
 

 



 

 



Modified Elman Recurrent Neural Network for 

Attitude and Altitude Control of Heavy-lift 

Hexacopter 
 

Bhakti Yudho Suprapto  

Department Electrical 

Engineering 

Universitas Indonesia 

Kampus baru UI Depok, 

Indonesia 

bhakti.yudho@ui.ac.id 

Amsa Mustaqim 

Department Electrical 

Engineering 

Universitas Indonesia 

Kampus baru UI Depok, 

Indonesia 

amsamustaqim@hotmail.com 

Wahidin Wahab 

Department Electrical 

Engineering 

Universitas Indonesia 

Kampus baru UI Depok, 

Indonesia 

wahidin.wahab@gmail.com  

Benyamin Kusumoputro 

Department Electrical 

Engineering 

Universitas Indonesia 

Kampus baru UI Depok, 

Indonesia 

kusumo@ee.ui.ac.id 
 

 
Abstract— Hexacopter is a member of rotor-wing Unmanned 

Aerial Vehicle (UAV) which has 6 six rotors with fixed pitch 

blades and nonlinear characteristics that cause controlling the 

attitude of hexacopter is difficult. In this paper, Modified Elman 

Recurrent Neural Network (MERNN) is used to control attitude 

and altitude of Heavy-lift Hexacopter to get better performance 

than Elman Recurrent Neural Network (ERNN). This Modified 

Elman Recurrent Neural Network has a self-feedback which 

provides a dynamic trace of the gradients in the parameter space. 

In the self-feedback, the gain coefficients are trained as 

connection weight. This connection weight could enhance the 

adaptability of Elman Recurrent Neural Network to the time-

varying system. The flight data are taken from a real flight 

experiment. Results show that the Modified Elman Recurrent 

Neural Network can increase performance with small error and 

generate a better response than Elman Recurrent Neural 

Network. 

Keywords— Direct Inverse Control; Elman Recurrent Neural 

Network; Heavy-lift Hexacopter; Modified Elman Recurrent 

Neural Network. 

I.  INTRODUCTION 

The hexacopter has been developed and studied in this decade 

due to its advantages such as vertical take-off and landing 

(VTOL), maneuvers, and hover[1, 2]. The hexacopter has six 

motors as actuators with propellers which are mounted on a 

rigid body frame making 120 degrees of angle from each 

other. The Propellers of hexacopter have three sets of 

clockwise and counter-clockwise. Each propeller of the 

hexacopter produces an upward thrust by pressing air 

downwards. The angular velocity of the rotors can be 

controlled based on this propeller configuration. The other 

advantages of this hexacopter are the possibility of managing 

one or more motor failures and ability able to lift more 

payload[3-5]. One of the main issue related to the use of 

hexacopter is attitude and altitude control. However, 

controlling the hexacopter is not easy as it has the nonlinear 

system, multivariable and coupling parameters and unstable 

systems[6, 7]. Therefore, it is important to obtain a precise 

controller of a hexacopter in order to overcome the problem 

and perform the missions. Researchers have studied many 

methods to solve the problems of hexacopter control systems 

such as PID[8], PID-LQR[9], Back Stepping control[10] but 

these methods have limitations to be working on a nonlinear 

system. The other methods i.e. fuzzy logic[11], and Neural 

Network[5, 12] have been developed to solve the problem of 

control hexacopter. These methods especially neural network 

can work with the nonlinear system and adaptive to the 

environment. In the previous work, control of heavy-lift 

hexacopter using Neural Network has been conducted. The 

Neural Network using Elman Recurrent Neural Network 

(ERNN) algorithm as learning algorithm is similar to the 

Backpropagation learning mechanism. The Elman recurrent 

neural network (NN) is a subgroup of recurrent network model 

that has an additional layer used to memorize previous 

activations of the hidden neurons and feed to all the hidden 

neurons after the one-step time delayed. The Elman Recurrent 

Neural Network has been successful to control heavy-lift 

hexacopter and show a good response and small error on the 

test data given[5]. 
In this paper, the Modified Elman Recurrent Neural 

Network is used to improve the performance and the dynamic 
characteristics of Elman Recurrent Neural Network in 
controlling heavy-lift hexacopter. This modification is 
performed by adding a self-feedback connection with the fixed 
gain on the context layer. This self-feedback causes the output 
context layer at a time k equals to the output of hidden layer at 
k-1 time. Therefore, it could increase dynamic characteristic of 
the system, and convergence speed[13]. Modified Elman 
Recurrent Neural Network has been used as controller 
permanent magnet synchronous generator (PMSG) system[13], 
prediction network traffic[14], and fault diagnosis[15].  

This paper is organized as follows: Section 1 describes 
introduction. Section 2 describes the heavy-lift hexacopter 
model. Section 3 describes the direct inverse control neural 
networks using the Modified Elman Recurrent Neural Network 



(MERNN) learning algorithm. Section 4, experiments result 
and analysis of the developed controller of the heavy-lift 
hexacopter is conducted and presented. To sum up to a 
summary is presented in the last section. 

II. MODEL OF HEXACOPTER 

A. Dynamic Model of Hexacopter 

The dynamic characteristic briefly describes attitude 
hexacopter according to the geometry of hexacopter. This 
hexacopter consists of six rotors located orthogonally at fixed 
body frame shown in Fig 1.  The combination of the pair rotors 
makes three movements of hexacopter i.e. Roll (rotation 
around the X axis), pitch movement (rotation around the Y 
axis), yaw (rotation about the Z axis). Roll movement is 
obtained when the balance of rotors 1, 2 and 3 (or 6, 5 and 4) is 
changed (speed increases or decreases). Pitch movement is 
obtained when the balance of the speed of the rotors 1 and 6 (or 
3 and 4) is changed and yaw movement is got when by a 
simultaneous change of speed of the motors (1, 3, 5) or (2, 4, 
6). 

B. Kinematic of Hexacopter 

The kinematic characteristic is a connection between fixed 

body frame and earth inertial frame. In Fig 1, the frame 

structure of hexacopter and rotation direction of the rotors are 

illustrated. From this figure, it is seen that hexacopter motion 

has two reference systems i.e. body fixed frame and earth 

inertial frame. 
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Fig. 1. The structure of hexacopter and its frame 

The direction of motor rotation and the orientation of the 
hexacopter is presented in Fig. 1. It shows three Euler angles, 
namely roll angle ϕ, pitch angle θ, and yaw angle ψ that is in 
form of vector η = [ ϕ, θ, ψ]T. Vector ξ = [x, y, z ]T shows the 
position of the hexacopter in the inertial frame. Therefore, the 
transformation matrix of the body-fixed frame (B) to the earth-
fixed frame (E) and rotation matrix is obtained by: 
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So, the equation below is the dynamic model of hexacopter 
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where  are the hexacopter’s angular accelerations in 

the B axis, while  are the hexacopter’s linear accelerations 
in the E axis,  are the moments of body inertia at xyz-
axis, g is the gravity speed, and m is the mass of the 
hexacopter. 

 

Fig. 2. Block Diagram of Heavy-lift Hexacopter Control System 

Blok diagram of a control system for heavy-lift hexacopter in 
general depicted in Fig. 2. The roll (ϕ), pitch (θ) and yaw (ψ) 
movement of heavy-lift hexacopter are controlled by attitude 
control so the output and the input reference are similar. This is 
called the inner loop control. But the outer loop control is used 
to control the x and y movement which directly depicts the real 
position of the heavy-lift hexacopter.    

III. DIRECT INVERSE CONTROL BASED ON ELMAN RECURRENT 

NEURAL NETWORK 

A. Direct Inverse Control (DiC) 

Neural Network Direct inverse control (NN-DIC) is the 

simplest solution for control of a nonlinear system that 

consists of connecting in series the inverse model and the 

plant. The dynamic properties are eliminated by training on 

the inverse model as inverted to the plant[16, 17]. Thus, it 

makes the input of the inverse model is similar to the desired 

output plant. It caused the inverse model function as a 

controller that makes a similar response to the given reference 

signal. NN-DIC consist of system identification and an inverse 

model. Block diagram of the neural networks based direct 

inverse controller scheme (NN-DIC) is presented in Fig. 3. As 

seen in this figure, NN-DIC scheme can be experimentally 

simulated by using a system identification and an inverse 



model and Fig. 4. show training configuration scheme of 

system identification and inverse model. 

 
Fig. 3. Direct Inverse Control (DIC) scheme 

 

 
 

 

 
 

 

 
 

 

a)                                                   b) 
Fig. 4. Training configuration scheme a) system identification, b) Inverse 
model 

 

B. Elman Recurrent Neural Network (ERNN) 

Elman Recurrent Neural Network is developed by Jeffrey 

Elman as one kind of globally feed-forward locally recurrent 

network model[18]. Elman Recurrent Neural Network 

(ERNN)  consists of four layers, i.e., an input layer, a context 

layer, a hidden layer, and an output layer. ERNN has been 

widely researched for the purpose of system identification, 

predicting, fault diagnosis and forecasting[15, 19]. Fig 5. 

shows the architecture of Elman Recurrent Neural Network.  

 

 

Fig. 5. Elman Recurrent Neural Network Architecture 

As shown in Fig. 5., ERNN can be considered to be a 
special type of neural network with connections from the 
hidden layer to the context layer. The context layer is an 
additional layer that functions as a memory to memorize 
previous activations of the hidden layer and to feed all the 
hidden layer after the one-step time delay. Therefore, ERNN 
has a special explicit memory to save the temporal information 
in the context layer. Furthermore, ERNN can approximate 
high-order dynamic systems, and its converge speed is fast 
enough. Given from the Fig. 5. that the input is x(k), the output 
is yink(k) and the total input to the hidden layer j is zinj(k), then 
the equations of the architecture are: 
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where wij is the weights of the hidden layer to the output layer, 

uij is the weights of the context layer to the hidden layer, vij is 

the weights of the input layer to the hidden layer and f is the 

activation function of the hidden layer. The ERNN training is 

similar to the backpropagation training. In learning algorithm 

of ERNN, the training was done iteratively by minimizing the 

resulting error Ek or the difference between the actual output 

yd(k) and the output generated by the network yink(k) expressed 

as:  

                             2))()((
2

1
kykyE inkdk                                     (8) 

Based on the error value in equation (8), the weights of each 

layer can be modified by the following equations: 
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The general weight modification in the gradient descent 

method is: 
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where η is the learning rate value. 

 

C. Modified Elman Recurrent Neural Network (MERNN) 

The modified Elman network is a type of recurrent neural 

network with four layers of neurons i.e. the input layer, the 

hidden layer, the context layer and the output layer. The 

MERNN differs from the original ERNN by having self-

feedback links with fixed gain in the context layer. Fig 6.  

depicts the modified Elman network. 
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Fig. 6. Modified Elman Recurrent Neural Network Architecture 

Fig. 6. shows the self-feedback (β) in the context layer that has 

value 0 ≤ β < 1. When the gain β is zero, the MERNN is 

identical to the original ERNN. In this paper, the value of β is 

0.01. Generally, equation MERNN is similar to ERNN, but it 

is different in context layer as MERNN use self-feedback (β).  

the equations of the architecture MERNN are: 
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Substitute (24) into (19) gives 
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Equation (25) can provide an infinite impulse response. This is 

the reason why the MERNN was able to model higher-order 

dynamic systems. 

IV. EXPERIMENTAL RESULT 

In this research, experiments are done by using real data 

flight of a heavy-lift hexacopter that consist of one sets for 

training and others for testing. The training of real flight data 

using the Backpropagation algorithm in identification system 

and the ERNN in inverse model. The neural network 

configuration for this identification system as the plant model 

consists of an input layer with 26 neurons, a hidden layer with 

35 neurons and an output layer with 4 neurons. While, the 

configuration of the inverse model consists of a single input 

layer, a single hidden layer, and a single output layer with 24, 

35, and 6 neurons, respectively.  Fig. 7. Shows the test result 

of identification training that reached its convergence in 

45,000 epoch and the obtained Mean Square Error (MSE) for 

this training was 4.511 x 10-4. On the testing stage, the 

obtained MSSE was 0.0033.  

 
Fig. 7. System Identification Test Responses 

The test result for the inverse model is shown in Figure 8. The 

training required 33,000 epoch to produce a training MSE of  

0.0197 and MSE of testing is 0.0820. 

 

Fig. 8. Inverse Model Test Responses 

Testing of NN-DIC done after the weight of the training and 
testing of system identification and inverse model is obtained. 
The result of this test is depicted in Fig. 9. and Fig. 10. The Fig. 
9.  reflects that the outputs of the simulated NN-DIC with 
ERNN algorithm shown in red curves are in good agreement 
with the real flight test data shown in blue curves but on a roll, 
pitch and yaw movement, there is a small error. The value of 
Mean Square Error (MSE) is 0.0256. The Error in roll, pitch 
and yaw movement is 3.88 degree, 5.26 degree, and 5.9 degree 
respectively. While Fig. 10. show result response test NN-DIC 
with MERNN algorithm. The output response can follow the 
real test data although there is a small error in roll movement. 
The value of MSE is 0.0099. Error in roll movement is 3.56 



degree, pitch movement is 5.356 degree and yaw movement is 
4.3 degree. 

 

Fig. 9. NN-DIC ERNN test response 

 
Fig. 10. NN-DIC MERNN test response 

The other focus in this paper is altitude. Both algorithms 
show a good response and can follow the real test data. The 
highest position of altitude can reach by all of the algorithms 
although there is a small error at the beginning. It is caused by 
initializing when heavy-lift hexacopter starts to fly.  

V. CONCLUSION 

In this paper, controlling the attitude characteristics of a 

heavy-lift hexacopter using neural networks based direct 

inverse control system is developed. An Elman recurrent 

neural networks and Modified Elman recurrent neural network 

is utilized learning mechanism. Experiments conducted for 

proving the proposed algorithm could improve performance 

controller. Elman Recurrent Neural Network (ERNN) and 

Modified Elman Recurrent Neural Network (MERNN) can be 

utilized to control the attitude of a heavy-lift hexacopter with 

low error and good system response.  Results show that the 

MERNN algorithm has lower attitude and altitude error 

compared with that of the ERNN algorithm. Further 

experiments are conducted in order to investigate, implement 

and analyze the MERN algorithm to control maneuvers of 

heavy-lift hexacopter. 
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