processing time largely depended
on the number of convolution layers in one image with Windows 10 0S.
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Fig. 5. Image labeling process for ASD, VSD, AVSD, and normal heart.

Table 1
Dataset of ASD, VSD, AVSD and normal heart.

No Echocardiogram Original Image Ground Truth
Patient 1 Patient 2
1 ASD 30z 557 50
2 VSD 166 115 50
3 AVSD 320 30z 50
4 Normal 277 570 50
Total 1065 1544 200
Table 2
Dataset for training and testing.
No Echocardiogram Training Testing
1 ASD 34 10
2 VsD 30 11
3 AVSD 34 1z
4 Normal 3z 13
Total 154 46

The validation process of CNN pre-trained models was carried out with
different hyperparameters and network models. The leaming rate pro-
cess used was 107>, with an epoch 1000 and batch size of 64.

2.3. Model architecture

The deep leamning method used in this study employs CNNs. The
CNN-based U-Net architecture was chosen in_this study because the
architecture has been shown to exhibit gooc&‘rt'ormancc for the seg-
mentation of heart images [20]. CNNs are designed to better utilize
spatial and configural information by taking 2D images as input [21].
Structurally, CNNs have convolutional layers interspersed with pooling
layers followed by fully connglted layers, as in a standard multilayer
neural network [21,22]. The role of a convolutional layer is to detect
local features at different positions in the input feature maps with

{ . . -
leamable kemels kj'-j', namely, connection weights between the feature

map [ at layer [ — 1 and the feature map j at layer [. Specifically, the units

of the convolutional layer [ compute their activation A J' 'on the basis of

. . . N . . -1 .
only a spatially contiguous subset of units in the feature maps A} 'of

the preceding layer [ — 1 by convolving the kemels kj'-:-'as follows:

M(I-1)
A= ( Z Al "*kl;"+b':"')_ 1)
i=1

where M denotes the number of feature maps in layer [-1, the
; ; 1. ;
asterisk denotes a convolutional operator, and bJ'- 'is a bias parameter.

Due to the mechanisms of weight sharing and local receptive field, when
the input feature map is slightly shifted, the activation of the units in the
feature maps is shifted by the same amount. In this study, the archi-
tectural model of CNNs is U-Net for defect segmentation. Generally, the
U- Net architecture is icted in Fig. 6 as follow:

U-Met architecture consists of a contracting path (left side) and an
expansive path (right side). The contracting path follows the typical
architecture of a convolutional network. It consists of the repeated
application of two 3 = 3 convolutions (unpadded convolutions), each
followed by a rectified linear unit (RelU) and a 2 x 2 max pooling
operation with stride 2 for down-sampling. At each down-sampling step,
we double the number of feature channels. Every step in the expansive
path consists of an up-sampling of the feature map followed by a 2 = 2
convolution (“up-convolution”) that halves the number of feature
channels, a concatenation with the correspondingly cropped feature
map from the contracting path, and two 3 = 3 convolutions, each fol-
lowed by a ReLU. The cropping is ssary due to the loss of border
pixels in every convolution. At the final layer, a 1 = 1 convolution is
used to map each 64-component feature vector to the desired number of
classes. In total, the network has 23 convolutional layers. All parameters
of the architecture are defined in Table 3.

This research will also compare the architectural model with the V-
Net. The V-Net approach comprises two main parts. The left section
includes two features: the left area, which consists of a compression
path, and the right area, which decompresses the input until its initial
size is attained. The architecture V-Net is similar to the U-Net model, but
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Fig. 6. U-Net architecture.
Table 3 Table 5
U-net architecture. Segmentation performance for each class
Layer Kernel Size, Sride Activation  Output Validation Segmentation Prediction by U-Net Architecture (%)
Feature Map Funtion Shape ASD vsD AVSD Normal
Input Layer - - - 256 « 256X 1 . ,
Convolution Layer 64 x 64 x 3 1 ReLu 128 » 128x 3 Piml Accomcy _ $3.05  S8.62  99.33 9897
1 Mean Intersection Union 93,84 92.57 95.66 93.52
Max Pooling 1 2x2 2 - 128 % 128x 3 ﬁiz;:ﬁc”my g?f)é gi'i iiﬁ :ég
Cozn\'olutlon Layer 128 « 128x 3 1 Relu 256 x 256X 3 Recall 97.92 91.21 95.41 92.83
Max Pooling 2 242 2 _ 256 « 256x 3 F1 Score 93.99 92.83 95.81 93.66
Convolution Layer 256 x 256 x 3 1 Relu 512 x 512x 3
3
Max Pooling 3 242 2 _ 512 % 512x 3 with some differences. The left part of the network is divided into
Convolution Layer 512 x 512x3 1 ReLu 1024 x 1024 x different stages that operate at various resolutions. Each step comprises
4 3 one to three ¢ lutional layers. At each stage, a residual function is
Dropout p=035 - - 1024 learning. This architecture ensures convergence compared with non-
Max Pooling 4 2x2 2 - 1024 « 1024 x " s )
3 residual learning network, such as U-Net. The convolutions use volu-
Convolution 5 1024 « 1024x% 1 Relu 512 » 512x% 2 metric kemels. Resolution is reduced by convoaon with 2 = 2 = 2
3 voxels wide seeds applied with stride 2. PreLU is used as a non-linearity
Dropout p=05 - - 512« 512x 2 activation function. The right network extracts features and expands the
Up i 512 % 512x 2 3(axis)  Relu 512 % 512x 3 spatial support of the lower resolution feature maps to gather and
Convolution Layer 512 « 512x 3 1 Relu 256 « 256x 2 . . .
6 assemble the ary information to output a two-channel volumetric
Up 256 x 256 x 2 3(axis) Relu 256 « 256% 3 segmentation. Deconvolution operation is employed in order to increase
Convolution Layer 256 « 256 x 3 1 Relu 128 « 128x 2 the size of the inputs, followed by one to three convolutional layers. The
7 residual function is learned. The last convolutional layer, having 1 = 1
Up 128 « 12Bx 2 3 (axis) ReLu 128 « 128x 3 1 k 1 si ields th . the i t I Th babi
Convolution Layer 128 % 128x3 1 Relu 64 % 6452 x 1 kernel size, yiel e same size as the input volume. The probabi-
8 listic segmentation of the foreground and background regions is ach-
Up 64 % 64 x 2 3(axis)  Relu 64 % 64x3 ieved by applying softmax voxelwise. Similar to U-net, horizontal
Convolution Layer 64 x 64x 3 1 Relu 2x2x3 connections with location information are lost in the compression path
9 o (left). This can help to provide location information to the right part and
Output Layer - - Sigmoid 1 . . .. . .
improve the quality of the final contour prediction. Connection im-
proves the convergence time of the model.
Table 4

Segmentation performance for four classes

Validation Segmentation Prediction by U-Net Architecture
(%)
Pixel Accuracy (PA) 99.15
Mean Intersection Union 94.69
(MIU)
Mean Accuracy (MA) 97.73
Precision 93.83
Recall 96.02
F1 Score 94,88

2.4. Performance metrics

To validate the cardiac segmentation performance of the proposed
model, the statistical analysis used is pixel accuracy, mean accuracy,
mean intersection union (mean IU), precision, recall, and F1 score, by
comparing it with the ground truth, as defined below.

i

pry @

Pixel Accuracy =

1 i
Mean Accuracy =— Z s

n.d 4 @)
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Fig. 7. Segmentation result using CNN-based U-Net architecture. Asterisk () indicates a hole in atrial and ventricular septal of ASD, VSD, and AVSD.
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Fig. 8. Echo Doppler revealed flow from the left to the right of ASD, VSD
and AVSD.

Table 6
Comparison of two architectures of segmentation performance model.

Validation Performances (%)

U-Net V-Net
Pixel Accuracy 99.15 57.27
Mean IU 94.69 B4.88
Mean Accuracy 97.73 91.08
Precision 93.83 B3.03
Recall 96.02 B3.68
F1 Score 94,88 B3.12

Informatics in Medicine Unlocked 24 (2021) 100601

1 n.i
Mean U= = 4
can n.l Zt. + Ejuj, —ny @
Precision = - — )
TP + FP
TP
Recall = 6)

m TP +FN
where n; is the number of pixels of class i predicted to belong to class j,

where there are n,; different classes, and t; = % njj is the total number of
i

pixels of classi. TP, FP and FN are true positives, false positives, and false
negatives, respectively. For the F1 score, the dice coefficient equation is
used as follows:

S pi i

D = 2=t T 7
BT I @

where pi is prediction and gi is ground truth.
3. Results

In this study, the proposed model consists of nine convolution layers
followed by the max-pooling layer, the drop-out layer, and the up layer.
Using a proposed segmentation model for four classes produces a pixel
accuracy of 99.15%, mean IU of 94.69%, mean accuracy of 97.73%,
sensitivity of 96.02%, and F1 score of 94.88%, respectively, as shown in
Table 4.

T'able 5 reveals the results of the proposed segmentation models for
ASD, VSD, AVSD, and normal heart, respectively. The U-Net architecture
successfully predicted segmentation for all these groups. For each of
these groups, performance for segmentation, especially pixel accuracy,
reached above 95%—even for ASD and AVSD, at more than 99%.

In Fig. 7, we can see the segmentation results in terms of the original
image, ground truth, and prediction image obtained using the CNN-
based U-Net architecture. By looking at the picture, it can be seen that
the presence of white holes connected in the atrial septum indicates the
presence of ASD. Likewise, the presence of white holes connected in the
ventricular septum indicates the presence of VSD, and their presence in
both the atrial and ventricular septa shows AVSD. In this picture, we can
also see that in a normal heart, there are no white holes connected in
either the atrial or ventricular septum.

From the echo Doppler investigation, as can be seen in Fig. 8, the
location of the defect in the atrium, ventricle or both septa is configihied.
This figure reveals Doppler flow (in red) from the left to the right in the
atrial, ventricular or both septa, which demonstrates the location of
ASD, VSD, and AVSD. If we compare the echo Doppler images with the
proposed U-Net architecture segmentation, the location of the cardiac
septum defect is very similar to the original image.

We have also compared the results of segmentation performance
between U-Net and V-Net architectures. In Table 6, it can be seen that for
segmentation performance, the U-Net model is better than the V-Net
model. In U-Net pixel architecture, accuracy is 99.15, which is higher
than V- Net. Likewise, mean [U, mean accuracy, precision, recall, and F1
score are higher than V-Net.

In addition to ground-truth predictions, we have also predicted the
contours of the cardiac septal defects and compared the performance
between the two architectural models. In Fig. 9, it is shown that the
performance of ground truth and contour prediction of the cardiac
septum defect is better in the U-Net architecture model compared to the
V-Net.

We have revealed the graphs of accuracy and loss for each ASD, V5D,
AVSD, and normal heart class in Fig. 10. The segmentation accuracy
values obtained were 99.05%, 98.62%, 99.39%, and 98.97% for ASD,
V5D, AVSD, and normal heart, respectively. In Fig. 10 we have also
shown a loss model for each class. In the loss model, it can be seen that
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Fig. 9. Model comparison between U-Net and V-Net architecture.

from a small epoch to 1000 epoch, the loss value is low and stable,
except for ASD.

4. Discussion

To the best of our knowledge, this is the first report describing the
segmentation of cardiac septal defect from a 2D echocardiogram image.
In this study, we show that a CNN-based U-Net architecture can suc-
cessfully account for segmentation of cardiac septal defects. The same
was reported by Chen et al. although it was not with cardiac septal
defects, regarding the success of CNN-based U-Net for cardiac segmen-
tation [23].

In this study, it has been shown that the proposed U-Net architecture
can segment a normal heart and can also segment holes in the cardiac
septum almost perfectly. The value of precision and recall is also high for
each group, which is important to show us that there is no over or under
segmentation of images. Likewise, with the dice score, the res were
also high. A high dice score indicates that image segmentation with the
proposed architectural model is almost similar to ground truth.
Although there has not been a similar study, the performance results in

our study are superior compared to research conducted by Perrin et al. In
this study, we have described how CNNs were able to distinguish be-
tween hypoplastic left heart syndrome (HLHS) and transposition of the
great arteries (TGA) with an accuracy of 92%; for aortic coarctation,
however, the performance was still poor. The possibility of poor per-
formance because the actual pathology of aortic coarctation is not in the
tield of view [24]. Several other studies have also proven the success of
DL for 2D segmentation of cardiac ventricles, as shown in Table 7. Veni
et al. and Smistad et al. have reported on the success of the DL method
for carrying out the task of segmenting the left ventricle, but the results
have not been as successful compared to studies conducted by recent
researchers [25,27]. Researchgby Diller et al. has described the U-Net
architectdled model correctly in assessing patients with a systemic right
ventricle and achieved high performance in segmenting the systemic
right or left ventricle (with a dice metric between 0.79 and 0.88
depending on diagnosis) §{&fien compared with human experts [28]. In
this study, they illustrate how appropriate DL models can be trained to
recognize the systemic ventricle even in patients with complex cardiac
anatomy and delineate the endocardial border in this setting [25].
Another study carried out by Jafari et al. has shown that U-Net
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Table 7
Summary review of deep learning methods for 2D ventricle segmentation.

Author Method Dice coefficient
Diller et al., U-Netarchitecture to segmenting the systemic ~ Normal heart
2019 right or left ventricle compared human 0.88 + 0.06
experts TGA 0.86 + 0.06
CeTGA 0.79 +
0.08
Jafari et al., et T-L net-based shape constraint on ED 94,1 £ 3.3
2019 notated frames ES 93.0 £ 3.9
Leclerc et al., et rained on a large heterogeneous ED 0.93 + 0.04
2019 i) ES 091 + 0.06
Veni et al., (U-Net) followed by level-set based 0.86 + 0.06
2018 able model
Smistad etal., U net trained using labels generated by a 0.86 + 0.06
2017 Kalman filter-based method
Our proposed U-Net for segmentation the infant heart 0.94 + 0.05
model

architecture succeeded in segmenting the left ventricle during
end-diastolic and end-systolic with semi-supervised learning methods
[29]. Similarly, results were reported by Leclerc et al. about the success
of the U-Net architecture for cardiac ventricular segmentation [30].

We have also compared the results of segmentation performance
between U-Net and V-Net architectures. Both architecture models are
used for medical image segmentation. The work of the V-Net architec-
ture is the same as the U-Net, but the process in the architecture is
slightly different. Moreover, V-Net is usually used for 3D images, while
U-Net is used for 2D images [26,31]. In Table 6, it can be seen that for
segmentation performance, the U-Net model is better than the V-Net
model. In addition, using the U-Net architecture model proposed in this
study can be more detailed and more accurately describe the atrial
space, ventricular space, mitral valve, tricuspid valve, and aorta
compared to V-Net. In U-Net pixel architecture, accuracy is 99.15 higher
than V- Net. Likewise, mean IU, mean accuracy, precision, recall, and F1
score are higher than V-Net.

From the comparison result, we summarize as follows:

s The overall performance of the proposed model was better than its
counterpart with limited datasets. This implies that it is more suit-
able for larger and more heterogeneous scale datasets.

The overall performance of CNN segmentation-based U-Net archi-
tecture was better when assessed with four infant heart conditions:
ASD, V5D, AVSD, and normal. This is an indication that the proposed
model can be improved for other abnormalities in the heart.

The performance result was compared with V-Net architecture,
which produces higher performances in terms of pixel accuracy,
mean [U, mean accuracy, precision, recall, and dice score.
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Although the results look promising, there are some limitations of
our study. (i) Only one echocardiogram view is segmented, and patient
variation is still limited. To make the performance of cardiac septal
defect detection more ac , it is necessary to segment some echo-
cardiogram views so that the type of cardiac septal defect can be
determined. (ii) To expand this study to other abnormal conditions
might add a great contribution to this line of research.

5. Conclusion

This study has been successful in establishing the automatic diag-
nosis of cardiac septal defects. A segmentation of the cardiac septal
defect in 2D echocardiogram images was obtained using convolutional
neural networks. The CNN-based U-Net architecture can successfully
account for segmentation of cardiac septal defects. Using the proposed
segmentation model for four classes, namely ASD, VSD, AVSD, and
normal heart, produces a pixel accuracy of 99.15%, mean IU of 94.69%,
mean accuracy of 97.73%, sensitivity of 96.02%, and F1 score of
94.88%, respectively. In this study, it was proven that the proposed U-
Net architecture model has a very high degree of accuracy with a very
small error rate for predicting contour lesions in cardiac septal defects.
Through these findings, the diagnosis of a cardiac septal defect will be
more precise and can be done automatically, so it can be utilized by all
physicians when performing an echocardiogram examination. In the
future, this research will be carried out with a greater number of patients
and by combining several echocardiogram views.
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Fig. 3. Conversion of US video of ASD, VSD, AVSD, and normal heart to frames
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Fig. 4. Image-cropping process on ASD,VSD, AVSD, and normal heart




R Novaet al
References

[1] Puri K, Allen HD, Qureshi AM. Congenital heart disease. Pediatr Rev 2017;38(10):
471-86. hitps:, 2/10.1542 /pir 2017-0032

[2] LinY,etal Global birth prevalence of congenital heart defects 1970-2017: updated
systematic review and meta-analysis of 260 studies. Int J Epidemiol 2019;48(2):
455-63. hitp i 10.1093 2009,

[3] Rashid U, Qureshi AU, Hyder SN, Sadiq M. “Pattern of congenital heart disease in a
developing country tertiary care center : factors aasoclated with delayed diagnosis.
Ann Pediatr Cardiol 2016;9(3):210-5. hirps: 74-

2069. 1891 25.

[4] Backer CL, Eltayeb O, Mongé MC, Mazwi ML, Costello JM. Shunt lesions Part I:

patent ductus arteriosus, atrial septal defect, ventricular septal defect, and

atrioventricular septal defect. Pediatr Crit Care Med 2016;17(8):5302-9. hitps://
doi.org/10.1057/FCC.O0000000000000786.

Mcleod G, etal. Echocardiography in congenital heart disease. Prog Cardiovasc Dis

2018. https 10,1016/, 1.2018.11.004, 468-75.

Saraf RP, V Suresh P, Maheshwari §, Shah SS. “Pediatric echocardiograms

performed at primary centers : diagnostic errors and missing links ! Ann Pediatr

Cardiol 2015;8(258):20-5. hiips: ) 1.4103,/0974-20659.149514.

Zhao QM, Niu C, Liu F, Wu L, Ma XJ, Huang GY. Accuracy of cardiac auscultation

in detection of neonatal congenital heart dlsease by general paediatricians. Cardiol

10.1017/510479511 19000799,

I5

16

7

N . Uptol

[10] Ghorbam A et al Deep leammg interpretation of edmcardmgrams npj Digit Med
2020:1-10. htps .org/10.1038/541746-019-0216-8.

[11] Kusunose TSM, Haga K, Abe A. Utilization of artificial mteLll,gence in
echocardiography. Cire J 2019:83(8):1623-9. hitps:.//do
19-0420.

[12] Gandhi S, Mosleh W, Shen J, Chow CM. Automation, machine leaming, and
artificial intelligence in echocardiography: a brave new world. Echocardiography
2018;35(9):1402-18. hitps Lorg/10.1111 /echo. 14086,

[12] Litjen G TJ, Ciompi F, Wolterink JM, de Vos B, Leiner T. State-of-the-Art deep
leaming in cardiovascular image analysis. JACC (J Am Coll Cardiol):
Cardiovascular Imaging 2019;12(8):1548-65. https:/ /dolorg/ 10,1016/,
jemg. 2019.06.009,

[14] Madani A, Arnacut R, Mofrad M, Amaocut B. Fast and accurate view classification
of echocardiograms using deep learning. npj Digital Medicine 2018;1(1):1-8.
https://doi.org/10.1038,/541 746-017-001 31,

[15] Khamis H, Zurakhov G, Azar V, Raz A, Friedman Z, Adam D. Automatic apical view
classification of echocardiograms using a discriminative learning dictionary. Med
Image Anal 2017;36:15-21. hitps:/, 10,1016/ 2016.10.007.

[16] Dezaki FT, et al. Cardiac phase detectmn in echocardiograms with densely gated
recurrent neural networks and global extrema loss. IEEE Trans Med Imag 2019;38
(8):1821-32. hrtps://doiorg/10.1109,/TMIL. 201 8. 28EEB07.

13

17]

{18

[19]

[20]

[21] ¢

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31] :

Informatics in Medicine Unlocked 24 (2021) 100601

Smistad E, Ostvik A, Haugen BO, Lovstakken L. 2D left ventricle segmentation
International Ultrasonics Symposium, IUS 2018, bty
][‘ 1108,/UL IG\r 1.2017 BOS2E1Z 1-4.,

it in 2D ultrasound im:

Leclerc S, et al. Deep leaming for segmentatmn using an open large-scale dataset in
2D echocardiography. IEEE Trans Med Imag 2019;99:1-13. Lty .Org
10,1109, TMI. ‘[‘] 9.2900516.

P, Brox T.

Liu S, et al. Deep leaming in medical ultrasound Analysis : a review. Engineering
2019;5(2):261-75. hiip: 2/10.1016/j.eng. 201 8.11.020.

Chen C, et al. “Deep leaming for cardiac image Segmentation : a review. Front
Cardiovasc Med 2020;7:1-33. hiips 10, 9/ fevim. 2020.00025, March.
Perrin DF, Bueno A, Rodriguez A, Marx GR, del Nido PJ. Application of
convolutional artificial neural networks to echocardiograms for differentiating
congenital heart diseases in a pediawric population. Med Imaging 2017, hitps:,
org/10.1117/12.225408 3, Computer-Aided Diagnosis, vol. 10134, p. 1013431
2017,

Veni G, Moradi M, Bulu H, Narayan G, Syeda-Mahmood T. Echocardiography
segmentation based on a shape-guided deformable model driven by a fully
convolutional network prior. Proceedings - International Symposium on
Biomedical Imaging 2018:898-902. hitps:/ /10.1109/1SBL 2018 8363716,
2018-April, no. Ibi.

Milletari F, Navab N, Ahmadi SA. V-Net: fully convolutional neural networks for
volumetric medical image segmentation. In: Proceedings - 2016 4th international
cm&renoe on 3D vision, 3DV 2016; 2016. p. 565-71. hitps:, iorg/ 10,1108,/

: 016.79.

Smistad E, Ostvik A, Haugen BO, Lovstakken L. 2D left ventricle segmentation
using deep learning. In: IEEE international ultrasonics symposium. 1US; 2017,

p. 1-5. htrp: 10.1109,/ULTSYM.2017.8092573. July 2018,

Diller G-P, et al. Utility of machine learning algorithms in assessing patients with a
systemic nght ventricle, Eur Heart J Cardiovasc Imaging 2019;20(8):925-31.

Jafari MH, et al. Seml-supervtsed leammg for cardiac left ventricle segmentation
using candltumal deep generative models as prior. In: Proceedings - international
symposium on b g. vol. 2019; 2019. p. 649-52. hirps:
10.1109/1SB1.2019.8759292, April, no. Isbi.

Leclerc S, et al. Deep leaming for segmentation using an open large-scale dataset in
o echocardmgraphy I[‘.[‘.[‘. Trans Med Imag 2019;38(9):2198-210. https:/,




Automated image segmentation for cardiac septal defects
based on contour region with convolutional neural networks:
A preliminary study

ORIGINALITY REPORT

15, 13« 12+ 6w

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS
PRIMARY SOURCES
www.frontiersin.org 2
Internet Source 96
) WWW.coursehero.com 2
Internet Source 96
3 Siti Nurmaini, Muhammad Naufal 1 o
0

Rachmatullah, Ade Iriani Sapitri, Annisa
Darmawahyuni et al. "Accurate Detection of
Septal Defects with Fetal Ultrasonography
Images Using Deep Learning-based Multiclass
Instance Segmentation”, IEEE Access, 2020

Publication

Ria Nova, Sukman Tulus Putra, Siti Nurmaini, 1 o
Radiyati Umi Partan. "Cardiac Septal Defects
in Children: Hemodynamics, Clinical
Manifestations and Detection", Bioscientia
Medicina : Journal of Biomedicine and
Translational Research, 2021

Publication

s3-eu-west-1.amazonaws.com



o

Internet Source

(K

academic.oup.com

Internet Source

T

BH B

hal.archives-ouvertes.fr

Internet Source

T

www.ncbi.nlm.nih.gov

Internet Source

(K

Submitted to University of North Carolina,
Charlotte

Student Paper

T

—
-

W. Zhang, H. Huang, M. Schmitz, X. Sun, H.
Wang, H. Mayer. "A MULTI-RESOLUTION
FUSION MODEL INCORPORATING COLOR
AND ELEVATION FOR SEMANTIC
SEGMENTATION", The International Archives
of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, 2017

Publication

T

—_—
—

export.arxiv.org

Internet Source

(K

annalspc.com

Internet Source

T

—
w

www.spiedigitallibrary.org

Internet Source

T




W Siti Nurmaini, Alexander Edo Tondas, Annisa 1 o
Darmawahyuni, Muhammad Naufal ’
Rachmatullah et al. "Electrocardiogram Signal
Classification for Automated Delineation using
Bidirectional Long Short-Term Memory",

Informatics in Medicine Unlocked, 2020

Publication

Exclude quotes On Exclude matches <1%

Exclude bibliography On



