MANAGEMEN DAN ANALISA DATA KOMBINASI TEORI DAN APLIKASI SPSS DI BIDANG KESEHATAN

당 Untilled [DataSet0] - SPSS Statistics Data Editor Fe 5dt Yew Deta Insutom Analyze Graphs Ubites Addigns Window Help 승규는 파 속가 노르는 유 석 술 문화 등 영 중 속 성	Which accupation would you choose to be
F: Var var var var var var 1 2 3	Image: Second
Measure	What is your gender Valid Fernale Consulting Valid Fernale 32 Colour of eges Colour of eges
Scale Frequence	Prequency Percent Curricitive Vaid Blue 5 156 156 156 Brown 11 314 344 60.0 158
Ordinal O	vr gender yes [Eye e you (cm) best desc avelled to do you lik our car [] vesaut blace
	uency tables OK Paste Reset Cancel Help

NAJMAH, SKM, MPH NIP 1983 0724 20064 2003 FAKULTAS KESEHATAN MASYARAKAT- UNSRI

2011

Daftar Isi

Daft	ar Isi	2
KAT	ΓΑ PENGANTAR	5
BAE	3 I. PRINSIP DASAR STATISTIK DAN KOMPUTER	7
A.	PENDAHULUAN	8
B.	STATISTIK	8
	a. Pembagian Statistik	8
	b. Populasi dan Sampel	10
	c. Jenis Data dan Skala	12
C.	STATISTIK DAN KOMPUTER	13
D.	SPSS DAN KOMPUTER	14
E.	CARA KERJA SPSS	14
F.	PENGOLAHAN ANALISIS DATA	16
BAE	3 II. PENGANTAR OPERASI SPSS DASAR	21
A.	MEMULAI SPSS	22
B.	MEMBUKA DATA	23
C.	MENU UTAMA PADA SPSS	24
D.	MEMASUKKAN DATA SECARA LANGSUNG	26
E.	DATA EDITOR	36
	b. Mengambil data yang tidak dalam format SPSS	37
	c. Mengganti Nilai Data	37
	d. Menyimpan Data	38
	e. Menghapus Data	39
	f. Mengkopi data	40
	h. Memindahkan Nilai Sel	40
	i. Menyisipkan data	40
	j. Output	41
BAE	3 III. ANALISIS DESKRIPTIF	44
A.	JENIS DATA	45
	a. Variabel kategorikal	45
	b. Variabel numerik	46
B.	MENGOLAH DATA NUMERIK	49
C.	MENJUMLAHKAN ANGKA DENGAN MENGGUNAKAN COMPUTE	54
D.	MENGETAHUI NORMALITAS DATA (UJI NORMALITAS DATA)	56
E	PENGELOMPOKKAN TINGKAT PENGETAHUAN MENJADI DUA KELOMPOK	-
(RE)	CODE)	59
F.	TRANSFORMASI DATA	61
G.	MENGOLAH DATA KATEGORIK	62
H.	MENYELEKSI KASUS (SELECT CASE)	63
BAE	3 IV. VALIDITAS DAN RELIABILITAS DATA	67
A.	VALIDITAS	68
B.	RELIABILITAS	68
BAL	3 V. KUNSEP NILAI P(<i>P value</i>) dan derajat kepercayaan (<i>CONFIDEN</i> C	E
INTI	EKVAL)	15
A. D	PENDAHULUAN	/6
В.	NILAI F (<i>p value</i>) DAN INTEKVAL KEPEKCAYAAN (<i>Confidence Interval/CI</i>)	11

BAB VI. KONSEP UJI HIPOTESA		84
A. HIPOTESIS KOMPARATIF SKALA	PENGUKURAN KOMPARATIF NUME	RIK
DAN ORDINAL		86
B. HIPOTESIS KOMPARATIF SKALA	PENGUKURAN ORNIDAL DAN NOMII	NAL
DALAM BENTUK TABEL B KALI K		88
C. RESUME HIPOTESIS KORELATIF		91
BAB V APLIKASI UJI KAI KUADRAT D	AN FISHER EXACT	
A. KAI KUADRAT (CHI SQUARE).		
B. FISHER EXACT		102
C. LATIHAN MANDIRI (INDIVIDU)		108
BAB VI APLIKASI UJI STUDENT T TES	T DAN ANOVA	121
<i>A</i> . MEANS		122
B. PAIRED SAMPEL T TEST (UJI T	UNTUK DUA SAMPEL YANG	
BERPASANGAN/PAIRED)		128
C. INDEPENDENT SAMPLE T TES	Γ	132
D. ONE WAY ANOVA		136
BAB VII APLIKASI UJI KORELASI DAN	REGRESI LINIER	141
A. UJI KORELASI PEARSON DAN	REGRESI LINEAR SEDERHANA	142
B. UJI KORELASI SPEARMAN		150
BAB VII VISUALISASI GRAFIK		153
A. TIPE BAR		155
B. TIPE DOT		157
C. TIPE LINE		ntukan.
D. TIPE AREA		ntukan.
E. TIPE PIE SEDERHANA		ntukan.

 ${}^{\rm Page}3$

Medical Book

MANAGEMEN & ANALISA DATA KESEHATAN

Kombinasi Teori dan Aplikasi SPSS

	1:		200 m []1	100 - 101 - 1-1 - 1-1 - 1-1		100 0 1
		Var	Var	Var	Var	Var
	1					
	2					
	3					
MER.	5					
The second se	6					
and all and all and all all all all all all all all all al	7					
aryuk,	8					
in stall	9					
	10					
and brand	11					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.52					
	13					
1000	14					
Cenere I	15	-				
-10 U	85					
	17	-				
	10		_			_
What is your genetier	Data View	Variable View	A COLUMN			
Print Section	1					
30 134 0 Million		Contraction of the local division of the loc				

Managemen dan Analisis data di Bidang Kesehatan

KATA PENGANTAR

Dengan mengucapkan puji syukur atas kehadirat Allah SWT karena atas Ridho dan Rahmat dan Karunia-Nya sehingga penulis dapat menyelesaikan buku 'Managemen dan Analisa Data, Kombinasi Teori dan Praktik SPSS di Bidang Kesehatan'. Buku ini disusun guna mempermudah mahasiswa dan praktisi khususnya di bidang Kesehatan dalam mengolah data statistik dan menginterpretasikan hasil output yang didapatkan. Pada bagian uji Hipotesa, modul ini memberikan informasi sekitar beberapa uji hipotesa dalam penelitian analitik dan cara mengintreptasikan data output SPSSnya. Pada setiap bab, penulis memberikan contoh dari beberapa penelitan penulis dan peneliti lainnya dari beberapa referensi sehingga dapat meningkatkan pemahaman pembaca dan dapat dipelajari secara berkesinambungan.

Proses aplikasi SPSS dibuku ini menggunakan SPSS versi 17. Walaupun, ada sedikit perbedaan beberapa menu data editor pada SPSS dengan beberapa versi, penulis berharap pembaca bisa menelaah menu data editor yang dimaksud dalam buku ini pada program komputer program SPSS versi lainnya yang terkadang terletak di sub menu yang berbeda.

Sebagai penulis junior, penulis menyadari masih banyak keterbatasan dalam buku ini. Saran dan kritik yang membangun sangat dibutuhkan guna meningkatkan kualitas modul ini, feel free to send me an email, najem240783@yahoo.com

Indralaya, Februari 2011

Najmah, SKM, MPH NIP 19830724 200604 2003

Lembar Terima kasih

Managemen dan Analisis data di Bidang Kesehatan

Ucap Syukur yang tak terbatas kepada Allah SWT yang selalu memberiku kemudahan dalam mencercahkan sedikit ilmu dalam buku ini

Terima kasih kepada almamater dan para dosen-dosenku di Fakultas Kesehatan Masyarakat Unsri-Indonesia (2001-2005) dan School of Population Health, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne Australia (2008-2009) untuk ilmunya sehingga aku bisa tahu sedikit ilmu sekarang

Terimakasih kepada Universitas Sriwijaya, Rektor Unsri (Prof Badia Perizade), Dekan FKM Unsri (Hamzah Hasyim, SKM, MKM), Prof Zainal Ridho Djafar, dr Husnil Farouk, MPH, Prof Zarkasih Anwar, Prof Rindit Pambayun, dan rekan kerja saya di FKM Unsri untuk motivasinya dalam menulis dan mengizinkan saya menempuh pendidikan lanjutan saya dalam usia dini.

Terima kasih buat kedua orangtuaku, Eni Erosa (Alm) L Usman Nurdin yang selalu mengutamakan pendidikan bagi anaknya dalam kondisi keterbatasan.

Kepada kedua adikku, M Faris Nurdiansyah, ST, M. Nirwan Fauzan, ST dan kedua kakakku, M Reza Arsyadi, Rina Nur'ain, AMD untuk tali persaudaraannya tiada akhir.

Special words, untuk Kusnan Sayuti, SE, terimakasih atas bimbingannya yang tiada akhir

Buku ini kupersembahkan untuk para mahasiswaku yang kreatif dan inovatif Di Fakultas Kesehatan Masyarakat Unsri dan mahasiswa/praktisi kesehatan dimanapun anda berada

My Motto: A great man always be like thunder, he stroms the skies, while others are waiting to be stormed (Anonymus)

BAB I. PRINSIP DASAR STATISTIK DAN KOMPUTER

KOMPETENSI DASAR: Mampu menjelaskan prinsip dasar statistik

INDIKATOR :

- Mampu menjelaskan perbedaan populasi dan sampel
- Mampu menjelaskan perbedaan jenis data dan skala dalam data penelitian
- Mampu menjelaskan prinsip dasar pengolahan data

A. PENDAHULUAN

Statistik adalah sekumpulan konsep dan metode yang digunakan untuk mengumpulkan dan menginterpretasi data tentang bidang kegiatan tertentu dan mengambil kesimpulan dalam situasi dimana ada ketidakpastian dan variasi(1). Statistik dalam praktek berhubungan dengan banyak angka hingga dapat diartikan *'numerical description'* oleh banyak orang. Misal pergerakan Indeks Bursa Saham Gabungan (IHSG), jumlah penduduk wanita dan pria di suatu desa, jumlah akseptor KB, analis penelitian dan sebagainya.(2) Sebagai suatu disiplin ilmu, saat ini statistik meliputi berbagai metode dan konsep yang sangat penting dalam suatu penyelidikan yang melibatkan pengumpulan data dengan cara eksperimentasi dan observasi, dan pengambilan inferensi atau kesimpulan dengan menganalisis data.(1)

Semua penelitian memerlukan pengolahan data dengan menerapkan ilmu statistik baik untuk penelitian dengan desain deskriptif atau analitik atau kombinasi keduanya untuk mencapai setiap penelitian tersebut. Contoh penggunaan ilmu statistik adalah sebagai berikut;

- Peneliti ingin mengetahui Faktor-faktor yang mempengaruhi ibu dalam menggunakan Jamban Sehat di Daerah Aliran Sungai Musi
- Peneliti ingin mengetahui proporsi ibu hamil yang melakukan pemeriksaan Antenatal Care di Rumah Sakit Muhammad Husein.
- Peneliti ingin meneliti analisis faktor yang mempengaruhi pengguna napza suntik dalam menggunakan jarum suntik tak steril di Kota Palembang
- Peneliti ingin mengetahui efek layanan Jarum dan Alat Suntik Steril terhadap perilaku
 Pengguna napza suntik dalam menggunakan jarum suntik steril
- Peneliti ingin mengetahui hubungan umur dan kejadian patah tulang pinggul pada wanita manula di Indonesia

B. STATISTIK

a. Pembagian Statistik

Dalam suatu penelitian, sebelum kita melakukan pengumpulan data, kita harus membuat proposal penelitian. Pada proposal penelitian, terdapat bab rencana analisis

yang menggambarkan apa yang Anda rencanakan pada data yang akan Anda miliki. Rencana analisis biasanya dibagi menjadi dua bagian yaitu rencana analisis secara deskriptif dan analitik/inferensi. (3, 4)

Statistik deskriptif akan membawa kita pada pemahaman tentang karakteristik data yang kita miliki. Statistik deskriptif ini harus selalu mendahului statistik inferensi/analitik. Karena pentingnya statistik deskriptif ini, para ahli selalu mengatakan : ketahui datamu dan jenis apa datamu yang kamu punya (*know your data, what kind of data you have !*). Statistik deskriptif berusaha menjelaskan atau menggambarkan berbagai karakteristik data seperti berapa ukuran tengah (mean, median, modus) dan ukuran variasi/penyebaran (ranga, jarak inter kuartil, standar deviasi) dan sebagainya. Sedangkan statistik analitik akan membawa kita mengambil keputusan terhadap hipotesis kita. Pertanyaan yang sering muncul dalam analisis data adalah : *uji hipotesis apa yang akan kita pakai untuk menguji set data yang kita miliki ?* jawabannya tentu saja : *Kita menggunakan uji hipotesis yang sesuai.* Uji hipotesis yang sesuai akan membawa kita pada pengambilan kesimpulan yang sahih. Jadi, Statistik deskriptif akan dilakukan terlebih dahulu, lalu berdasar hasil tersebut, baru dilakukan analisis secara inferensi(2-5)

Gambar 1. Jenis penelitian secara garis besar(6)

b. Populasi dan Sampel

Di dalam statistik kita selalu membicarakan populasi dan sampel. Populasi adalah keseluruhan unit di dalam pengamatan yang akan kita lakukan sedangkan sampel adalah sebagian dari populasi yang nilai/karakteristiknya kita ukur dan yang nantinya kita pakai untuk menduga karakteristik dari populasi (1). Dalam pemilihan sampel penelitian, ada beberapa tahap yang harus dilakukan, yaitu;(7)

Pertama; menentukan target populasi (*target population*), populasi dimana hasil penelitian akan digeneralisasikan

Kedua; menentukan populasi sumber (*source population*) yang terdefinisi dan terhitung jika memungkinkan dari sampel yang memenuhi syarat penelitian.

Gambar 2. Proses seleksi sampel dari populasi target(7)

Ketiga; menentukan populasi yang memenuhi kriteria peneliti (*eligible population*), populasi dimana sampel memenuhi syarat inklusi dalam penelitian akan diambil dan harus didefinisikan secara tepat.

Keempat; menentukan sampel yang masuk ke dalam studi penelitian (*study entrants*), subjek yang masuk dalam penelitian, harus didefiniskan dan dihitung dalam penelitian. Semua non partisipasi dalam penelitian harus dijelaskan alasan dari non-partisipasi.

Kelima; menentukan sampel yang masuk dalam studi penelitian dan mengikuti peneltian sampai akhir (*study participants*), sampel yang berkontribusi dalam penelitian,

dan hasil penelitan diaplikasikan dalam subjek penelitian itu sendiri, terutama untuk peneliitan dengan desain experimen dan kohort.

Contoh: Penelitan dengan judul 'Managing back pain in pregnancy using a support garment, a radomised trial' by SM Kalus, LH Kornman, JA Quinlivan, 2007, An International Journal of Obstetrics and Gynaecology (8)

Target Population	Pregnant women at the antenatal clinics of tertiary referral hospital in Australia.
Source Population	Pregnant women at the antenatal clinics of tertiary referral hospital, The Royal Women's Hospital, Melbourne, Australia.
Eligible Population	Pregnant women between 20 and 36 weeks of pregnancy with lumbar back pain or posterior pelvic (sacroiliac joint), excluded women with high back pain or symphysiolysis with no concomitant lumbar pack or posterior pelvic pain and the women who were non- English Speaking
Study Entrants	Eligible and agreed to participate and to be randomized (115 randomised, 55 case, 60 control)
Study Participants	Those who continued in trial and provided final outcome data (94 participants left, n case = 46 and 9 dropped out, n control=48 and 12 dropped out)

c. Jenis Data dan Skala

Data adalah bentuk jamak (plural) dari "*datum*". Definisi data adalah himpunan angka-angka yang merupakan nilai dari unit sampel kita sebagai hasil dari mengamati/mengukur. Data pada umumnya dibedakan menjadi dua, antara lain: (3-5, 9)

1. Variabel kategorikal

Berkaitan dengan gambaran karakteristik satu set data dengan skala pengukuran kategorikal, Anda mengenal istilah jumlah atau frekuensi tiap kategori (n) dan

$$_{\text{Page}} 12$$

persentase tiap kategori (%), yang umumnya disajikan dalam bentuk tabel atau grafik. Skala pengukuran pada variabel kategorikal ada dua yaitu skala nominal dan skala ordinal.

Sifat Skala	Nominal	Ordinal	Interval	Ratio
1. Persamaan pengamatan	Ya	Ya	Ya	Ya
(pengelompokkan), klasifikasi				
pengamatan dapat dilakukan				
2. Urutan tertentu, urutan pengamatan	Tidak	Ya	Ya	Ya
dapat dilakukan				
3. Jarak antara kelompok dapat	Tidak	Tidak	Ya	Ya
ditentukan				
4. Perbandingan antara kelompok	Tidak	Tidak	Tidak	Ya

 Tabel 1. Skala pengukuran variabel(1)

2. Variabel numerik

Berkaitan dengan gambaran karakteristik satu set data dengan skala pengukuran numerik, kita mengenal dua parameter yang lazim digunakan yaitu parameter ukuran pemusatan dan parameter ukuran penyebaran. Anda mengenal beberapa parameter untuk ukuran pemusatan, yaitu *mean, median, dan modus*. Untuk parameter ukuran penyebaran, kita mengenal standar deviasi, varians, koefisien varians, interkuartil, range, dan minimum maksimum. Data variabel dengan skala pengukuran numerik umumnya disajikan dalam bentuk tabel dan grafik. Skala pengukuran pada variabel kategorikal ada dua yaitu skala interval dan ratio.

C. STATISTIK DAN KOMPUTER

Bagi kebanyakan orang, statistik diangap suatu ilmu yang ruwet, penuh dengan rumusrumus yang rumit dan diperlukan ketelitian serta ketepatan dalam menghitungnya. Namun seiring dengan kemajuan pesat di bidang komputer, muncul berbagai program komputer yang dibuat khusus untuk membantu pengolahan data statistik. Pengolahan data statistik menjadi jauh lebih mudah tanpa mengurangi ketepatan hasil outputnya. (2)

Pengolahan data yang berbasis perhitungan matematika, sesuatu yang dapat dikerjakan dengan cepat oleh komputer. Jadi, statistik menyediakan cara/metode pengolahan data yang

ada, maka komputer menyediakan cara/metode pengolahan data yang ada, maka komputer menyediakan sarana pengolahan datanya. Dengan bantuan komputer, pengolahan data statistik hingga dihasilkan informasi yang relevan menjadi lebih cepat dan lebih akurat, sesuatu yang sangat dibutuhkan bagi para pengambil keputusan, karena informasi yang tepat tetapi lambat tersajinya akan menjadi 'basi', sedang informasi yang walaupun cepat namun tidak akurat akan menghasilkan keputusan yang dapat salah. Tiga keunggulan utama pengolahan data dengan komputer dibandingkan manusia adalah kecepatan, ketepatan dan keandalan. Ketiga keunggulan tersebut membuat komputer sangat dibutuhkan dalam mengolah data-data statistik. Selain mempunyai kecepatan yang sangat tinggi dalam mengolah data-data statistik, serta menghasilkan output yang mempunyai presisi (ketepatan) tinggi, komputer juga daya tahan kerja yang tinggi(2).

D. SPSS DAN KOMPUTER

Pengolahan data statistik menjadi jauh lebih mudah tanpa mengurangi ketepatan hasil outputnya. SPSS (*Statistical Package for the Sosial Sciences*) adalah program komputer statistik yang mampu untuk memproses data statistik secara cepat dan tepat, menjadi berbagai output yang dikehendaki para pengambil keputusan. (2) SPSS Sebagai *software statistic*, pertama kali dibuat tahun 1968 oleh tiga mahasiswa Stanford University, yang dioperasikan pada *computer mainframe*. SPSS yang tadinya digunakanm bagi pengolahan data statistik untuk ilmu social (SPSS saat itu singkatan dari *Statistical Package for The Social Sciences*), sekarang diperluas untuk melayani berbagai jenis user, seperti untuk proses produksi di pabrik, riset ilmu-ilmu sains dan lainnya. Sehingga sekarang kepanjangan SPSS adalah *Statistical Product and Service Solutions(2)*.²

E. CARA KERJA SPSS

Pengolahan data menjadi informasi dengan komputer, antara lain:

Sedangkan cara kerja proses perhitungan dengan statistik:

Jika kedua metode itu dikombinasikan, maka pengolahan data pada SPSS dapat dilihat pada proses di bawah ini:

Gambar 3. Proses pengolahan data pada SPSS(2)

Dari proses di atas, dapat digambarkan:(2)

- a. Data yang akan diproses dimasukkan lewat menu DATA EDITOR yang otomotis muncul di layar saat SPSS dijalankan.
- b. Data yang telah diinput kemudian diproses, juga lewat menu DATA EDITOR.
- c. Hasil pengolahan data muncul di layar (window) yang lain dari SPSS, yaitu Output Navigator.

Pada menu output navigator, informasi atau output statistik dapat ditampilkan secara:

 Teks atau tulisan. Pengerjaan (perubahan bentuk huruf, penambahan, pengurangan dan lainnya) yang berhubungan dengan output berbentuk teks dapat dilakukan lewat menu TEXT OUTPUT EDITOR.

- Tabel. Pengerjaan (pivoting tabel, penambahan, pengurangan tabel dan lainnya) yang berhubungan dengan output berbentuk tabel dapat dilakukan lewat menu PIVOT TABLE EDITOR
- 3. Chart atau Grafik. Pengerjaan (Perubahan tipe grafik dan lainnya) yang berhubungan dengan output berbentuk grafik dapat dilakukan lewat menu CHART EDITOR. Dengan demikian, dalam SPSS, ada berbagai macam window yang dapat tampil. Namun, yang pasti harus digunakan adalah Data Editor sebagai bagian input dan proses data, sedangkan Output Navigator yang merupakan output hasil pengolahan data.

F. PENGOLAHAN ANALISIS DATA

Data yang diperoleh kemudian diolah yang dilakukan melalui empat tahapan sebagai berikut.(1, 10)

1. Pengeditan data (editing)

Kegiatan untuk melakukan pengecekan isian formulir atau kuesioner apakah jawaban yang ada di kuesioner sudah:

- a. Lengkap : semua pertanyaan sudah terisi jawabnya
- b. Jelas : jawaban pertanyaan apakah tulisannya cukup jelas terbaca
- c. Relevan : jawaban yang tertulis apakah relevan dengan pertanyaannya
- d. Konsisten : apakah antara beberapa pertanyaan yang berkaitan dengan isi jawabannya konsisten
- 2. Pengkodean data (coding)

Koding merupakan kegiatan mengubah data berbentuk huruf menjadi data berbentuk angka/bilangan. Kegunaan dari *coding* adalah untuk mempermudah pada saat analisis data dan juga mempercepat pada saat memasukkan data.

3. Pemasukan data (*entry* data)

Langkah selanjutnya adalah memasukkan data agar dapat dianalisis. Pemasukan data dilakukan dengan cara memasukkan data dari kuesioner ke paket program komputer.

4. Pembersihan data (*cleaning* data)

Cleaning (pembersihan data) merupakan kegiatan pengecekan kembali data yang sudah dimasukkan apakah ada kesalahan atau tidak

a. Mengetahui missing data

Cara mendeteksi adanya *missing data* adalah dengan melakukan *list* (distribusi frekuensi) dari variabel yang ada.

		Frequency	Percent	Cumulative	
				Percent	
Valid	Dana kurang	53	53.0	98.2	
	Tidak	1	1.0	100.0	
	memungkinkan				
	Total	54	54.0		
Missing	System	46	46.0		
Total		100	100.0		

 Tabel 2. Alasan Jamban tidak Mempunyai Tangki Septik(11)

** SPSS Output

Data di atas terdapat 46 missing data. Hal ini disebabkan 46 responden tersebut mempunyai Jamban tetapi jamban tanpa Tangki Septik.

b. Mengetahui variasi data

Dengan mengetahui variasi data akan diketahui apakah data yang dientry benar atau salah. Dalam entry data biasanya data dimasukkan dalam bentuk koding, misal, data status anemia: 1. anemia, 2. Normal.

Tabel 3.Status Anemia(10)

				-	
					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	Anemia	25	34.7	34.7	34.7
	Normal	45	62.5	62.5	97.2
	3.00	2	2.8	2.8	100.0
	Total	72	100.0	100.0	

Status Anemia

** SPSS Output

Page1'

Data di atas variasi data ada 2 yaitu 1= anemia dan 2=normal, tetapi ada kesalahan dalam entry data di atas. Muncul angka 3, sebaiknya data harus diperiksa ulang lagi.

c. Mengetahui konsistensi data

Cara mendeteksi adanya ketidak konsistensi data dengan menghubungkan 2 variabel. Variasi data di tabel 3 terlihat tidak adanya konsistensi antara tabel Keikutsertaan KB dan Jenis Alat Kontrasepsi. Yang bukan peserta KB terdapat 33 responden tetapi pada tabel berikutnya pada penggunaan jenis alat kontrasepsi tidak pakai hanya ada 31 responden.

Tabel 4. Keikutsertaan KB dan Jenis Alat Kontrasepsi (10)

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Ya	17	34.0	34.0	34.0
	Tidak	33	66.0	66.0	100.0
	Total	50	100.0	100.0	

Keikutsertaan KB

					0 :
					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	Tidak pakai	31	62.0	62.0	62.0
	Suntik	4	8.0	8.0	70.0
	Pil	4	8.0	8.0	78.0
	Kondom	5	10.0	10.0	88.0
	IUD	6	12.0	12.0	100.0
	Total	50	100.0	100.0	

Jenis Alat Kontrasepsi

** SPSS Output

OLAHRAGA OTAK 1. BUATLAH KESIMPULAN BAB I DENGAN MENGGUNAKAN MIND MAPPING (PETA PIKIRAN) DARI BAB I BERDASARKAN PEMAHAMAN ANDA DAN BERIKAN PENJELASAN SINGKAT TENTANG MIND MAPPING ANDA(MIN 200 KATA)

Sumber: Contoh Mind mapping- Mengenal Konsep Pemetaan Pemikiran - http://alquran.atmonadi.com/

 $_{\rm Page}19$

Managemen dan Analisis data di Bidang Kesehatan

BAB II. PENGANTAR OPERASI SPSS DASAR

 $P_{age}21$

SPSS adalah software pengolahan data yang penggunaannya sangat tergantung dari penguasaan materi statistik sekaligus pemahaman perintah-perintah atau menu-menu di dalamnya. Oleh karena itu berikut akan dibahas cara mengoperasikan SPSS.

A. MEMULAI SPSS

- Klik START...... Program...... SPSS for Windows...... SPSS 11-18 for Windows.
- Anda bisa membuka data yang udah tersedia 'open an exisiting data source atau membuka data kosong dengan memilih 'type in data'

SPS:	S Statistics 17.0
-What we	ould you like to do?
?	O Ryn the tulorial
	O Iyyoe in date
6	O <u>R</u> un an existing query
8	O Create new guery using Database Wizard
Ψ _Σ	Quen an existing data source
Σ	Open another type of file More Files
Don'i s	how this dialog in the future

Gambar 4. Proses Memanggil program SPSS(12)

B. MEMBUKA DATA

Dari menu 'file'- Open- data atau bisa klik lambang berikut ini pada 'toolbar'(9, 12)

Untuk melihat contoh data dalam program SPSS, dapat dilakukan dengan

- Klik 2 kali folder 'tutorial'
- Klik 2 kali folder 'the sample-files'
- Klik file dengan judul 'demo.sav' atau file lainnya
- Klik 'Open' untuk membuka data SPSS

Open File				? 🛛
Look jn:	: 🔁 sample_file:	8	💌 🧿 🔊 💌	
	accidents.sa	v	atalog.sav	demo_cs.sav
	adl.sav		🛅 catalog_seasfac.sav	demo_cs_1.s
My Recent	adratings.sa	v	🛅 cellular.sav	demo_cs_2.s
Documents	advert.sav		🛅 ceramics.sav	🛗 dietstudy.sa
5	aflatoxin20.s	sav	🛅 cereal.sav	dischargedat
	aflatoxin.sav	/	🛅 clothing_defects.sav	dvdplayer.sa
Desktop	anorectic.sa	V .	🛅 coffee.sav	flying.sav
	autoaccident	s.sav	🛅 contacts.sav	german_crec
	🛗 band.sav		🛅 creditpromo.sav	🛅 grocery.sav
	bankloan.sav	1	🛗 cross_sell.sav	grocery_1mc
My Documents	bankloan_cs	.sav	🛅 customers_model.sav	grocery_1mc
A Carter of the	bankloan_cs	_noweights.sav	customers_new.sav	grocery_cou
	🛅 brakes.sav		🛅 debate.sav	🛅 guttman.sav
33	ar_sales.sa	V	💼 debate_aggregate.sav	health_fundi
My Computer	arpet.sav		indemo.sav	healthplans.:
	<	1		>
My Network	File <u>n</u> ame:	demo.sav	×	<u>O</u> pen
Places	Files of type:	SPSS (*.sav)	~	Paste
				Cancel

Gambar 5. Tampilan 'Open sample files'(9)

🛅 d	lemo	.sav - S	PSS I	Data Editor	ŗ				-		×
Eile	<u>E</u> dit	<u>⊻</u> iew į	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raph:	s <u>U</u> tilities	Add- <u>o</u> ns <u>W</u> i	ndow <u>H</u>	elp	
20 :	age			4	D						
		age	3	marital	l add	ress	income	inccat	(car	~
	1		-55	Marit	al status	12	72.0	0 3.0	00	36.	
	2		56	()	29	153.0	0 4.0	00	76.	
	3		28		1	9	28.0	0 2.0	00	13.	
	4		24		1	4	26.0	0 2.0	00	12.	
	5		25	()	2	23.0	D 1.0	00	11.	
	6		45		1	9	76.0	D 4.0	00	37.	
	7		42	()	19	40.0	0 2.0	00	19.	
	8		35	()	15	57.0	0 3.0	00	28.	
	9		46	()	26	24.0	D 1.0	00	12.	
	10		34		1	0	89.0	D 4.0	00	46.	
	11		5 5			17	72.0	0 3.0	00	35,	~
	Data View / Variable View / I < III										

Gambar 6. Tampilan data 'demo.sav'(9)

C. MENU UTAMA PADA SPSS

Menu utama pada SPSS, diantaranya: (2, 9, 12)

a. FILE

Digunakan untuk membuat file data baru, membuka file yang tersimpan, atau membaca file dari program lain, menyimpan file, mencetak, dll.

b. EDIT

Digunakan untuk mengcopy, menghapus, mencari dan mengganti data, dll.

c. DATA

Digunakan untuk membuat/ mendefinisikan variabel, mengambil/ menganalisis sebagian data, menggabungkan data, menambah variabel, dll.

d. TRANSFORM

Digunakan untuk transformasi/ modifikasi data, seperti pengelompokan variabel, pembuatan variabel baru, dll.

Gambar 7. Menu Utama SPSS for Windows (12)

e. ANALYZE

Digunakan untuk melakukan/ memilih berbagai analisis statistik, dari statistik deskriptif sampai statistik multivariat.

f. GRAPHS

Digunakan untuk membuat dan menampilkan grafik, meliputi grafik batang, pie, garis, histogram, scatter plot, dll.

g. UTILITIES

Digunakan untuk menampilkan berbagai informasi tentang isi file.

h. WINDOW

Digunakan untuk berpindah-pindah antar jendela/ layar, misalnya dari jendela data editor ke Output.

i. HELP

Memuat informasi bantuan bagaimana menggunakan berbagai fasilitas pada SPSS.

D. MEMASUKKAN DATA SECARA LANGSUNG

Hal yang dilakukan dalam memasukkan data adalah mendefinisikan nama variabel dulu baru kemudian mengisikan datanya.

Langkah-langkah yang dilakukan adalah sebagai berikut.^{2, 4, 7, 8}

a. Aktifkan Variable View

Gambar 8. Menu Variabel View SPSS for Windows

b. Isikan nama variabel pada kolom Name seperti tampilan.

Ketik nama variabel yang diinginkan sesuai dengan persyaratan berikut

- 1. Maksimum terdiri dari 12 huruf
- 2. Tidak boleh ada spasi
- 3. Tidak boleh ada nama variabel yang sama

NAJMAH, SKM, MPH Public Health Faculty , UNSRI

1 r	TNUTTO		Width	Decimale	label	Values	Missing	Columns	Alian	Measure
	no	Numeric	8	0	NOMOR	None	None	3	E Center	- Nominal
2 1	namaibu	String	16	0	nama ibu	None	None	10	≡ Center	📕 🔏 Nominal
3 1	t	Numeric	8	0	Nomor RT Rumah Ibu	None	None	3	≣ Center	🔒 Nominal
4 ι	umuribu	Numeric	8	0	Umur Ibu (Tahun)	None	None	4	≣ Center	💰 Nominal
5 0	didikbu	Numeric	8	0	Pendidikan Ibu Terakhir	{1, Tidak se	None	11	≣ Center	J Ordinal
6 6	ekonomi	Numeric	8	0	Status Ekonomi Keluarga	{0, Cukup}	None	6	≣ Center	🚽 Ordinal
7	kerjasua	Numeric	8	0	Pekerjaan Suami	{1, Tidak be	None	6	≣ Center	🛛 💑 Nominal
3	kerjaibu	Numeric	8	0	Status Kerja Ibu	{1, TIDAK}	None	6	≣ Center	💰 Nominal
9 t	tahu1	Numeric	8	0	Memudahkan penyebaran penyakit	{1, Salah}	None	4	≣ Center	💰 Nominal
0 t	tahu2	Numeric	8	0	Menyebabkan pencemaran air sungai	{1, Salah}	None	5	≣ Center	🔒 Nominal
1 t	tahu3	Numeric	8	0	Menyebabkan pencemaran permukaan tanah di sekitar jamban	{1, Salah}	None	5	≣ Center	🛛 歲 Nominal
2 t	tahu4	Numeric	8	0	Memungkinkan berkembangbiaknya cacing tambang, lalat dan serangga lainnya	{1, Salah}	None	5	≣ Center	🛛 🚴 Nominal
3 t	tahu5	Numeric	8	0	Menimbulkan pemandangan yang menjijikkan	{1, Salah}	None	5	≣ Center	🛛 💑 Nominal
4 t	tahu6	Numeric	8	0	Menimbulkan bau yang mengganggu	{1, Salah}	None	5	≣ Center	🛛 \delta Nominal
5	sikap1	Numeric	8	0	Mempunyai lubang kloset yang disalurkan pada tangki septik atau cubluk	{1, Sangat ti	None	4	≣ Center	🛛 歲 Nominal
6 8	sikap2	Numeric	8	0	Air dalam jamban tersedia cukup	{1, Sangat ti	. None	5	≣ Center	🛛 💑 Nominal
7	sikap3	Numeric	8	0	Jamban selalu bersih	{1, Sangat ti	None	4	≣ Center	🛛 \delta Nominal
8	sikap4	Numeric	8	0	Memiliki lantai dan tempat pijak yang kuat	{1, Sangat ti	None	5	≣ Center	🛛 \delta Nominal
9	sikap5	Numeric	8	0	Jamban tertutup	{1, Sangat ti	None	5	≣ Center	🛛 💑 Nominal
10 a	adajbn	Numeric	8	0	Ketersediaan Jamban di Lingkungan Rumah Tangga	{1, Ada}	None	8	≣ Right	🔗 Scale
!1 F	kpmlkn	Numeric	8	0	Status Kepemilikan Jamban	{1, Sendiri}	None	5	≣ Center	🛛 💑 Nominal
2	kloset	Numeric	8	0	Jenis Lubang Kloset	{1, Leher an	None	11	≣ Center	🛛 \delta Nominal
3 8	akhir	Numeric	8	0	Tempat Pembuangan Akhir Tinja	{1, Tangki s	None	7	≣ Center	🖉 💑 Nominal
4 a	alasan	Numeric	8	0	Alasan Jamban tidak Mempunyai Tangki Septik	{1, Dana Ku	None	6	≣ Center	🖉 💑 Nominal
15 j	jamban	Numeric	8	0	Ketersediaan Jamban Sehat	{1, Ya}	None	6	≣ Center	🖉 💑 Nominal
16 t	tertutup	Numeric	8	0	Jamban tertutup	{0, Tidak}	None	4	≣ Center	🛛 \delta Nominal
	•								-it	

Gambar 9. Menu Variabel View yang telah dilengkapi

Contoh: Variabel didik-----Name: ketik didik

- c. *Type*, isikan tipe data sesuai dengan keadaannya, pada SPSS ada beberapa pilihan berikut,
 - Numeric adalah data yang berbentuk numerik/ angka, bisa bertanda plus/ minus didepan angka.
 - Comma adalah data yang berbentuk numerik/ angka, bisa bertanda plus/ minus didepan angka., memakai tanda koma sebagai pemisah ribuan.

Page 2'

- Dot adalah data yang berbentuk numerik/ angka, bisa bertanda plus/ minus didepan angka., memakai tanda titik sebagai pemisah ribuan.
- Scientific Notation adalah data yang berbentuk numerik/ angka, bisa bertanda plus/ minus didepan angka, ditandai dengan simbol E.
- *Date* adalah data dalam bentuk format waktu.
- Dollar adalah data yang berbentuk numerik/ angka, yang ditandai (\$) dengan tanda koma sebagai pemisah ribuan.
- Custom Currency adalah Bentuk tipe ini untuk menampilkan format mata uang yang dibuat melalui kotak dialog Options dari menu Edit.
- *String* adalah data dalam bentuk huruf/ alfabetic/ kata-kata.

Contoh: Variabel didik----- Type : Numeric

Variable Type		? 🗙
 Numeric Comma Dot Scientific notation Date Dollar Custom currency String 	Width: 8 Decimal Places: 2	OK Cancel Help

Gambar 10. Kotak Dialog Variabel Type

d. *Width*, secara otomatis akan terisi pada saat mengisi tipe variabel, tapi jika tidak sesuai dapat diganti dengan angka yang sesuai.

Contoh: Variabel didik------ Width : Isi 8

e. *Decimal*, secara otomatis akan terisi pada saat mengisi tipe variabel, tapi jika tidak sesuai dapat diganti dengan angka yang sesuai.

Contoh: Variabel didik----- Decimal : 0 (nol)

f. Label, merupakan keterangan/ penjelasan dari nama variabel.

Contoh: Variabel didik----- Label : Tingkat pendidikan ibu terakhir

- g. *Values*, merupakan keterangan untuk variabel yang berbentuk kategori. Untuk mengisi pengkategorian data, klik bagian kanan kotak values.
 - *Value* : ketik angka
 - *Value Label* : ketik keterangan dari kode angka tersebut
 - Klik tombol *Add*, lanjutkan pada pengkategorian selanjutnya, klik OK.

Value Labels	2 🗵
Value Labels	ОК
Value:	Cancel
	Help
Change	
Remove	

Gambar 11. Kotak Dialog Value Label

Contoh: Variabel didik

Ketik 1 pada kotak value. Ketik SD. klik add

Ketik 2 pada kotak value. Ketik SMP. klik add

Ketik 3 pada kotak value. Ketik SMA. klik add

Ketik 4 pada kotak value. Ketik PT. klik add.....Proses selesai. OK

Value Lab	els	2 🔀
Value Labels		ОК
'alue: 2		Cancel
alue Label: SMP		
Add 1.00 = "SD"		
Ptemove		
Remove Value Labels		Nore
Premove Value Labels		Norr [1, SD]
Value Labels Value Labels		Norr (1, SD) (0, Tidak Beke
Value Labels Value: Value Label:		Non- K (1, SD) (0, Tidak Beke None
Value Labels Value Labels Value Label: Value Label:		None (1, SD) (0, Tidak Beke None (0, Ya) None
Value Labels Value Labels Value Label: Value Label: Add 1 = "SD" 2 = "SMP"		None (1, SD) (0, Tidak Beke None (0, Ya) None None
Value Labels Value Labels Value Label: Add 1 = "SD" 2 = "SMP" 3 = "SMU" 4 = "PT"		None None elp None None None None None None

Gambar 12. Value Label yang Diisi

h. *Missing*, untuk menentukan nilai *missing*/ hilang pada data. Sebaiknya pada data tidak ada nilai *missing*.

Contoh: Variabel didik ------Missing : tidak diisi

i. Columns, menentukan lebar kolom yang digunakan.

Contoh: Variabel didik ------ Columns : 8

j. Align, menentukan posisi tulisan (klik salah satu : kiri, kanan atau tengah)

Contoh: Variabel didik ------ Align : kanan (right)

- k. Measurement, menetukan skala pengukuran yang dipakai. Ada 3 pilihan, yaitu
 - Nominal : untuk data kategori (hanya membedakan saja), misal : jenis kelamin.
 - Ordinal : untuk data kategori (data yang mempunyai tingkatan), misal: tingkat pendidikan.
 - Scale : untuk data yang masih berupa angka dari penghitungan/ pengukuran.

Contoh: Variabel didik ------ Measure : Ordinal

Setelah selesai melengkapi bagian *Variable View*, klik menu *Data View* dan kita siap untuk memasukkan data yang ada.

File	Edit	View Data	Transform A	nalyze Graph	ns Utilities Wi	ndow Help			
6		in the second se		E C? 44			0		
1 : di	dik		1			$\overline{)}$			
1		umur	didik	kerja	anak	eksklu	hb1	hb2	bbayi
	- 1	23	SD 🔽	Bekerja	1	Tidak	10.1	11.1	2500
1	2	24	PT	Bekerja	2	Ya	9.8	10.2	3000
	3	34	SMP	Tidak Be	3	Tidak	11.1	11.5	4000
1	4	35	SMU	Bekerja	4	Tidak	10.2	9.8	3600
	5	19	SD	Tidak Be	4	Ya	10.4	10.1	3500
	6	24	PT	Tidak Be	3	Ya	11.2	10.0	2700
	7	22	SMU	Tidak Be	2	Ya	12.5	12.2	2900
	8	19	SD	Bekerja	1	Tidak	11.4	11.4	2600
Ĩ.	9	26	SMU	Bekerja	1	Ya	13.2	12.3	3500
	10	25	SMU	Tidak Be	2	Tidak	9.2	9.1	4000
	11	21	SD	Tidak Be	3	Tidak	10.1	11.1	3300
	12	22	SMP	Bekerja	4	Ya	10.1	11.1	4100
0	13	19	SMU	Tidak Be	4	Ya	10.2	9.8	2800
	14	20	SMP	Bekerja	3	Tidak	10.2	9.8	3600
	15	23	SMU	Tidak Be	2	Ya	10.2	9.8	2400
	16	26	SD	Bekerja	1	Tidak	11.2	10.0	3000
1	17	., 27	PT	Tidak Be	1	Ya	11.2	10.0	3900
	18	30	SMU	Tidak Be	2	Ya	11.2	10.0	2800
	19	31	PT	Bekerja	3	Tidak	13.2	12.3	3300
	20	32	PT	Bekerja	4	Tidak	13.2	12.3	2100
	21	23	SD	Bekerja	4	Tidak	10.1	11.1	2500
	22	24	PT	Bekerja	3	Ya	9.8	10.2	3000
	23	34	SMP	Tidak Be	2	Tidak	11.1	11.5	4000
	24	35	SMU	Bekerja	1	Tidak	10.2	9.8	3600
1	25	19	SD	Tidak Be	1	Ya	10.4	10.1	3500
	26	24	PT	Tidak Be	2	Ya	11.2	10.0	2700
	27	22	SMU	Tidak Be	3	Ya	12.5	12.2	2900
1	28	19	SD	Bekerja	4	Tidak	11.4	11.4	2600
	29	26	SMU	Bekerja	4	Ya	13.2	12.3	3500
1	30	25	SMU	Tidak Be	3	Tidak	9.2	9.1	4000
215	1211	21 21	<u>en</u>	Jidak Ba	2	Tidak	10.1	11 1	3300
4 1 2		ita view X Va	mable view	/			SDSS De		
							SPSS Pro	icessor is reac	1Y

Gambar 13. Data View yang telah Dilengkapi

OLAHRAGA OTAK 2. Masukkan Data Penelitian karakteristik responden Berbagai Faktor yang Berhubungan dengan Perilaku Ibu dalam Menggunakan Jamban Sehat Di Daerah Aliran Sungai Musi,Wilayah Kerja Puskesmas Nagaswidak Kecamatan Seberang Ulu II, Palembang tahun 2005' (11)

Karakteristik Sosi Demografi

- 1. Nama :.....
- 2. Umur ibu :.....tahun
- 3. Jenjang sekolah tertimggi ibu terakhir
 - 1. Tidak sekolah 4. Tamat SMP
 - 2. Tidak tamat SD 5. Tamat SMU
 - 3. Tamat SD 6. Tamat akademi /PT
- 4. Apa Pekerjaan suami ibu yang utama?
 - 1. Tidak bekerja
 - 2. Buruh/kuli bangunan/tukang becak/tukang ketek/nelayan
 - 3. Pedagang/wiraswasta
 - 4. PNS/Polri/TNI/BUMN/pensiunan
 - 5. Karyawan swasta
 - 6. Lain-lain
- 5. Apakah pekerjaan ibu?
 - 1. Tidak bekerja
 - 2. Bekerja, sebutkan.....
- 6. Berapa rata-rata jumlah pendapatan keluarga dalam 1 bulan ?
 - 1. \leq Rp 503.700
 - 2. >Rp 503.700

Masukkan data hasil survey sebanyak 20 responden , buat variable label dan value label sesuai koding pertanyaan di atas?

NO	umur	didikibu	kerjsuam	kerjibu	Ekonokig
1	43	3	3	1	2
2	40	4	2	1	1
3	49	3	1	1	2
4	58	3	3	1	1
5	43	3	3	1	1
6	55	3	3	1	1
7	34	5	3	1	1
8	35	3	3	1	2
9	47	5	5	2	1
10	49	3	3	1	2
11	51	3	2	1	2
12	39	5	3	1	1
13	46	4	3	1	2
14	33	5	3	1	1
15	37	5	2	1	1
16	56	3	2	1	2
17	36	3	3	1	1
18	70	3	6	1	1
19	34	5	3	1	1
20	30	5	3	1	1

Tabel 5.Data 20 Responden dalam penelitan(11)

Langkah 1: Mengisi Variabel View

Variabel	:	Umur	
37		1	. • •

Name	: ketik	<u>umur</u>

Type : *Numeric*

Width : secara otomatis akan terisi pada saat mengisi tipe variabel, tapi jika tidak sesuai

dapat diganti dengan angka yang sesuai. Isi 8.

Decimal	: 0 (nol)
Label	: Umur Ibu
Values	: tidak diisi
Missing	: tidak diisi
Columns	: 8
Align	: kanan (<i>right</i>)
Measure	: Scale

Variabel : Kerja

Name	:	ketik <u>didikibi</u>	<u>u</u>
Туре	:	Numeric	
Width	:	secara otoma	tis akan terisi pada saat mengisi tipe variabel, tapi jika tidak sesuai
		dapat digant	i dengan angka yang sesuai. Isi 8.
Decim	al :	0 (nol)	
Label	:	Tingkat Pend	lidikan Ibu Terakhir
Values	:		
1.	Tidak se	ekolah	4. Tamat SMP
2.	Tidak ta	imat SD	5. Tamat SMU
3.	Tamat S	SD	6. Tamat akademi /PT

Missing	: tidak diisi
Columns	: 8
Align	: kanan (<i>right</i>)
Measure	: Ordinal

OLAHRAGA OTAK 3.

Lakukan hal yang sama pada variable kerja suami, kerja ibu dan ekonomi keluarga..

Variabel Name	: ketik
Туре	:
Width	: secara otomatis akan terisi pada saat mengisi tipe variabel, tapi jika tidak sesuai dapat diganti dengan angka yang sesuai. Isi 8.
Decimal	:
Label	:
Values	

Variabel <i>Name</i>	: : ketik
Туре	:
Width	: secara otomatis akan terisi pada saat mengisi tipe variabel, tapi jika tidak sesuai
	dapat diganti dengan angka yang sesuai. Isi 8.
Decimal	:
Label	:
Values	

Variabel <i>Name</i>	: ketik
Туре	:
Width	: secara otomatis akan terisi pada saat mengisi tipe variabel, tapi jika tidak sesuai dapat diganti dengan angka yang sesuai. Isi 8.
Decimal	:
Label	:
Values	:

E. DATA EDITOR

Data editor berkaitan erat dengan manajemen data atau pengelolaan data. Yang terpenting dalam manajemen data adalah menyimpan data, mangganti nilai data, menghapus, mencopy dan memindah sel, dan masih banyak lagi.(9, 12)

a. Membuka Data Kosong dalam Format SPSS

Langkah-Langkah:

• Klik menu *File......New..... Data*

Gambar 14. Proses Membuka Data Kosong

- Pilih file yang yang akan dibuka
- Klik Open jika yakin atau Cancel jika akan dibatalkan
b. Mengambil data yang tidak dalam format SPSS

Langkah-Langkah:

- Klik menu *File......Open......Data*
- Pilih file of Types

nok in:	I SPSS TBAINING	
Data Latih Evaluasi S ANALISIS DATA SU	an SPSS PSS DATA SUTANTO.sav TANTO.sav	
le <u>n</u> ame:	[<u>Open</u>
les of <u>type</u> :	SPSS (*.sav)	Paste
	SPSS (*.sav) SPSS/PC+ (*.sys) Systat (*.syd) Systat (*.sys) SPSS Portable (*.por)	Cancel
	Lotus (*.w*) SYLK (*.sik)	

Gambar 15. Import File Excell

- Carilah ekstensi yang sesuai dengan Microsoft Excell
- Carilah direktori tempat file tersebut pada look in, lalu klik data yang mau di buka

'*Open*" lalu OK

E:SCOURSE	Nookup1.xls	
🗸 Read va	riable names from the first row of d	ata.]
Worksheet:	vlookup [B2:H23]	-
Range:	E	

Gambar 16. Window Konfirmasi

c. Mengganti Nilai Data

Langkah-Langkah:

- Klik sel tempat data yang akan diganti
- Ketikkan data baru

<u>F</u> ile <u>E</u> dit	⊻iew <u>D</u> ata	Transform Ar			
	3 🔍 🗠	Car Inter 🗎			
8 : bmipre	8 : bmipre 19,5				
	bmipre	bmipos			
1	18,5	24,6			
2	18,8	24,2			
3	19,0	25,3			
4	20,0	24,2			
5	19,5	23,4			
6	20,0	25,0			
Z	18,5	24,1			
	19,5	24,1			
9	18,5	22,5			
10	17,5	22,9			

Gambar 17. Data akan Diganti

d. Menyimpan Data

Langkah-langkah:

- Pilih Menu *File......Save*
- Ketikkan nama file pada File *name*
- Klik Save jika ingin menyimpan dan klik *Cancel* jika ingin membatalkan

File	Edit	View	Data	Transform	
N	ew				Þ
0	pen				F.
0	pen Da	atabase	Э		١.
R	ead Te	ext Dat	а		
S	ave			Ctrl+S	
S	ave As				
D	isplay I	Data Ir	ífo		
A	pply D	ata Dicl	tionary.		
C	ache D	ata			
P	rint			Ctrl+P	
P	rint Pre	eview			
s	witch S	ierver.			
S					
R	ecently	y Used	Data		Þ
R	ecently	y Used	Files		Þ
E	xit				

Gambar 18. Menyimpan File Data

 $_{\text{Page}}38$

 File data akan berekstensi .sav (nama file.sav) dan file output akan berekstensi.spo (nama file.spo).

	: Save Data	As		2
Save in: 🛄	SPSS EXERCISE	•	- 🗈 💣 🎟	-
iia ps data SPSS PROS t-Test K'Ma YUNITA DATA SKR:	ES arrhen IPSI EMA.sav ANTO.sav	ED SAMPLE T TE	ST.sav	
	Keeping 9 of 9 variables.		Varial	bles
File name:	[💥 Sa	we
Save as type:	SPSS (*.sav)		Pa	iste
	-	b. b	Car	ncel

Gambar 19. Menyimpan File Data

e. Menghapus Data

Langkah-Langkah:

- Menghapus isi sel dengan mengklik sel yang akan dihapus, lalu tekan tombol *delete*.
- Menghapus sejumlah sel sekaligus dengan mengklik lalu tarik sehingga semua sel terblok, lalu tekan *delete*.
- Menghapus isi sel satu kolom dengan mengklik heading kolom (nama variabel) yang akan dihapus, tekan *delete*.
- Menghapus isi sel satu baris dengan mengklik baris (nomor case) yang akan dihapus, tekan delete atau dengan mengklik kanan pada mouse atau dengan mengklik menu *Edit*, pilih '*Clear*'

	and a second sec	Unessee and a second second
	bmipre	bmipos
1	18,5	24,6
2	18,8	24,2
34	19,0	25,3
4	20,0	24,2
5	10 5	23,4
6	Cu	" <u>,</u> 0
7		ру ,1
8	<u> </u>	,1
9		,5
0	Gri	id Font ,9

Gambar20. Menghapus data dengan Mengklik kanan pada Mouse

f. Mengkopi data

Langkah-Langkah:

- Klik nilai data yang akan dicopy
- Klik menu *Edit*, pilih *Copy* atau Klik Ctrl C
- Arahkan pointer atau penunjuk sel ke lokasi tempat file tersebut alan dicopy
- Klik menu *Edit*, pilih *Paste* (Ctrl V)

Gambar 21. Mengcopy Data

h. Memindahkan Nilai Sel

Langkah-Langkah:

- Klik data yang akan dipindah
- Klik edit, pilih *Cut* atau tekan tombol Ctrl + X
- Arahkan pointer ke lokasi baru tempat data akan dipindah
- Klik menu *Edit*, pilih *Paste* atau tekan tombol Ctrl + V

i. Menyisipkan data

Langkah-Langkah:

- Pilih posisi baris/kolom yang akan disisipkan
- Klik menu Edit, pilih *Insert Case* untuk menyisipkan baris atau *Insert Variable* untuk menyisipkan Kolom (variabel)
- Setelah penyisipan data baru dapat diinputkan

Page4(

• Menyisipkan Kolom dengan meletakkan kursor pada kolom yang akan disisipi, klik Data, pilih *Insert Variabel*.

Gambar 22. Tampilan fungsi 'Edit'

• Menyisipkan baris dengan meletakkan kursor pada baris yang akan disisipi, klik Data, pilih *Insert Case*.

j. Output

Window ini adalah berkaitan dengan hasil dari suatu analisis statisik. Misalkan output data deskripsi umur dan tingkat pendidikan ibu. Dari data tersebut hasil yang didapat seperti gambar di bawah ini.

NAJMAH, SKM, MPH Public Health Faculty , UNSRI

🚰 *Output3 [Document3] - SPSS Stat	atistics Viewer	
<u>File Edit View D</u> ata <u>T</u> ransform	m Insert Format Analyze Graphs Utilities Add-ons Window Help	
😕 🖬 🛕 🗋 📅 🦛 🖻	▶ □·Lar 📴 💊 🎍 🖽 Var 🕇 🔶 + - 🕮 🛬 🖡	
Output Cog Cost Descriptives Cost Descriptives Cost Descriptive Statistics Cost Descriptive Statistic Cost Descrip	Descriptives [DataSet1] D:\UNSRI\2010 Unsri\Writing\SPSS book by Najmah\Book Yes\dATA LATIHAN\JAMBAN _NAJMAH_full.sav Descriptive Statistics	
Log ■ E Frequencies Title ■ Notes ■ Active Dataset ■ Active Dataset ■ Active Dataset ■ Active Dataset ■ Active Dataset ■ Active Dataset	N Minimum Mean Std. Deviation Umur Ibu (Tahun) 100 30 73 43.05 9.532 Valid N (listwise) 100 100 9.532 9.532	
	Frequencies [DataSet1] D:\UNSRI\2010 Unsri\Writing\SPSS book by Najmah\Book Yes\dATA LATIHAN\JAMBAN_NAJMAH_full.sav Statistics Pendidikan Ibu Terakhir	
	Valid 100 Missing 0 Pendidikan Ibu Terakhir Cumulative	
	Frequency Percent Valid Percent Valid Tamat SD 63 63.0 63.0 Tamat SMP 15 15.0 78.0 Tamat SMU 22 22.0 22.0 100.0 Total 100 100.0 100.0 100.0	
	CDCC Statistics Danagement	ready
👩 🔮 🖉		21:11 () 21:11 15/02/2011

Gambar23. Output Data

BAB III. ANALISIS DESKRIPTIF

KOMPETENSI DASAR: Mampu menjelaskan analisa deskriptif dengan program statistik komputer SPSS

INDIKATOR :

- Mampu membuka program SPSS dan membuka data di progam SPSS
- Mampu mengolah data deskripsi numerik dan kategorik
- Mampu melakukan uji normalitas
- Mampu melakukan seleksi kasus tertentu dalam analisa data

A. JENIS DATA

Pada bab ini, ukuran-ukuran dalam statistik akan diperoleh dari pengolahan data dengan program SPSS. Tetapi, pemilihan ukuran-ukuran statistik seperti, mean, median, range, persentasi dan sebagainya itu tergantung jenis variabel yang ada dalam suatu data. Data adalah bentuk jamak (plural) dari "*datum*". Definisi data adalah himpunan angka-angka yang merupakan nilai dari unit sampel kita sebagai hasil dari mengamati/mengukur.(1) Data pada umumnya dibedakan menjadi dua, antara lain:(1-4, 9)

a. Variabel kategorikal

Berkaitan dengan gambaran karakteristik satu set data dengan skala pengukuran kategorikal, kita mengenal istilah jumlah atau frekuensi tiap kategori (n) dan persentase tiap kategori (%), yang umumnya disajikan dalam bentuk tabel atau grafik. Skala pengukuran pada variabel kategorikal ada dua yaitu skala nominal dan skala ordinal.

a) Skala Nominal

Pengukuran paling lemah tingkatannya, terjadi apabila bilangan atau lambanglambang-lambang lain digunakan untuk mengkalsifikasikan obyek pengamatan.

Misal : Jenis kelamin, hanya membedakan laki-laki dan perempuan tanpa melihat tingkatan atau urutan tertentu.

b) Skala Ordinal

Pengukuran ini tidak hanya membagi objek menjadi kelompok-kelompok yang tidak tumpang tindih, tetapi antara kelompok itu ada hubungan (rangking). Jadi dari kelompok yang sudah ditentukan dapat diurutkan menurut besar kecilnya. Dengan kata lain, data skala ordina mempunyai urutan kategori yang bermakna, tetapi tidak ada jarak yang terukur diantara kategori.

Misal: Tingkat pendidikan

 $_{age}45$

 Tabel 6. Skala pengukuran variabel(1)

Sifat Skala	Nominal	Ordinal	Interval	Ratio
1. Persamaan pengamatan	Ya	Ya	Ya	Ya
(pengelompokkan), klasifikasi				
pengamatan dapat dilakukan				
2. Urutan tertentu, urutan pengamatan	Tidak	Ya	Ya	Ya
dapat dilakukan				
3. Jarak antara kelompok dapat	Tidak	Tidak	Ya	Ya
ditentukan				
4. Perbandingan antara kelompok	Tidak	Tidak	Tidak	Ya

b. Variabel numerik

Berkaitan dengan gambaran karakteristik satu set data dengan skala pengukuran numerik, dua parameter yang lazim digunakan yaitu parameter ukuran pemusatan dan parameter ukuran penyebaran. Beberapa parameter untuk ukuran pemusatan, yaitu *mean, median, dan modus*. Untuk parameter ukuran penyebaran, ada beberapa istila seperti; standar deviasi, varians, koefisien varians, interkuartil, range, dan minimum maksimum. Data variabel dengan skala pengukuran numerik umumnya disajikan dalam bentuk tabel dan grafik. Skala pengukuran pada variabel kategorikal ada dua yaitu skala interval dan ratio.

a) Skala Interval

Kalau di dalam skala ordinal kita hanya dapat menentukan urutan dari kelompok maka di dalam skala interval selain membagi objek menjadi kelompok tertentu dan dapat diurutkan juga dapat ditentukan jarak dari urutan kelompok tersebut dan tidak mempunyai titik nol absolut.

Misal: Suhu normal badan Andi biasanya 32 ^oC. Ketika dia menderita demam, suhu tubuhnya menjadi 37 ^oC. Berarti suhu Andi lebih panas 5^oC daripada suhu normal. Nol derajat celcius bukan 0 absolut, artinya walaupun nilainya 0 bukan berarti suhu menjadi normal, tetapi tetap ada nilainya. Tetapi jika suhu tubuh dalam skala Kelvin (^oK), termasuk dalam skala rasio karena memiliki 0 absolut/mutlak.

SKALA PENGUKURAN			
KATEGORIKAL/KUALITATIF/DIKONTINYU	NUMERIK/NON KATEGORIKAL/KUANTITATIF/KONTINYU		
Nominal Jenis kelamin Golongan darah Status Pernikahan Agama Kota	Rasio Berat badan Umur Tinggi badan Kadar gula darah Kadar kolesterol Suhu badan (°K) Lama tinggal di suatu kota		
Ordinal	Interval		
Tingkat pendidikan Klasifikasi kadar kolesterol Sikap Tingkat Pengetahuan Derajat Keganasan Kanker Tingkat Kesembuhan	Suhu badan (°C) Tingkat Kecerdasan (IQ)		

Tabel 7. Skala pengukuran variabel(3)

b) Skala Rasio

Dengan skala rasio kita dapat mengelompokkan data, kelompok itu pun dapat diurutkan dan jarak antara urutan pun dapat ditentukan. Selain itu, sifat lain untuk data dengan skala rasio kelompok tersebut dapat diperbandingkan (*ratio*). Hal ini disebabkan karena skala rasio mempunyai titik 'nol mutlak'.

Misal : Usia Responden pada penelitian.

 $P_{age}47$

B. PELAPORAN DATA

Berikut adalah contoh menampilkan data dalam laporan penelitan setelah diolah dengan program statistik

Characteristics	Fracture group N=44	Non fracture group N=454
Steroid/Corticosteroid Hormone Use , n, (%)	2 (40/)	40 (100/)
Yes	3 (4%)	49 (10%)
Smoking Status, n, (%) Yes	18 (40%)	142 (31%)
Menopause Status, n, (%) Yes	45 (100%)	454 (100%)
Calcium/Multivitamin D Use , n, (%) Yes	4 (9 %)	92 (20%)
Hormone Replacement Therapy, n, (%) Yes	4 (9%)	82 (18 %)
Physical Activity n, (%)		
Active	8(18%)	179 (40%)
Sedentary	15 (34 %)	180 (40%)
Limited	21 (8 %)	95 (82 %)
Family History, n, (%) Yes	1 (2%)	29 (6%)
Drinking status, n, (%) Yes	35 (13 %)	10 (4 %)
	Mea	n (SD)
Height ,cm	156.88 (6.28)	156 (6.17)
Current Age, year	79.1 (7.54)	75.65 (6.91)
Weight, kg	61.39 (11.17)	65.37 (12.64)

Tabel 8.	Characteristics of	f participants in	fracture and not	n fracture group ((13)
----------	--------------------	-------------------	------------------	--------------------	------

C. MENGOLAH DATA NUMERIK

Tujuan : Untuk mengetahui gambaran pengetahuan ibu mengenai akibat penggunaan jamban tanpa tangki septik.

OLAHRAGA OTAK 4. Pertanyaan yang dijawab oleh Responden (buka data Latihan; Pengetahuan_Jamban Sehat Najm.sav)

No	variabel	Pernyataan	
1.	tahu1	Mempermudah penyebaran berbagai penyakit seperti	
		penyakit diare, disentri dan lain-lain.	
2	tahu2	Membuat air sungai yang berada di sekitar jamban	
		tercemar	
3	tahu3	Mengakibatkan pencemaran permukaan tanah di sekitar	
		jamban.	
4	tahu4	Memungkinkan berkembangbiaknya cacing tambang,	
		lalat dan serangga lainnya.	
5	tahu5	Menimbulkan pemandangan yang tidak enak untuk di	
		pandang)	
6	tahu6	Menimbulkan bau yang mengganggu (tidak sedap)	

Tabel 9.Daftar Pertanyaan Responden(11)

Nilai Jawaban responden, 1=salah, 2 benar

Langkah-langkah yang dilakukan pada analisis univariat;^{2, 3, 4}

- a. Lengkapin data pada label dan values pada 'variable view' di Pengetahuan_Jamban
 Sehat Najm.sav berdasarkan tabel 9.
- b. Klik analyze..... descriptive.....-frequencies
- c. Akan tampil tabel *frequencies*, klik shift + panah ke bawah bersamaan.
- d. Masukkan data tahu 1,2,3,4,5 dan 6 dengan menekan tombol \square , lalu klik OK
- e. Klik tombol Statistics, pilih *Central Tendency (Mean, Median, Mode)* dan Dispersion (*Standar deviation, minimum, maksimum, dan S.E Mean*),.....Continue.

Eile	Edit	⊻iew	<u>D</u> ata	Transform	Analyze	Graphs	Utilities	Add	- <u>o</u> ns	Window E
					Repor	ts			1	atsy 👘 🌀
					Descr	iptive Statisti	cs	٠	123	requencies
					Tables	B		•	Po (escriptives
					Compa	are Means		•	A E	xplore
					Gener	al Linear Mo	del	•	x	2rosstabs
					Gener	alized Linea	r Models	•	1/2	<u>R</u> atio
					Mi <u>x</u> ed	Models			🔁 E	2-P Plots
					Correl	late		•	S	<u>a</u> -Q Plots
					Regre	ssion		•		
					Loglin	ear		•		
					Classi	ity		•		
					Dimen	sion Reducti	on	•		
					Scale			+		
					Nonpa	arametric Tes	ats	•		
					Forec	asting		•		
					Surviv	/al		•		
					Multipl	le Response		•	L .	
					🔡 Missin	ig Value Ana	ılysis			
					Multipl	le Imputation		•		
					Comp	ex Samples		•		
					Quality	y Control		•		
					ROC 0	Cur <u>v</u> e				
					Amos	6				

Analisis Deskriptif-Frekuensi(12)

Frequencies: Statistics	
Percentile Values Quartiles Cut points for 10 equal groups Percentile(s): Add Change	Central Tendency Mean Median Mode Sum
Dispersion Std. deviation Variance Range S.E. mean	 Values are group midpoints Distribution Skewness Kurtosis

Gambar 27. Kotak Dialog Frekuensi :Statistik

- f. Klik OK.
- g. Hasil outputnya adalah sebagai berikut
- h. Tampilan hasil Output yang didapat

OUTPUT SPSS

Statistics

		Memudahka	Menyebabka	Menyebabkan	Memungkinkan	Menimbulk	Menimbulka	
		n	n	pencemaran	berkembangbiaknya	an	n bau yang	
		penyebaran	pencemaran	permukaan	cacing tambang,	pemandan	menggangg	
		penyakit	air sungai	tanah di sekitar	lalat dan serangga	gan yang	u	
				jamban	lainnya	menjijikkan		
Ν	Valid	100	100	100	100	100	100	
	Missi	0	0	0	0	0	0	
	ng							

Memudahkan penyebaran penyakit

		Frequency	Percent	Cumulative			
Valid	Calab	50	52.0	Percent			
valid	Salan	53	53.0	53.0			
	Benar	47	47.0	100.0			
L	lota	100	100.0			J	
Menyebabk	an pencem	aran air su	ngai			1	
		Frequency	Percent	Cumulative Percent			
Valid	Salah						
Valia	Benar						
	Total						
Menvehahk	an nencem	l Jaran nermi	ikaan tanah	di sekitar iam	han]	
INETTYEDADR	an pencen	Eroquonov	Doroont		Dan	1	
		Frequency	Feicent	Doroont			
Valid	Calab			Fercent			
valio	Salan						
	Benar						
L	Iotal	l <u></u>				l	
Memungkir	ikan berken	nbangbiakn	ya cacing ta	ambang, lalat	dan	serangga	lainnya
		Frequency	Percent	Cumulative			
				Percent			
Valid	Salah						
	Benar						
	Total						
Menimbulka	an pemanda	angan yang	menjijikkar	า		_	
		Frequency	Percent	Cumulative			
				Percent			
Valid	Salah						
	Benar						
	Total						
Menimbulka	an bau van	a menagano	aau			1	
		Frequency	Percent	Cumulative]	
				Percent			
Valid	Salah						
	Benar						
	Total						
						-	

 $P_{age}51$

Interpretasi Hasil:

Tingkat pengetahuan responden dihitung dengan menggunakan 6 pernyataan mengenai akibat penggunaan jamban tanpa tangki septik atau cubluk yang kemudiaan skor jawaban keenam pernyataan itu dijumlahkan dan dikelompokkan menjadi dua yaitu pengetahuan kurang dan pengetahuan cukup. Hasil jawaban responden terhadap enam pernyataan tersebut dapat dilihat pada tabel 10.

Pernyataan pertama mengenai akibat penggunaan jamban tanpa tangki septik atau cubluk akan mempermudah penyebaran penyakit seperti diare, disentri dan lain-lain, sebanyak 47 (47 %) responden responden yang menjawab benar dan 53 (53 %) responden menjawab salah.

	Pernyataan akibat dari penggunaan	Jawa	ban Respo	onden
No	jamban tanpa tangki septik atau	Benar	Salah	Total
	cubluk	(%)	(%)	(%)
1	Mempermudah penyebaran berbagai	17	52	100
	penyakit seperti penyakit diare,	(47.0/)	(52.0/)	$(100 \ 0())$
	disentri dan lain-lain.	(4/%)	(55 %)	(100 %)
2	Membuat air sungai yang berada di			
	sekitar jamban tercemar			
3	Mengakibatkan pencemaran			
	permukaan tanah di sekitar jamban.			
4	Memungkinkan berkembangbiaknya			
	cacing tambang, lalat dan serangga			
	lainnya.			
5	Menimbulkan pemandangan yang			
	menjijikkan (tidak enak untuk di			
	pandang)			
6	Menimbulkan bau yang			
	mengganggu			

Tabel 10.Distribusi Jawaban Responden mengenai Akibat Penggunaan Jamban tanpa Tangki Septik atau Cubluk

OLAHRAGA OTAK 5. COBA INTERPRETASIKAN DAN ISI BAGIAN TABEL YANG MASIH KOSONG BERDASARKAN HASIL PENGOLAHAN DATA ANDA

D. MENJUMLAHKAN ANGKA DENGAN MENGGUNAKAN COMPUTE

Langkah-langkah penggabungan/penjumlahan skor (COMPUTE) (2, 3, 12)

- a. Pastikan anda di posisi tampilan data Editor
- b. Pilih transform, klik compute.

File	<u>E</u> dit	⊻iew	<u>D</u> ata	Trar	nsform	<u>A</u> nalyze	<u>G</u> raphs	Utilities
			\Rightarrow	.	📑 Compute Variable			
				≭? Count Values within Cases				
				Shi <u>ft</u> Values				
				x∗x Recode into <u>S</u> ame Variables				
				х•у	<u>R</u> ecode i	nto Differen	t Variables.	
				ху	<u>A</u> utomati	c Recode		
					Visual <u>B</u> i	nning		
				1	Ran <u>k</u> Cas	ses		
					<u>D</u> ate and	Time Wizar	d	
				\sim	Create Ti	<u>m</u> e Series		
					Replace l	Missing <u>V</u> al	ues	
				ð	Random	Number <u>G</u> er	nerators	
				0	Run Pena	ding <u>T</u> ransfo	orms	Ctrl-G

Gambar 28. Proses 'Compute'

c. Ketik nama variable misal **'tahutot'** pada target variable sebagai variabel baru sebagai jumlah skor dari 6 pertanyaan pada setiap responden

arget Variable:	Numeric Expression:	
ahutot =		1
Type&Label		
🏶 Status Ekonomi Ke 🔺		
🔹 Pekerjaan Suami [k	+ < > 7 8 9 Functions:	
🕏 Status Kerja Ibu [ka 🔤	- <= >= 4 5 6 [ABS(numexpt]	
🚸 Memudahkan penyebaran	penyakit [tahu1] = 1 2 3 ANY(test,value,value,)	Ē
🗰 Menyebabkan pen 🗂	ARSIN(numexpr)	
Menyebabkan pen	CDFNORM(zvalue)	
Memungkinkan ber	CDF.BERNOULLI(q,p)	
Menimbulkan pema	IE	
🗰 Menimbulkan bau y		
🛞 Mempunyai lubang 🔄		
🛞 Air dalam iamban te 💴 👘	OK Paste Reset Cancel Help	

d. Pada '*Numeric Expression*' ketiklah variabel-variabel yang akan dijumlahkan dengan disertai tanda +, tampilannya :tahu1+tahu2+tahu3+tahu4+tahu5+tahu6, klik Ok , lalu muncul variabel tahutot di bagian paling kanan tampilan data di *data view*.

Target Variable:	Numeric Expression:	
tahutot = Type&Label	tahu1 + tahu2 + tahu3 + tahu4 + tahu5 + tahu6	4
Status Ekonomi Ke Pekerjaan Suami [k Status Kerja Ibu [ke Status Kerja Ibu [ke Memudahkan peny Menyebabkan peni Menyebabkan peni Menungkinkan ber Memungkinkan ber Menimbulkan pema Menimbulkan pema Menimbulkan bau y Mempunyai lubang Air dalam jamban te	+ <> 7 8 9 Functions: ABS(numexpr) . <= >= 4 5 6 ABS(numexpr) . <= ~= 1 2 3 ANY(test, value, value,) . . = ~= 1 2 3 ABS(numexpr) 	

Gambar 30.

Kotak Dialog 'Compute Variable'

E. MENGETAHUI NORMALITAS DATA (UJI NORMALITAS DATA)

Pengkategorian yang dilakukan adalah dengan perhitungan mean atau median dari total pengetahuan. Jika distribusi data tidak normal maka kita tidak bisa menggunakan mean sebagai *cut of point*. Kita harus menggunakan median sebagai *cut of point*.

Contoh: Pengkategorian yang dilakukan adalah dengan perhitungan mean atau median dari total pengetahuan. Jika distribusi data tidak normal maka kita tidak bisa menggunakan mean sebagai *cut of point*. Kita harus menggunakan median sebagai *cut of point*.

Langkah-langkah Uji Normalitas Data: (1, 3, 9)

- a. Klik analyze.....descriptivestatistics....explore
- b. Masukkan variabel tahutot ke kolom '*Dependent List*', dengan mengklik total pengetahuan lalu klik tanda panah

Lantai dan tempat nii	Dependent List:	Statistics
Ada tangki septik ata	V Total Feligetariuan (tari	Plots
Seluruh Anggota Kel Menggunakan Jamb	Eactor List:	Options
Total sikap ibu [sikap Sikap Responden [si	*	
 Tingkat Pengetahuan Pendidikan Ibu Terak kerjaibu = 1 (FILTER 	Label Cases by:	
Noth OStatistics OPlate		

Gambar 31. Memasukkan variabel ke kotak dependent list

c. Klik kotak' **Plots**' lalu klik '*Dependent together*' dan '*normality plots with test*', *continue* lalu ok

and a second and a second as a second a	Descriptive
O Eactor levels together	Stem-and-leaf
Dependents together	Histogram
○ None	
A DESCRIPTION OF A DESC	
None	
None Power estimation	
None Power estimation Iransformed Power:	Vatural log 🛛 🔻

Gambar 32. Kotak 'PLOTS'

d. Hasil di output SPSS

23			502	Cases			
	-	Valid		Missing		Total	
		N	Percent	N	Percent	N	Percent
	Total Pengetahuan	100	100.0%	0	.0%	100	100.0%

Case Processing Summary

Descriptives

		Statistic	Std. Error
Total Pengetahuan	Mean	9.05	.293
10 AN	95% Confidence Lower Bound	8.47	
	Interval for Mean Upper Bound	9.63	
	5% Trimmed Mean	9.06	
	Median	11.00	
-	Variance	8.614	F'
	Std. Deviation	2.935	
	Minimum	6	
	Maximum	12	
	Range	6	
	Interquartile Range	6.00	
	Skewness	055	.241
	Kurtosis	-1.999	.478

Tests of Normality

	Kolmogorov-Smirnov			Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
Total Pengetahuan	.321	100	.000	.668	100	.000	

Gambar 33. Output Data Deskriptif

e. Penyajian dan Interpretasi di Laporan Penelitian

Uji kenormalan data dengan uji *Kolmogorov Smirnov* menghasilkan nilai p (p *value*) sebesar <0.0001, kurang dari alpha sebesar 0.10 (IK 90%). Jadi distribusi total pengetahuan responden berdistribusi tidak normal.

Tabel 11. Distribusi Statistik Deskriptif Variabel Total Pengetahuan Responden

Variabel	Median	p value
Total Pengetahuan	11	< 0.001

Berdasarkan definisi operasional penelitan untuk variabel tingkat pengetahuan, pengelompokkan tingkat pengetahuan berdasarkan median sebagai *cut of point* karena distribusi data tidak normal.

Catatan : Ho= distribusi pengetahuan total berbentuk normal

Ha= distribusi pengetahuan total berbentuk tidak normal (menceng kanan)

p value < alpha = Ho ditolak
p value > alpha = Ho diterima

F. PENGELOMPOKKAN TINGKAT PENGETAHUAN MENJADI DUA KELOMPOK (*RECODE*)

Jadi distribusi total pengetahuan responden berdistribusi tidak normal. Pengelompokkan tingkat pengetahuan berdasarkan **median sebagai** *cut of point* sesuai ketentuan cut of point yang ditentukan penulis. (1, 3, 5, 9, 12). Langkah-langkah yang dilakukan;

a. Klik transform, pilih recode, lalu klik klik 'Into Different Variables'

Gambar 34. Proses 1 Pengelompokkan data

b. Sorot variabel tahutot, lalu klik tanda panah ke kanan sehingga variabel sikap berpindah di kotak '*Input Variable--→ Output variable'*

$$_{Page}59$$

 Iamban tertutup [te ▲ Tersedia air yang c Tidak bau [tidakba Lantai dan tempat Ada tangki septik a 	Numeric Variable > Output Variable:	Output Variable 2 Name: tahukel Change Label:
 Seluruh Anggota K Menggunakan Jarr Total sikap ibu [sik Sikap Responden Tingkat Pengetahu Pendidikan Ibu Ter 	If	

Gambar 35. Proses 2 Pengelompokkan data

- c. Pada kotak Output Variables, pada bagian 'Name' ketiklah tahukel
- d. Klik'*Change*' sehingga pada kotak Input V \rightarrow Output V terlihat tahu tot \rightarrow tahukel
- e. Klik Option '*Old and New Value*' nama kotak Old dan New di monitor. Pada kotak dialog tersebut ada beberapa isian yang harus diisi, yaitu *Old Value* (nilai lama yang akan direcode) dan New Value (nilai baru sebagai hasil recode dari nilai lama)
- f. Total tahu kurang <11 menjadi kode 1. pindahkan kursor ke kotak Range:*Lowest through*, ketiklah 10. bawa kursor ke bagian kotak New Value, ketiklah 1 klik *add*.

Gambar 36. Pro

Proses 3 Pengelompokkan data

 Tersedia air yang c Tidak bau (tidakba Lantai dan tempat Ada tangki septik a Seluruh Anggota K 	C Value C Value C System-missing C System- or user-missing	New Value Value: 2 System-missing Copy old value(s) 3 Old> New:
 Menggunakan Jarr Total sikap ibu [sik Sikap Responden Tingkat Pengetah. 	If C Range: through C Range: Dk Lowest through	Change Remove
Pendidikan Ibu Tei	Range: In through P	ighest

Gambar 37. Proses 4 Pengelompokkan data

- g. Selanjutnya kita klik pada bagian *Range:--Through Highest*. Kita akan melakukan pengkodean tahutot >= 11 menjadi kode 2. lalu pindahkan kursor ke kotak New Value, ketiklah 2, klik *Add*
- h. Klik Continue lalu OK, variabel tahukel sudah terbentuk berada di kolom paling kanan
- Ingat pada 'Variable View', edit lah kembali untuk variabel tahukel pada kolom 'VALUE', kasih keterangan 1: kurang, 2:cukup

G. TRANSFORMASI DATA

Transformasi data dilakukan untuk menormalkan sebaran data. Dengan menggunakan fungsi log, akar, kuadrat atau fungsi lainnya. Misal, kita ingin menormalkan data total pengtahuan.

Langkah-langkah transformasi data:

- 1. Klik Transform.....Compute
- 2. Ketik trans_nama variabel, misal trans_tahutot ke dalam kotak target variable
- Carilah pilihan LG10 pada pilihan function-Aritmatic-LG10. Pindahkan LG10 ke kotak numerik expression dengan mengklik tanda panah. Terlihat ada spasi setelah kata lg10(?). isilah (?) dengan nama variable yang akan kamu transformasikan (lg10(tahutot))
- 4. Catatan, tidak semua data yang ditransformasi menghasilkan data yang normal

H. MENGOLAH DATA KATEGORIK

Untuk data kategorik, biasanya output analisa datanya berupa jumlah dan presentasi dari variabel. Contoh: Untuk mengetahui gambaran Kelompok Pengetahuan Ibu Mengenai Akibat Penggunaan jamban tanpa tangki septik.

Langkah-langkah:

a. Klik Analyze.....Descriptives statistic...... Frequencies.

File	Edit	<u>V</u> iew	Data	Transform	Analyze	Graphs	Utilities	Add	l- <u>o</u> ns	<u>Window</u> <u>H</u> elp
					Repor	ts		•	1	🌛 🧠 🖏
					D <u>e</u> scr	iptive Statis	tics	•	123	Frequencies
					Tables	s		•	Po g	Descriptives
					Comp	are Means		•	4	Explore
					Gener	al Linear M	odel	•	x	<u>C</u> rosstabs
					Gener	ali <u>z</u> ed Line	ar Models	•	1/2	<u>R</u> atio
					Mi⊻ed	Models		•	2	P-P Plots
					Correl	late			7	<u>Q</u> -Q Plots
					Regre	ssion		•		

Gambar 38. Proses Deskriptif Statistik-Frekuensi

- b. Pilih variabel kategori yang akan dianalisis pengetahuan kelompok (tahukel), masukkan kekotak variabel.
- c. Klik OK
- d. Output yang dihasilkan sebagai berikut

Tir	ngkat Peng	etahuan Ib	u			
			Frequenc	Percent	Cumulati	
			У		ve	
					Percent	
	Valid	Cukup	51	51.0	51.0	
		Kurang	49	49.0	100.0	
		Total	100	100.0		

Pada hasil output SPSS dapat dilihat tingkat pengetahuan ibu yang termasuk kategori cukup sebanyak 51 (51 %) responden dan kategori berpengetahuan kurang sebanyak 49 (49 %) responden.

I. MENYELEKSI KASUS (SELECT CASE)

Dalam kondisi tertentu kita hanya ingin mengolah dan menganalisis data dari kelompok

tertentu saja.

a. Klik Data, pilih Select Case.

Gambar 37. Proses Select Case

b. klik tombol If Conditions is Satisfied

Page 65

 NOMOR [no] Nomor RT Rumah Ibu Umur Ibu (Tahun) [u Pendidikan Ibu Terak Status Ekonomi Kelu Status Ekonomi Kelu Status Kerja Ibu [kerj Status Kerja Ibu [kerj Memudahkan penye Menyebabkan pence Menyebabkan pence Menungkinkan berke Menimbulkan peman Menimbulkan bau ya Mempunyai lubang kl Air dalam jamban ter 	Select All cases If condition is satisfied If Random sample of cases Sample Based on time or case range Range Use filter variable: Output
Memiliki lantai dan te Jamban tertutup [sik Ketersediaan Jamba Status Kepemilikan J	Copy selected cases Copy selected cases Dataset Dataset name: Delete unselected cases ses

Gambar 38. Tabel Select Case

- c. Klik *IF*, klik salah satu variabel masukkan kekotak variabel (misal bekerja = 1)
- d. klik Continue, pada kotak unselected case klik filtered, OK.
- e. Perhatikan pada data editor, kasus yang tidak memenuhi syarat tidak akan dianalisis ditandai dengan pencoretan nomor kasusnya.

Page 64

🚹 *najmah s	kripsi s	km.s	av (D	ataSet1]	- SPSS Statistics Dat	ta Editor					
<u>File E</u> dit	⊻iew	<u>D</u> ata	IJ	ansform	<u>A</u> nalyze <u>G</u> raphs	: <u>U</u> tilities	Add- <u>o</u> ns <u>V</u>	<u>V</u> indow <u>H</u>	elp		
🗁 🔒 👌		4	e\$.	*	🖻 👭 🔸 🚹 📩	🔡 🥶 🖩	s 😵 🔕	Sapar abc			
1 : no			1.0								
	no	n a	rt	umuri bu	didikbu	ekonomi	kerjasua	kerjaibu	tahu1	tahu2	tahu:
1	1		5	43	3	4 odidikan Ibu Te	rakbir	1	1	1	1
2	2		5	40	4	0	2	1	1	1	1
3	3		5	49	3	1	1	1	2	2	2
4	4		5	58	3	0	3	1	2	2	2
5	5		5	43	3	0	3	1	1	1	1
6	6	12.	5	55	3	0	3	1	2	2	2
7	7		5	34	5	0	3	1	1	1	1
8	8		5	35	3	1	3	1	1	1	1
	9		5	47	5	0	-5	2	2	2	2
10	10		5	49	3	1	3	1	1	1	1
11	11		5	51	3	1	2	1	1	1	1
12	12		5	39	5	0	3	1	2	2	2
13	13		5	46	4	1	3	1	2	2	2
14	14		5	33	5	0	3	1	1	1	1
15	15	3.0	5	37	5	0	2	1	2	2	2
16	16		10	56	3	1	2	1	2	1	2
17	17		10	36	3	0	3	1	1	1	1
18	18	-22.	10	70	3	0	6	1	2	2	2
19	19	345	10	34	5	0	3	1	2	2	2
20	20		10	30	5	0	3	1	2	2	2
_21	21		10	40	5	0	4	2	2	2	2
22	22	- 22.	10	33	5	0	4	1	2	2	2
_23	23		10	42	3	0	2	2	1	1	1
24	24		10	36	5	0	2	1	1	1	1

Gambar 39. Hasil Select Case

Jika ingin semua kasus kembali dianalisa seperti semula, maka:

- □ Klik Data, pilih Select Case.
- □ Klik *All case*, *Continue*.

- OLAHRAGA OTAK 6. KELOMPOKKAN DATA SIKAP TERHADAP JAMBAN SEHAT menjadi dua kelompok, berdasarkan mean atau median, pertimbangkan normalitas data (buka data Sikap Jamban Sehat Najm.sav)
- OLAHRAGA OTAK 7. LAKUKAN SELEKSI KASUS TERHADAP 1) IBU YANG BEKERJA, 2)IBU YANG PENDIDIKANNYA TAMAT SD DAN BEKERJA. BERAPA JUMLAH RESPONDEN ANDA SEKARANG SETELAH ANDA SELEKSI? LAKUKAN KREASI LAINNYA (buka data 'Karakteristik responden Jamban Sehat Najm.sav')

BAB IV. VALIDITAS DAN RELIABILITAS DATA

KOMPETENSI DASAR: Mampu menganalisa dan menjelaskan konsep reliabilitas dan validitas

INDIKATOR :

- Mampu menjelaskan konsep reliabilits dan validitas
- Mampu mengolah data untuk uji reliabilitas dan validitas
- Mampu menginterpretasi hasil uji validitas dan reliabilitas

MATERI PEMBELAJARAN;

- Konsep reliabilitis dan validitas
- Pengolahan uji reliabilitas dan validitas di SPSS

MEDIA

- Kegiatan kelompok
- Lembar latihan
- Media elektronik

WEB BASED MEDIA

- Upload Silabus dan SAP
- Upload materi kuliah
- Diskusi Online
- Upload latihan uji reliabiltas dan uji

Page **D**

Salah satu masalah dalam suatu penelitian adalah bagaimana data yang diperoleh adalah akurat dan objektif. Hal ini sangat penting dalam penelitian karena kesimpulan penelitian hanya akan dapat dipercaya bila berdasarkan pada informasi yang juga dapat dipercaya (akurat). Untuk itu data yang dikumpulkan perlu dilakukan uji validitas dan reliabilitas. (5)

A. VALIDITAS

Validitas mempunyai arti sejauh mana ketepatan dan kecermatan suatu alat ukur dalam mengukur data. Untuk mengukur pengetahuan dan sikap, diperlukan alat ukur berupa kuesioner. Untuk mengukur validitas pernyataan yang berkaitan dengan pengetahuan dan sikap, dilakukan dengan cara melakukan korelasi antar skor masing-masing pernyataan terhadap skor total. Suatu pernyataan dikatakan valid bila skor pernyataan tersebut berkorelasi secara signifikan dengan skor totalnya. Keputusan uji, bila **r** hitung masing-masing pernyataan (dilihat pada output data) lebih besar dari r tabel maka Ho ditolak yang berarti valid dan jika r hitung lebih kecil dari r tabel maka Ho diterima yang berarti pernyataan tidak valid.(5)

B. RELIABILITAS

Reliabilitas adalah suatu konsistensi suatu hasil pengukuran. Dalam penelitian ini reliabilitas kuesioner diukur dengan cara *one shot*. Disini pengukurannya hanya sekali dan hasilnya dibandingkan dengan pernyataan lain. (5) Pengujian reliabilitas dimulai dengan menguji validitas terlebih dahulu. Jadi jika sebuah pernyataan tidak valid, maka pernyataan tersebut dibuang. Pernyataan-pernyataan yang sudah valid kemudian baru secara bersama diukur reliabilitasnya. Untuk mengetahui reliabilitas suatu variabel (misal sikap) maka kita membandingkan nilai r tabel dengan nilai **r** hasil (nilai ALPHA pada output data). Ketentuannya bila r Alpha lebih besar daripada **r** tabel maka pertanyaan tersebut *reliable* dan sebaliknya.(5)

OLAHRAGA OTAK 8.

Lakukan uji validitas dan reliabilitas kuesioner untuk mengetahui Sikap Ibu Terhadap

Gambaran Jamban Sehat. Untuk mengukur sikap digunakan 5 pertanyaan. Uji coba dilakukan

pada 30 responden dengan bentuk pertanyaan sbb:(11)

Pertanyaan : Sikap Ibu Terhadap Gambaran Jamban Sehat

- 1. Harus tertutup (terlindung dari panas, hujan dan pandangan orang lain)
 - 1. Sangat tidak setuju
 - 2. Tidak setuju
 - 3. Setuju
 - 4. Sangat setuju
- 2. Air di dalam jamban keluarga harus tersedia cukup yang dapat digunakan setelah buang air besar.
 - 1. Sangat tidak setuju
 - 2. Tidak setuju
 - 3. Setuju
 - 4. Sangat setuju
- 3. Jamban harus bersih baik di dalam maupun di luar ruangan jamban.
 - 1. Sangat tidak setuju
 - 2. Tidak setuju
 - 3. Setuju
 - 4. Sangat setuju
- 4. Memiliki lantai yang kuat dan mempunyai tempat pijak yang kuat (tidak licin).
 - 1. Sangat tidak setuju
 - 2. Tidak setuju
 - 3. Setuju
 - 4. Sangat setuju
- 5. Mempunyai lubang kloset yang dialirkan pada sumur penampung (tangki septik atau cubluk)
 - 1. Sangat tidak setuju
 - 2. Tidak setuju
 - 3. Setuju
 - 4. Sangat setuju

Jawaban Responden: Setelah kuesioner tersebut diujicobakan pada 30 responden, hasilnya sebagai berikut . Masukkan data dalam lembar SPSS dan lengkapin label, values data di dalam variable view

No	Sikap 1	Sikap 2	Sikap 3	Sikap 4	Sikap 5
1	4	4	4	4	4
2	4	4	4	4	4
3	3	3	4	3	3
4	3	3	3	3	3
5	4	4	4	4	4
6	3	4	4	4	4
7	4	3	3	4	4
8	3	3	3	3	3
9	3	3	3	3	3
10	4	4	4	4	4
11	1	1	1	1	1
12	1	1	1	1	1
13	1	1	1	1	1
14	3	3	3	4	4
15	3	3	3	4	4
16	3	3	3	4	4
17	3	3	3	3	3
18	2	1	1	1	1
19	3	3	3	4	4
20	4	3	3	4	3
21	2	2	3	2	4
22	4	3	3	3	4
23	3	4	3	3	3
24	4	3	4	4	4
25	3	2	3	2	3
26	3	4	4	4	4
27	4	3	4	3	3
28	4	3	4	3	3
29	4	3	4	4	4
30	4	3	4	3	3

Pertanyaan:

- 1. Ujilah validitas dari kuesioner di atas?
- 2. Telusuri lebih lanjut, pertanyaan mana saja yang kurang baik untuk mengukur sikap?
- 3. Ujilah reliabilitas dari kuesioner tersebut?

Langkah-langkah uji validitas dan reliabilitas:

- Analyze Graphs Utilities Add-ons Window Help abc H 🖓 Reports . Descriptive Statistics ٠ Compare Means ۲ General Linear Model ٠ Correlate 5 ۶ Regression Classify ۶ Dimension Reduction ٠ Reliability Analysis... . Scale Multidimensional Scaling (ALSCAL)... . Nonparametric Tests Forecasting ٠ Multiple Response ٠ Quality Control • ROC Curve...

Gambar 40. Proses Uji Validitas dan Reliabilitas

- * Masukkan semua variabel 'Sikap" yang akan diuji ke dalam kotak items
- * Pada model biarkan pada Alpha

	1 (♣) p1 (♣) p2 (♣) p3 (♣) p4	Paste Reset
Iodel: Alpha		3

Gambar 41. Kotak Dialog Reliability Analysis

- **Reliability Analysis: Statistics** Descriptives for Inter-Item Continue ✓ Item Correlations Cancel Scale Covariances Help Scale if item deleted ANOVA Table Summaries Means None Variances O F test O Friedman chi-square Covariances Correlations Cochran chi-square 🔲 Hotelling's T-square Tukey's test of additivity Intraclass correlation coefficient Model: Two-Way Mixed * Type: Consistency * Confidence interval, 95 Test value: 0
- * Klik options *Statistics*, pada bagian *Descriptives* klik : *Item, Scale, Scale if Item Deleted*.

Gambar 42. Kotak Dialog Uji Reliabilitas

- ✗ Klik Continue..... OK.
- * Output yang dihasilkan adalah sebagai berikut:
Reliability

*****	Method 1	(space sa	aver) will b	e used for the	nis analysis ***	* * *
REL	IABII	JITY	ANALYS	SIS – S	CALE (AL	PHA)
			Mean	Std Dev	Cases	
1.	SIKAP1		3.0000	.6356	100.0	
2.	SIKAP2		3.3800	.4878	100.0	
3.	SIKAP3		3.3400	.4761	100.0	
4.	SIKAP4		3.4400	.4989	100.0	
5.	SIKAP5		3.2600	.4408	100.0	
					N of	
Statisti	lcs for	Mean	Variance	Std Dev N	<i>V</i> ariables	
SC	CALE	16.4200	3.8824	1.9704	5	
Item-tot	al Statis	stics				
	Sc	cale	Scale	Corrected	1	
	Me	ean	Variance	Item-	Alpha	
	if	Item	if Item	Total	if Ite	m
	Del	eted	Deleted	Correlatio	on Delete	d
SIKAP1	13.	4200	2.5087	.4816	.8508	
SIKAP2	13.	0400	2,7257	.5704	.8080	
SIKAP3	13.	0800	2.4784	.7854	.7495	
STKAP4	12.	9800	2.6461	.6084	.7977	
SIKAP5	13.	1600	2.6004	.7650	.7603	

Reliability Coefficients

N of Cases = 100.0

Alpha = .827

N of Items = 5

Analisis:

Terdapat dua bagian dari hasil analisis Reliabilitas dan validitas, yaitu:

- 1. Bagian pertama menunjukkan hasil statistik deskriptif masing-masing variabel dalam bentuk Mean, Standar deviasi, varians, jumlah variabel.
- 2. Bagian kedua memperlihatkan hasil dari proses validitas dan reliabilitas. Kaidah yang berlaku adalah dengan menguji validitas terlebih dahulu baru dilanjutkan uji reliabilitas.

Analisis 1 : Uji validitas

Ingat!!!!! Bila r hasil > r tabel, maka pertanyaan tersebut valid.

- ★ Nilai r tabel dilihat dengan tabel r menggunakan df = n 2 = 30 2 = 28, pada tingkat kemaknaan 5% didapat angka r tabel = 0,351
- * Nilai r hitung dapat dilihat pada kolom "*corrected item-total correlation*"
- Keputusan: masing-masing pertanyaan variabel dibandingkan nilai r hasil dengan nilai tabel.
- 蒂 Kesimpulan :

Semua pertanyaan dinyatakan valid karena semua **r** hasil lebih besar dari r tabel, jika ada salah satu pertanyaan, nilai **r** hasil lebih kecil dari **r** tabel, maka lakukan uji selanjutnya dengan mengeluarkan pertanyaan tersebut.

Analisis 2 : Uji Reliabilitas

Ingat!!!!! Bila r alpha > r tabel maka pertanyaan tersebut *reliable*.

Dari uji diatas ternyata nilai **r** alpha (0,827) > dibandingkan nilai **r** tabel, maka kelima pertanyaan di atas *reliable*.

BAB V. KONSEP NILAI P(*P VALUE*) DAN DERAJAT KEPERCAYAAN (*CONFIDENCE INTERVAL*)

KOMPETENSI DASAR: Mampu menjelaskan konsep P value dan derajat kepercayaan

INDIKATOR :

- Mampu menjelaskan prinsip-prinsip P value
- Mampu menjelaskan prinsip derajat kepercayaan
- Mampu menjelaskan keterkaitan nilai P dan derajat kepercayaan

A. PENDAHULUAN

Untuk penelitan tertentu, metode statistik tidaklah diperlukan. Misalnya penelitan mikrobiologi, atau penelitian laboratorium. Tetapi, banyak penelitan lainnya yang membutuhkan statistik dalam menyimpulkan hasil penelitiannya dari sampel penelitan ke populasi luas. Hal yang perlu diperhatikan juga, bahwa umumnya, banyak variabel atau faktor yang mempengaruhi outcome atau hasil suatu penelitan. Misalnya, kita tahu bahwa merokok adalah salah satu penyebab kanker paru-paru. Tetapi kita juga sadar bahwa beberapa perokok berat hidup hingga usia tua dan juga beberapa perokok mati muda. Dengan kata lain, merokok dapat meningkatkan resiko kematian, tetapi juga terdapat lagi faktor-faktor lainnya yang dapat menyebabkan kematian perokok. Oleh karena itu, metode statistik digunakan untuk mengukur kekuatan hasil penelitian (evidence) untuk menolak hipotesa nol, dengan mempertimbangkan keberagaman faktor individu ke individu lainnya (*person to person variablility*) (3, 4).

Inference

Gambar 43. Konsep generalisasi hasil penelitian dengan konsep P value dan Derajat kepercayaan(4)

Pada bab V, bagaimana menginterpretasikan P-values (nilai P) dan derajat kepercayaan (*confidence interval*) dari hasil analisa statistik dan juga kesalahan umum dalam interpretasi hasil statistik akan kita bahas.

B. NILAI P (p value) DAN INTERVAL KEPERCAYAAN (Confidence Interval/CI)

Sebuah contoh kasus, setiap orang yang hidup dengan umur 90 tahun atau lebih adalah bukan perokok. Kita bisa menginvestigasi hipotesa ini dengan 2 cara(4);

- Menyetujui hipotesa bahwa menemukan setiap orang dengan umur 90 tahun atau lebih dan memeriksa mereka bahwa semuanya bukan perokok
- Tidak menyetujui hipotesa ini dengan menemukan hanya satu orang lebih dari umur 90 tahun atau lebih adalah seorang perokok.

Pada umumnya, kondisi diatas sangat mudah sekali bagi kita untuk menolak hipotesa yang ada daripada membuktikan bahwa hipotesa itu benar. Tetapi, metode statistik memformulasikan sebuah ide dengan mencari bukti (*evidence*) menolak bentuk spesifik dari suatu hipotesa yang dikenal dengan hipotesa nul (*a null hypothesis*) ' tidak ada perbedaan/hubungan antara 2 kelompok atau lebih atau antar variabel. Hubungan antara paparan (*exposures*) dan outcome atau antara perawatan (*treatments*) dan hasilnya diukur dengan menguji kekuatan bukti untuk menolak hipotesa nol yang diukur dengan nilai P (P value)(4).

a. Nilai p (P value)

Anda harus mengerti juga apa yang dimaksud dengan nilai p, hipotesis nol dan hipotesis alternatif.(3, 4)

- 1. Hipotesis (H) adalah pernyataan sebagai jawaban sementara atas pertanyaan penelitian yang harus dijawab secara empiris.
- 2. Hipotesis nol (Ho) adalah hipotesis yang menunjukkan tidak ada perbedaan antar kelompok atau tidak ada hubungan antara variabel atau tidak ada korelasi antar variabel.

Contoh hipotesa nul;

- Perawatan dengan obat Anti retroviral tidak mempunyai efek untuk meningkatkan kualitas hidup penderita HIV
- Operasi tulang femur (hip replacement theraphy) pada wanita lanjut usia tidak meningkatkan kualias hidup wanita lanjut usia dalam kehidupan sehari-harinya
- Ketersediaan jamban umum tidak meningkatkan perilaku penduduk di pinggiran sungan Musi untuk BAB di jamban sehat.
- Hipotesis alternatif (Ha) adalah hipotesis kebalikan dari hipotesis nol, yang akan disimpulkan bila hipotesis nol ditolak.

Contoh Hipotesa Alternatif;

- Perawatan dengan obat Anti retroviral mempunyai efek untuk meningkatkan kualitas hidup penderita HIV
- Operasi tulang femur (hip replacement theraphy) pada wanita lanjut usia meningkatkan kualias hidup wanita lanjut usia dalam kehidupan sehari-harinya
- Ketersediaan jamban umum meningkatkan perilaku penduduk di pinggiran sungai Musi untuk BAB di jamban sehat.
- 4. Interpretasi yang lengkap untuk nilai *p* adalah sebagai berikut "besarnya kemungkinan hasil yang diperoleh atau hasil yang lebih ekstrim diperoleh karena faktor peluang, bila hipotesis nol benar".

Umumnya, interpretasi p value (nilai p/nilai signifikan) didasarkan pada apakah nilainya lebih kecil dari batasan baku (threshold values), yaitu 0.05. Batasan ini biasanya jika nilai p < 0,05 dianggap "secara statistik bermakna" dan bila nilai p >0.05 dianggap suatu hubungan atau asosiasi antara faktor resiko dan outcome tidak bermakna secara statistik. Tetapi, hal yang patut diperhatikan, nilai p tergantung dari jumlah sampel. Sehingga, jika jumlah sampelnya kecil,nilai p umumnya akan bernilai lebih besar dari 0.05, dengan kata lain, p value akan menyimpulkan bahwa tidak ada hubungan antara eksposur dan outcome. Padahal, kemungkinan hubungan itu mungkin ada, walaupun kecil, tetapi karena jumlah sampel yang kecil, hubungan antara variabel tak dapat terdeteksi. Oleh karena itu, menurut Kirkwood BR, Sterne JA(4) intepretasi P value dapat dilakukan sebagai berikut (gambar 44);

- *p* value <0.001; adanya bukti yang kuat untuk menolak hipotesa nul (strong evidence against the null hypothesis)
- *p* value <0.01 ; adanya bukti yang sedang untuk menolak hipotesa nul (increasing/moderate evidence against the null hypothesis with decreasing P value)
- *p* value >0.1; adanya bukti yang lemah untuk menolak hipotesa nul(weak evidence against the null hypothesis)

Gambar 44. Konsep generalisasi Konsep Interpretasi P value (4)

b. Interval kepercayaan

Dalam interpretasi hasil penelitan, sangat dianjurkan tidak hanya menginterpretasikan nilai p tetapi juga nilai interval kepercayaan. Interval kepercayaan (IK) menunjukkan taksiran rentang nilai pada populasi yang dihitung dengan nilai yang diperoleh pada sampel. Perhitungan IK mempunyai rumus tersendiri untuk masing-masing uji hipotesis.

Derajat atau interval kepercayaan umumnya diperoleh dengan nilai rata-rata atau estimasi ditambah dan dikurang oleh standar error yang dikalikan nilai alpha (95 % Derajat kepercayaan=estimate \pm (1.96 X s.e)). Standar error dari rata-rata sampel mengukur sedekat apa rata-rata populasi diprediksi oleh rata-rata dari sampel dalam penelitan. Standar error sangat tergantung dari jumlah sampel dalam suatu penelitan, semakin besar jumlah sampel, semakin kecil standar error yang dihasilkan dan semakin semakin kecil interval derajat kepercayaan yang dihasilkan (3, 4). Dengan kata lain, hasil rata-rata hasil yang didapat dari sampel mendekati dengan rata-rata pada populasi sebenarnya jika jumlah sampel yang digunakan besar.

Inference

Gambar 45. Manfaat derajat kepercayaan untuk megeneralisasi hasil penelitian ke populsi dari sampel yang diambil (4)

c. Hubungan nilai p dengan interval kepercayaan

Hubungan nilai p dengan interval kepercayaan adalah sebagai berikut(3):

- Nilai *p* dengan IK menghasilkan kesimpulan yang konsisten. Bila nilai *p* menghasilkan kesimpulan yang bermakna, maka IK akan memberikan kesimpulan yang bermakna juga. Begitu juga sebaliknya. Hanya saja, informasi yang diberikan keduanya berbeda.
- 2. Konsistensi nilai *p* dengan nilai IK

Page8C

Umumnya, interpretasi p value didasarkan pada apakah nilainya lebih kecil dari batasan baku (threshold values), yaitu 0.05. batasan ini biasanya

- a. Bila pada uji hipotesis komparatif perhitungan nilai *p* < 0,05 ("secara statistik bermakna") maka pada perhitungan IK, nilai 0 tidak akan tercakup di dalam nilai intervalnya ("secara statistik bermakna")
- b. Bila pada perhitungan rasio odds atau risiko relatif perhitungan nilai p < 0.05, maka pada perhitungan IK, nilai 1 tidak akan tercakup di dalam intervalnya.
- Nilai *p* memberikan informasi peluang untuk memperoleh hasil yang diobservasi bila hipotesis nol benar, sedangkan IK memberikan informasi perkiraan rentang nilai parameter pada populasi

Contoh Interpretasi 95 % KI dan Relatif Risk

Percobaan eksperimental efektivitas obat Dexamethasone dalam mengurangi resiko kematian setelah percobaan 9 bulan dibandingkan dengan kelompok placebo. (14)

Death during 9 months post start of treatment			
Treatment group	Yes	No	Total
Dexamethasone (group 1)	87 (d ₁)	187 (h ₁)	274 (n ₁)
Placebo (group 0)	112 (d _o)	159 (h _o)	271 (n _o)
Total	199	346	545

2×2 table - TBM trial example

Relative risk = p₁/p₀ = 0.318 / 0.413 = 0.77 log_eRR = log_e(0.77) = -0.26

$$s_i e_{i = i = \sqrt{\frac{1}{87} - \frac{1}{274} + \frac{1}{112} - \frac{1}{271}} = 0.11$$

95% CI for log, RR: -0.48 up to -0.04

95% CI for RR: exp(-0.48) up to exp(-0.04) = 0.62 up to 0.96

Interpretasi nilai RR(95 % CI)= 0.77 (0.62-0.96) adalah sebagai berikut;

Kelompok yang diinvtervensi dengan Obat Dexamethasone dapat mengurangi resiko kematian sebanyak 23 % (estimasi RR=0.77) dibandingkan kelompok yang diintervensi dengan placebo setelah percobaan selama 9 bulan. Di populasi umum, kita yakin sebesar 95 % bahwa obat Dexamethasone dapat mengurangi kematian antara 4 % (RR= 0.96) dan 38 %(RR= 0.62) dibandingkan intervensi dengan obat placebo.

OLAHRAGA OTAK 9.

MENGAPA KITA PERLU INTERPRETASI NILAI P DAN DERAJAT KEPERCAYAAN PADA HASIL PENELITIAN?

BUATLAH KESIMPULAN SINGKAT APA YANG KAMU MENGERTI TENTANG P VALUE DAN DERAJAT KEPERCAYAAN (MIND MAPPING DAN KESIMPULAN =200 KATA)

Studi Kasus(4);

Five	trials	of	drugs	to	reduce	serum	cholesterol
------	--------	----	-------	----	--------	-------	-------------

	Trial	Drug	Cost	No. of patients per group	Observed difference in mean cholesterol (mmol/L)	s.e. of difference (mmol/L)	95% CI for population difference in mean cholesterol	P- value
	1	Α	Cheap	30	-1.03	1.03	-3.04 to 0.98	0.32
	2	Α	Cheap	3000	-1.03	0.10	-1.23 to -0.83	<0.001
	3	В	Cheap	40	-0.51	0.85	-2.17 to 1.15	0.54
	4	В	Cheap	4000	-0.05	0.08	-0.22 to 0.12	0.54
	5	С	Expensive	5000	-0.13	0.05	-0.23 to -0.03	0.012
Z	Assume that a reduction of 0.5 mmol/L or more corresponds							

to a clinically important effect of the drug

Kirkwood & Sterne, 2003, pg 77

Diskusikan penelitan diatas dengan 5 jenis obat yang berbeda berdasarkan jumlah sampel, 95 % Derajat kepercayaan dan nilai P valuenya????? Obat manakah yang lebih efektif dalam mengurangi kolesterol berdasarkan hasil nilai-nilai statistik diatas?

BAB VI. KONSEP UJI HIPOTESA

Prosedur Uji Hipotesis, sebagai berikut:(2)

- a. Menentukan Ho (Null Hypothesis) dan Ha (Alternative Hyphotesis)
- b. Menentukan tingkat kepercayaan misal tingkat kepercayaan 95 % atau tingkat signifikan (alpha) 5 %.
- Menentukan statistik hitung
 Nilai statistik hitung tergantung pada metode statistik yang digunakan.
- d. Mengambil keputusan

Keputusan terhadap hipotesis di atas ditentukan dengan membandingkan nilai statistik hitung dengan tingkat signifikan (alpha).

Untuk menentukan jenis uji yang akan kita gunakan dalam analisa statistik, alur pemikiran menuju hipotesis yang sesuai harus dipahami. Secara garis besar uji hipotesis akan diklasifikasikan menjadi tiga bagian.(3)

- a. Hipotesis komparatif skala pengukuran numerik dan ordinal
- b. Hipotesis komparatif skala pengukuran ordinal dan nominal dalam bentuk tabel B kali
 K
- c. Hipotesis korelatif

Gambar 47. Jenis penelitian secara garis besar(6)

A. HIPOTESIS KOMPARATIF SKALA PENGUKURAN KOMPARATIF NUMERIK DAN ORDINAL

Untuk memahami Hipotesis komparatif skala pengukuran numerik dan ordinal, amati tabel di bawah ini.(3)

Tabel 12. Tabel Uji Hipotesis: alur menuju pemilihan uji hipotesis komparatif variabel numerik

Skala	Jenis Hipotesis						
Pengukuran	Komparatif/Asosiatif						
Variabel	2 Kelompok		> 2 kelompok				
	Berpasangan	Tidak	Berpasangan	Tidak			
		Berpasangan		Berpasangan			
Ordinal	Wilcoxon	Mann-Whitney	Friedman	Kruskal-Walls			
Numerik	Uji t berpasangan	Uji t tidak berpasangan	Anova	Anova			

Perhatikan gambar 48, tanda panah melengkung pertama Menunjukkan upaya yang dilakukan untuk menormalkan sebaran data dari tidak normal menjadi normal. Sedangkan tanda lengkung yang kedua menunjukkan upaya yang dilakukan supaya data yang mempunyai varians berbeda diupayakan untuk mempunyai varians yang sama. Upaya ini dinamakan proses transformasi data. Transformasi dilakukan dengan menggunakan fungsi-fungsi log, akar, kuadrat dll. Bila proses transformasi data berhasil, maka proses akan berujung pada uji paramentrik. Apabila tidak berhasil, maka proses akan berujung pada uji non parametrik. Proses transformasi data ini belum tentu berhasil.

Gambar 48. Konsep Interpretasi P value (4)Diagram Alur Uji Hipotesis Komparatif Variabel Numerik(3)

OLAHRAGA OTAK 10.

Apakah ada terdapat perbedaan rerata kepadatan tulang pada pinggul (Bone mineral density (g/cm2)) antara kelompok kejadian patah tulang pinggul pada wanita manula (0=tidak patah, 1=patah tulang)

Langkah-langkah untuk menentukan uji apakah yang mungkin digunakan untuk menjawab pertanyaan tersebut adalah sebagai berikut:

no	Langkah	Jawaban	Uji yang Mungkin			
1	Menentukan variabel yang diuji	Variabel yang diuji adalah Rerata kepadatan tulang pada pinggul (Bone mineral density (g/cm2))				
2	Menentukan skala pengukuran variabel	Rerata kepadatan tulang pada pinggul (Bone mineral density (g/cm2)) adalah variabel dengan skala pengukuran numerik	T tes berpasangan, t tes tidak berpasangan, anova, Pearson			
3	Menentukan jenis hipotesis	Jenis hipotesis Komparatif	T berpasangan, t tidak berpasangan			
4	Menentukan jumlah kelompok	Jumlah kelompok yang diuji adalah 2 kelompok(0=tidak patah, 1=patah tulang)	T berpasangan, t tidak berpasangan			
5	Menentukan berpasangan atau tidak berpasangan	Pada kasus di atas, kedua kelompok tidak berpasangan	T tidak berpasangan			
Kesir	Kesimpulan:					
Uji yang digunakan adalah <i>t tes tidak berpasangan</i> (uji parametrik) jika memenuhi syarat. Bila tidak memenuhi syarat, maka digunakan uji alternatifnya yaitu <i>uji Mann-Whitney</i> (Uji Non Parametrik)						

B. HIPOTESIS KOMPARATIF SKALA PENGUKURAN ORDINAL DAN NOMINAL DALAM BENTUK TABEL B KALI K

Amati tabel di bawah ini. **Tabel 13. Tabel Uji Hipotesis: alur menuju pemilihan uji variabel kategorikal(3)**

Skala	Jenis Hipotesis						
Pengukuran	Komparatif/Asosiatif						
Variabel	2 Kelompok		> 2 kelompok				
	Berpasangan	Tidak	Berpasangan	Tidak			
		Berpasangan		Berpasangan			
Nominal	McNemar	Chi-Square	Cochran	Chi-Square			
	Marginal-Homogeneity	Fisher		Fisher			
		Kolmogorov-		Kolmogorov-			
		Smirnov		Smirnov			
Ordinal	McNemar	Chi-Square	Cochran	Chi-Square			
	Marginal-Homogeneity	Fisher		Fisher			
		Kolmogorov-		Kolmogorov-			
		Smirnov		Smirnov			

a. Kelompok Tidak Berpasangan

Berikut ini merupakan diagram alur uji hipotesis variabel kategorikal dalam bentuk tabel silang B kali K untuk kelompok tidak berpasangan.

Gambar 49. Diagram Alur Uji Hipotesis Variabel Kategorikal Kelompok Tidak Berpasangan(3)

Catatan penting dari gambar 49 di atas adalah(3, 5):

Page89

- a. Semua hipotesis untuk tabel B kali K tidak berpasangan **menggunakan Uji Chi Square** bila memenuhi syarat uji Chi Square
- b. Syarat uji Chi Square adalah :
 - Tidak ada sel yang nilai observed yang bernilai nol
 - Sel yang mempunyai nilai expected kurang dari 5, maksimal 20 % dari jumlah sel
 - Nilai yang diambil '*continutity correction*'
- c. Jika syarat uji chi square tidak terpenuhi, maka dipakai uji alternatifnya:
 - Alternatif uji chi square untuk tabel 2 x 2 adalah **uji Fisher**
 - Alternatif uji chi square untuk tabel 2 x k adalah **uji Kolmogrorov-Smirnov**
 - Penggabungan sel adalah langkah alternative uji chi Square untuk tabel selain 2 x 2 dan 2 x k sehingga terbentuk suatu tabel B kali K yang baru. Setelah dilakukan penggabungan sel, uji hipotesis dipilih sesuai dengan tabel B kali K yang baru tersebut.
- b. Kelompok Berpasangan

Berikut ini merupakan diagram alur uji hipotesis variabel kategorikal dalam bentuk tabel silang B kali K untuk kelompok berpasangan.

Gambar 50. Diagram Alur Uji Hipotesis Variabel Kategorikal Kelompok Berpasangan(3)

Dengan melihat gambar 50, dapat diambil kesimpulan bahwa untuk tabel B x K untuk kelompok berpasangan(**3**):

$$_{\text{Page}}90$$

- 1. Tabel 2 x 2 diuji dengan *McNemar*. Tabel 2 x 2 ini akan diperoleh bila variabel pengetahuan dibagi menjadi kategori baik dan buruk
- Bila variabel yang diuji pada dua kelompok berpasangan bukan variabel dikotom (> 2 kategori), maka uji yang digunakan adalah uji *marginal homogeneity*. Sebagai contoh, variabel pengetahuan dibagi menjadi 3 kategori yaitu baik, sedang dan buruk.
- 3. Tabel 2 x k berpasangan diuji dengan *uji Cochran*

C. RESUME HIPOTESIS KORELATIF

Pedoman dalam memilih uji hipotesis korelatif sebagai berikut:

Variabel 1	Variabel 2	Uji Korelasi yang dipilih
Ordinal	Numerik	Spearman
Numerik	Numerik	Pearson

Tabel 14.Tabel Uji Hipotesis Korelatif

Keterangan:

Korelasi untuk variabel numerik-numerik, memakai uji Pearson dengan uji Spearman sebagai alternatifnya.

OLAHRAGA OTAK 11.

Apakah terjadi korelasi antara tinggi badan laki-laki manula (cm) dengan kadar kepadatan tulang (Bone mineral density (g/cm2))

	Langkah	Jawaban	Uji yang Mungkin
1	Menentukan variabel yang diuji	Variabel yang diuji adalah tinggi badan laki-laki manula (cm)	
2	Menentukan skala pengukuran variabel	Tinggi badan laki-laki manula (cm) dengan kadar kepadatan tulang (body mass density) adalah variabel dengan skala pengukuran numerik	T tes berpasangan, t tes tidak berpasangan, anova, Pearson
3	Menentukan jenis hipotesis	Jenis hipotesis Korelatif	Pearson

Kesimpulan:

Uji yang digunakan adalah uji korelasi pearson (uji parametrik) jika memenuhi syarat. Bila tidak memenuhi syarat, maka digunakan uji alternatifnya yaitu uji korelasi-Spearman (Uji Non Parametrik)

OLAHRAGA OTAK 12.

Apakah terdapat hubungan antara jenis kelamin (laki-laki dan perempuan) dengan kejadian patah tulang pinggul pada manula

	Langkah	Jawaban	Uji yang Mungkin
1	Menentukan variabel		
	yang diuji		
2	Menentukan skala		
	pengukuran variabel		
3	Menentukan jenis		
	hipotesis		
4	Menentukan jumlah		
	kelompok		
5	Menentukan berpasangan		
	atau tidak berpasangan		
6	Menentukan jenis tabel		
	kontingensi		
Kesi	mpulan:		

Jawab: Langkah-langkah menjawab pertanyaan tersebut sebagai berikut

Secara garis besar, analisis bivariat dalam penelitian ini adalah dengan menganalisis silang dua variabel yaitu variabel independen dan variabel dependen. Bila nilai probabilitas (p *value*) kurang dari atau sama dengan alpha berarti hasil perhitungan statistik bermakna (signifikan) dan apabila nilai p *value* lebih besar dari alpha berarti hasil perhitungan statistik tidak bermakna (tidak signifikan). Berikut ini adalah berbagai uji statistik yang pada umumnya digunakan untuk analisis bivariat di bidang kesehatan.(5)

Tabel 12. Tat	oel Uji Statistil	k pada Analisi	s Bivariat
---------------	-------------------	----------------	------------

VARIABEL I	VARIABEL II	UJI STATISTIK
KATEGORI	KATEGORI	KAI KUADRAT/FISHER EXACT
KATEGORI	NUMERIK	UЛ Т
		ANOVA
NUMERIK	NUMERIK	KORELASI
		REGRESI

LATIHAN HIPOTESIS

Untuk mengetahui pemahamann Anda, kerjakanlah latihan berikut ini:

Tentukan uji hipotesis apa yang dipergunakan untuk menguji data sesuai dengan pertanyaan-pertanyaan berikut:

- 1. Apakah terdapat perbedaan rerata *berat badan lahir bayi* (skala pengukuran numerik) antara kelompok ibu dengan status ekonomi tinggi dan kelompok ekonomi rendah?
- 2. Apakah terdapat perbedaan rerata kadar kolesterol (skala pengukuran numerik) antara sebelum dan sesudah pemberian intervensi obat X?
- 3. Apakah terdapat hubungan antara perilaku akses layanan jarum suntik steril (1=Ya, 0=tidak) dengan status HIV/AIDS pada pengguna napza suntik (1= HIV +, 0=HIV -)?
- 4. Apakah terdapat hubungan antara perilaku merokok ibu (merokok dan tidak merokok) dengan kejadian berat badan bayi lahir rendah (1=BBLR, 0=tidak BBLR)?
- Adakah hubungan antara tinggi badan (m) dengan kejadian patah tulang pinggul (1=Ya, 0=Tidak) pada wanita manula?
- 6. Apakah terdapat hubungan antara tingkat ekonomi (1= diatas UMR, 0=dibawah UMR) dengan perilaku penggunaan jamban sehat di pinggiran aliran sungai Musi (1=Ya, 0=Tidak)?
- Apakah terdapat hubungan antara tingkat pendidikan (tinggi, sedang, rendah) dengan kejadian obesitas (1=Overweight, 2=Obesity, 3=normal)
- 8. Adakah korelasi antara kadar gula darah (skala pengukuran numerik) dengan kadar kolesterol (skala pengukuran numerik)?

BAB V APLIKASI UJI KAI KUADRAT DAN FISHER EXACT

KOMPETENSI DASAR: Mampu menjelaskan Uji Kai Kuadrat dan Fisher Exact

INDIKATOR :

- Mampu menjelaskan prinsip-prinsip Uji Kai Kuadrat dan Fisher Exact
- Mampu menjelaskan mengoperasikan Uji Kai Kuadrat dan Fisher Exact

Untuk menggunakan uji Kai Kuadrat dan Fisher Exact, variabel dependen dan independen haruslah dalam bentuk kategori. Diagram alur uji hipotesis variabel kategorikal dalam bentuk tabel silang B kali K untuk kelompok tidak berpasangan.

TABEL B KALI K Tidak Berpasangan

 $_{\rm Page}94$

Managemen dan Analisis data di Bidang Kesehatan

Gambar 51. Diagram Alur Uji Hipotesis Variabel Kategorikal Kelompok Tidak Berpasangan(3)

A. KAI KUADRAT (CHI SQUARE)

OLAHRAGA OTAK 13. Anda ingin mengetahui hubungan antara tingkat pendidikan dan penggunaan jamban sehat. (11)

$$P_{age}95$$

Langkah-langkah untuk menentukan uji apakah yang mungkin digunakan untuk menjawab pertanyaan tersebut adalah sebagai berikut:

No	Langkah	Jawaban			
1	Menentukan	Variabel yang diuji adalah Penggunaan jamban sehat			
	variabel yang diuji	(variabel dependen) dan tingkat pendidikan (variabel			
		independen)			
2	Menentukan skala	Variabel penggunaan jamban sehat merupakan variabel			
	pengukuran	kategorikal (nominal)			
	variabel	Variabel tingkat pendidikan merupakan variabel kategorikal			
		(ordinal)			
3	Menentukan jenis	Jenis hipotesis Asosiatif			
	hipotesis				
4	Menentukan jumlah	Jumlah kelompok yang diuji adalah 3 (kelompok Ibu Tamat			
	kelompok	SD, Tamat SMP dan Tamat SMA)			
5	Menentukan	Pada kasus di atas, kedua kelompok tidak berpasangan			
	berpasangan atau				
	tidak berpasangan				
6	Menentukan Jenis	Jenis tabelnya adalah 2 X 3			
	Tabel				
Kesi	mpulan:				
Uji y	yang digunakan adalah	n chi-square. Bila tidak memenuhi syarat <i>uji chi-square</i> , maka			
dion	nakan uii alternatifnya	vaitu KOLMOGOROV-SMIRNOV			
	urgunakan uji anomanniya yanu kolmogokov-smiknov				

Langkah-langkah dalam uji kai kuadrat, antara lain.

1. Klik analyze-descriptive-crosstabs

 $_{\rm Page}96$

Analyze Graphs	Utilities	Add-Ons	Window	Helk	
Reports	•	B 😵 (ð 🌒 🧯	itc	
Descriptive Statis	tics 🔸	123 Erequ	encies		
Compare Means	•	Po Descr	iptives		
<u>G</u> eneral Linear Mo	odel 🕨	A Explor	е		
<u>C</u> orrelate	•	Cross	tabs		
<u>R</u> egression	•	1/2 <u>R</u> atio			
Classi <u>f</u> y	•	P-P Plots <u> Q</u> -Q Plots			
Dimension Reduct	tion 🕨				
Sc <u>a</u> le	•				
<u>N</u> onparametric Te	sts 🕨				
Forecasting	•				
Multiple Response	•				
Quality Control	•				
ROC Curve					

Gambar 52. Proses analisa kai kuadrat

2. Masukan variabel independen (pendidikan ibu) ke dalam kolom '*ROWS*' dan variabel dependen (menggunakan jamban) ke '*COLUMN*'

NOMOR [no]	Row(s):	Statistics
a nama ibu (namaibu)	*	C <u>e</u> lls
Nomor RT Rumah Ibu [rt]		Eormat
Umur Ibu (Tahun) [umur	<u>C</u> olumn(s):	1
Status Ekonomi Keluarg	Menggunakan Jamban S	
🖢 Pekerjaan Suami (kerjas	*	
Status Kerja Ibu [kerjaibu]		
Memudahkan penyebar	Layer 1 of 1	
Menyebabkan pencema		
Menyebabkan pencema	Previous Next	
Memungkinkan berkemb		
Menimbulkan pemandan		
Menimbulkan bau yang	4	
Mempunyailubang klos 👻		
Display clustered <u>b</u> ar charts		
Summaaa tablaa		

Gambar 53. Tampilan 'Crosstabs'

3. klik Statistics, klik *Chi square*, klik continue (untuk tabel 2x2, risk rasio/odds rasio bisa dihasilkan dengan menklik risk)

Crosstabs: Statistics		×
 Chi-square Nominal Contingency coefficient Phi and Cramér's V Lambda Uncertainty coefficient 	Correlations Ordinal Gamma Somers' d Kendall's tau-b Kendall's tau-c	Continue Cancel Help
Nominal by Interval Eta Cochran's and Mantel-Haens Test common odds ratio equa	Kappa Risk Koncenar szel statistics als:	

Gambar 54. Tampilan Kolom Statistics pada 'Crosstabs'

4. klik 'Cells', lalu klik 'Observed' dan 'Rows' dan klik continue

Gambar 55. Tampilan kolom Cells pada 'Crosstabs'

5. Lalu klik OK

SPSS OUTPUT

			Menggu	nakan Sebat	Total	
			Ya	Tidak	-	
Pendidikan Ibu	Tamat SD	Count	27	36	63	
Terakhir		Expected count	32.8	30.2	63	
		% within Pendidikan Ibu Terakhir	42.9%	57.1%	100.0%	
	Tamat SMP	Count	7	8	15	
		Expected count	7.8	7.2	15	
		% within Pendidikan Ibu Terakhir	46.7%	53.3%	100.0%	
	Tamat SMA	Count	18	4	22	
		Expected count	11.4	10.2	22	
		% within Pendidikan Ibu Terakhir	81.8%	18.2%	100.0%	
Total		Count	52	48	100	
		Expected count	52	48	100	
		% within Pendidikan Ibu Terakhir	52.0%	48.0%	100.0%	

		df	Asymp.
Value			Sig. (2-
			sided)
Pearson Chi-Square	10.118	2	<u>.006</u>
Likelihood Ratio	10.833	2	.004
Linear-by-Linear	8.829	1	.003
Association			
N of Valid Cases	100		

a 0 cells (.0%) have expected count less than 5.

The minimum expected count is 7.20.

Interpretasi Hasil:

- 1. Tabel pertama menggambarkan deskripsi masing-masing sel untuk nilai *observed* dan *expected*
- 2. Tabel 2 X 3 ini layak untuk diuji dengan *chi square* karena tidak ada sel yang observednya bernilai 0, dan tidak ada nilai *expected*nya yang kurang dari lima.
- 3. Tabel kedua menunjukkan hasil *chi square*. Nilai yang dipakai adalah pada nilai *Pearson chi square*. Nilai signifikancy-nya adalah 0.006, artinya terdapat hubungan antara tingkat pendidikan ibu dan penggunaan jamban sehat atau adanya bukti yang kuat untuk menolak hipotesa nol 'tidak adanya hubungan antara tingkat pendidkan ibu dengan perilaku penggunaan jamban sehat'.

Penulisan pada laporan penelitian

Dari tabel 16 memperlihatkan hubungan tingkat pendidikan ibu dengan perilaku ibu dalam menggunakan jamban sehat. Dari tabel silang dapat diketahui ibu dengan pendidikan SMA lebih cenderung menggunakan jamban sehat dibandingkan ibu dengan pendidika SMP dan SD. Proporsi perilaku ibu dalam menggunakan jamban sehat dari pendidikan SD, SMP, dan SMA adalah 42.9 %, 46.7 % dan 81.8 %. Hasil uji kai kuadrat diperoleh bahwa ada hubungan yang signifikan antara tingkat pendidikan dengan perilaku ibu dalam menggunakan jamban sehat (p= 0.006) atau ada evidence/bukti yang kuat untuk menolak hipotesa nul dari penelitian (tidak ada hubungan antara tingkat pendidikan dan perilaku ibu dalam menggunakan jamban sehat).

Tingkat pendidikan	Menggunak	kan jamban		
ibu	seha	t	Total	p value
	Ya	Tidak		
Tamat SD	27	36	63	0.006
%	42.9%	57.1%	100.0%	
Tamat SMP	7	8	15	
%	46.7%	53.3%	100.0%	
Tamat SMA	18	4	22	
%	81.8%	18.2%	100.0%	
Total	52	48	100	
%	52.0%	48.0%	100.0%	

Tabel 16.Hubungan Tingkat Pendidikan Ibu dengan Perilaku Ibu
dalam Menggunakan Jamban Sehat

Sumber : Data Primer Penelitian (11)

OLAHRAGA OTAK 14.

Lakukan uji kai kuadrat pada variabel status ekonomi dan status pekerjaan terhadap terhadap perilaku ibu dalam menggunakan jamban. Lalu interpretasikan nilai P, Prevalensi Risk dan 95 % Derajat Kepercayaan (DATA : Karakteristik responden_Jamban Sehat_Najm.sav)

B. FISHER EXACT

OLAHRAGA OTAK 15. (3)

Anda ingin mengetahui hubungan antara faktor genetik (positif dan negatif) dengan obesitas (obesitas dan tidak obesitas). Anda merumuskan pertanyaan sebagai berikut:

Apakah terdapat hubungan antara faktor genetik dengan obesitas?

Langkah-langkah untuk menentukan uji apakah yang mungkin digunakan untuk menjawab pertanyaan tersebut adalah sebagai berikut:

Masukkan data kasus ke lembar SPSS, anda bisa berlatih memasukkan data dengan cepat:

No	Obesitas	Genetik	No	Obesitas	Genetik
1	0	0	28	0	0
2	1	0	29	0	0

Page 102

NAJI	MAH, SKM, MPH
Publíc Health	Faculty, UNSRI

3	0	0	30	0	0
4	0	0	31	1	0
5	1	0	32	1	0
6	0	0	33	1	0
7	1	0	34	1	0
8	1	0	35	0	0
9	1	1	36	0	0
10	0	0	37	0	0
11	0	1	38	0	0
12	0	0	39	0	0
13	0	0	40	0	0
14	0	0	41	0	1
15	0	0	42	1	0
16	0	0	43	1	0
17	0	0	44	1	0
18	1	1	45	1	0
19	1	0	46	1	1
20	1	0	47	1	0
21	1	1	48	1	0
22	1	1	49	1	0
23	1	0	50	1	1
24	1	0	51	1	0
25	0	0	52	0	0
26	0	0	53	0	0
27	0	0	54	1	0

Ket:

Obesitas: 0= Obesitas, 1=Tidak Obesitas

Genetik: 0=Ada faktor genetik, 1= Tidak ada faktor genetik

No	Langkah	Jawaban		
1	Menentukan	Variabel yang diuji adalah Status Obesitas(variabel		
	variabel yang diuji	dependen) dan faktor genetik (variabel independen)		
2	Menentukan skala	Variabel Status Obesitas merupakan variabel kategorikal		
	pengukuran	(nominal)		
	variabel	Variabel faktor genetik merupakan variabel kategorikal		
		(nominal)		
3	Menentukan jenis	Jenis hipotesis Asosiatif		
	hipotesis			
4	Menentukan jumlah	Jumlah kelompok yang diuji adalah 2 kelompok(kelompok		
	kelompok	faktor genetik positif dan faktor genetik negatif)		
5	Menentukan	Pada kasus di atas, kedua kelompok tidak berpasangan		
	berpasangan atau			
	tidak berpasangan			
6	Menentukan Jenis	Jenis tabelnya adalah 2 X 2		
	Tabel			
Kesi	mpulan:			

Uji yang digunakan adalah chi-square. Bila tidak memenuhi syarat uji chi-square, maka digunakan uji alternatifnya yaitu uji Fisher.

- Klik Analyze....descriptive statistics.....crosstabs
- Masukkan variabel genetik ke dalam *row* (variabel independen) dan variabel

k Crosstabs	Bowiet	****
	(∰ genetik [genetik	
		Paste
	Set Column(s):	<u>R</u> eset
	obesitas [obes]	Cancel
		Help
	Previous Layer 1 of 1	Next
 Display clustered bar ch Suppress tables 	arts	
*	<u>E</u> tatistics <u>E</u>	ormat

Gambar 56. Kotak Dialog Crosstabs

• Klik kotak statistik....Lalu pilih *Chi Square* pada kiri atas kotak dan *Risk*, lalu

continue

Chi-square	Correlations	Continue
Nominal	Ordinal	Cancel
Contingency coefficient	Gamma	Help
🔄 Phi and Cramér's V	<u>Somers'</u> d	
🗖 Lambda	🔽 Kendall's tau- <u>b</u>	
Lencertainty coefficient	Kendall's tau- <u>c</u>	
Nominal by Interval	Kappa	
Eta	F Bisk	
-		
Cochran's and Mantel-Haens	szel statistics	

Gambar 57. Kotak Dialog "Crosstabs : Chi-square"

Aktifkan kotak cell...., lalu pilih *observed* dan *expected* pada kotak *count*, Pilih

percentages...rows

Crosstabs: Cell Display 🛛 💽					
Counts	Continue				
Observed	Cancel				
I▼ Expected	Help				
- Percentages	Residuals				
Row	Unstandardized				
Column	Standardized				
Total	🗖 Adj. standardized				

Gambar 58. Kotak Dialog "Crosstabs : Cell Display"

- Proses telah selesai...*Continue*...OK
- Output data

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	Ν	Percent
genetik * obesitas	5	4 100,0%	0	,0%	54	100,0%

genetik * obesitas Crosstabulation

		obesitas		Total
		obesitas	tidak obesitas	
			Obesilas	
genetik ada faktor genetik	Count	25	21	46
	Expected Count	23,0	23,0	46,0
	% within genetik	54,3%	45,7%	100,0%
tidak ada faktor genetik	Count	2	6	8
	Expected Count	4,0	4,0	8,0
	% within genetik	25,0%	75,0%	100,0%
Total	Count	27	27	54
	Expected Count	27,0	27,0	54,0
	% within genetik	50,0%	50,0%	100,0%

Chi-Square Tests

	Value	df	Asymp. Sig.	Exact Sig. (2-	Exact Sig. (1-
			(2-sided)	sided)	sided)
Pearson Chi-Square	2,348	1	,125		
Continuity Correction	1,321	1	,250		
Likelihood Ratio	2,441	1	,118		
Fisher's Exact Test				,250	,125
Linear-by-Linear	2,304	1	,129		
Association					
N of Valid Cases	54				

a Computed only for a 2x2 table

b 2 cells (50,0%) have expected count less than 5. The minimum expected count is 4,00.

Risk Estimate

	Value	95% Confidence Interval	
		Lower	Upper
Odds Ratio for genetik (ada faktor	3,571	,651	19,593
genetik / tidak ada faktor genetik)			
For cohort obesitas = obesitas	2,174	,636	7,431
For cohort obesitas = tidak	,609	,366	1,013
obesitas			
N of Valid Cases	54		

Interpretasi Hasil:

- Tabel pertama menggambarkan deskripsi masing-masing sel untuk nilai *observed* dan *expected*. Nilai observed untuk sel a, b, c, d masing-masing 25, 21, 2, 6 sedangkan nilai expectednya masing-masing 23; 23; 4; dan 4.
- Tabel 2 X 2 ini tidak layak untuk diuji dengan *chi square* karena ada sel yang nilai expectednya yang kurang dari lima yaitu sebanyak 50 % (sel c dan d). Oleh karena itu uji yang dipakai adalah uji alternatifnya yaitu uji fisher.
- 3. Tabel kedua menunjukkan hasil *uji Fisher*. Nilai *significancy*-nya adalah 0.250 untuk 2-sided (two tail) dan 0.125 untuk 1-sides (one-tail), artinya tidak terdapat hubungan antara faktor genetik dengan obesitas. Nilai 95% derajat kepercayaan (95% CI 0.651-19.59) menunjukkan bahwa di populasi luas, faktor genetik bisa merupakan faktor proteksi atau faktor resiko untuk meningkatkan resiko obesitas. Tetapi diperlukan sampel yang lebih besar untuk mendeteksi hubungan antara kedua faktor tersebut.
- Penyajian dan Interpretasi (latihan Mandiri):

Tabel.....

						Total	
	n	%	N	%	n	%	_
Jumlah							

C. LATIHAN MANDIRI 1. UJI KOLMOGOROV-SMIRNOV *OLAHRAGA OTAK 16.*

Anda ingin mengetahui hubungan antara jenis kelamin (laki-laki dan perempuan) dengan klasifikasi depresi (*clinical range, borderline oral, normal*). Anda membuat pertanyaan sebagai berikut: 'Adakah hubungan antara jenis kelamin (laki-laki dan perempuan) dengan depresi (*clinical range, borderline, normal*)?"(3)

Langkah-langkah untuk menentukan uji apakah yang mungkin digunakan untuk menjawab pertanyaan tersebut adalah sebagai berikut:

Masukkan data berikut

	Jenis	
No	kelamin	depresi
1	2	3
2	1	3
3	2	3
4	1	3
5	1	3
6	2	3
7	2	3
8	1	3
9	1	3
10	2	3
11	1	1
12	1	3
13	1	3
14	1	2
15	1	2
16	2	3
17	2	3
18	2	3
19	2	3
20	1	2
21	2	2
22	2	3
23	2	3
24	1	2
25	1	3
26	1	3
27	2	3
28	2	3
29	2	1
30	2	3
Jenis Kelamin :1. laki-laki, 2. Perempuan

Depresi :1. clinical range, 2. borderline, 3. Normal

No	Langkah	Jawaban
1	Menentukan	
	variabel yang diuji	
2	Menentukan skala	
	pengukuran	
	variabel	
3	Menentukan jenis	
	hipotesis	
4	Menentukan jumlah	
	kelompok	
5	Menentukan	
	berpasangan atau	
	tidak berpasangan	
6	Menentukan Jenis	
	Tabel	
Kesi	mpulan:	

- Klik *Analyze....descriptive statistics.....crosstabs*
- Masukkan variabel depresi ke dalam *coloumn* (variabel dependen)
 Masukkan variabel jenis kelamin ke dalam *rows* (variabel independen)
- Klik kotak statistik....Lalu pilih *Chi Square* pada kiri atas kotak, lalu *continue*
- Aktifkan kotak cell...., lalu pilih *observed* dan *expected* pada kotak *count*, Pilih *percentages...rows*
- Proses telah selesai...*Continue*...OK
- Output Data

Crosstabs

Case Processing Summary

		Cases					
	Valid		Missing		Total		
	Ν	Percent	N	Percent	N	Percent	
JENIS	30	100,0%	0	,0%	30	100,0%	
KELAMIN *							
depresi							

JENIS KELAMIN * depresi Crosstabulation

				Depresi		Total	
			Clinical	Borderline	Normal		
			range				
JENIS KELAMIN	laki-laki	Count	1	4	9	I otal al 14,0 7 14,0 6 16,0 7 100,0% 30 30,0 30,0 100,0%	
		Expected Count	,9	2,3	10,7	14,0	
		% within JENIS	7,1%	28,6%	64,3%	100,0%	
		KELAMIN					
	perempuan	Count	1	1	14	16	
		Expected Count	1,1	2,7	12,3	16,0	
		% within JENIS	6,3%	6,3%	87,5%	100,0%	
		KELAMIN					
Total		Count	2	5	23	30	
		Expected Count	2,0	5,0	23,0	30,0	
		% within JENIS	6,7%	16,7%	76,7%	100,0%	
		KELAMIN					

Chi-Square Tests

	Value	Df	Asymp. Sig. (2-sided)
Pearson Chi-Square	2,766	2	,251
Likelihood Ratio	2,890	2	,236
Linear-by-Linear	1,222	1	,269
Association			
N of Valid Cases	30		

a 4 cells (66,7%) have expected count less than 5. The minimum expected count is ,93.

- Interpretasi
 - 1. Tabel pertama menggambarkan deskripsi masing-masing sel sel untuk nilai observed dan expected
 - Tabel 2 x 3 ini tidak layak untuk diuji dengan uji chi square karena sel yang nilai expectednya kurang dari lima ada 66.7 % jumlah sel (yaitu sel a, b, d dan e)
 - 3. Karena tidak memenuhi syarat uji Chi square, maka uji yang dipakai adalah uji alternatifnya, yaitu uji kolmogorov-Smirnov

Langkah uji Kolmogorov-Smirnov

Analyze.....non parametrics.....2 independent sample

Gambar 59. Proses "Uji Kolmogorov Smirnov"

- Masukkan depresi ke dalam test variable list
- Masukkan sex ke dalam *grouping variable*
- Aktifkan pilihan Kolmogorov-Smirnov pada Test Type dan non aktifkan pilihan lainya

	Test Variable List:	OK
[Alepresi [depresi]	<u>P</u> aste
		<u>R</u> eset
	<u>G</u> rouping Variable:	Cancel
L	sex2(1 2)	Help
-	Define Groups	
Test Type Mann-Whitney U	🔽 Kolmogorov-Smirnov Z 🛶	#

Gambar 60. Kotak Dialog "Two-Independent-Samples Test"

- Aktifkan *define group*
- Masukkan angka 1 (sebagai kode faktor genetik positif) ke dalam group 1, angka 2 (sebagai kode faktor genetik negatif) ke dalam group 2.

wo Indep	endent \$	Samples: Do	efine G 📃 🚺
Group <u>1</u> :	1	\cap	Continue
Group <u>2</u> :	2	14/	Cancel
		Ч	Help

Gambar 61. Kotak Dialog "Define Group"

- Proses telah selesai...*Continue*...OK
- Output Hasil

NPar Tests

Two-Sample Kolmogorov-Smirnov Test

Frequencies

	JENIS	N	
	KELAMIN		
depresi	laki-laki	14	
	perempuan	16	
	Total	30	

Test Statistics

		depresi	
Most Extreme Differences	Absolute	,232	
	Positive	,000	
	Negative	-,232	
Kolmogorov-Smirnov Z		,634	
Asymp. Sig. (2-tailed)		,816	

a Grouping Variable: JENIS KELAMIN

- Tabel di atas menunjukkan hasil uji Kolmogorov-Smirnov
- Interpretasi
- Nilai significancy menunjukkan angka 0.816 Oleh karena p >0.05, maka dapat diambil kesimpulan bahwa adanya bukti yang lemah untuk menolak hipotesa nul "*tidak ada hubungan antara jenis kelamin dengan depresi*". Kesimpulannya jenis kelamin tidak berhubungan secara significan terhadap tingkat depresi.

2. UJI HIPOTESIS TABEL B X K SELAIN 2 X 2 DAN 2 X K OLAHRAGA OTAK 17.

Anda ingin mengetahui hubungan antara tingkat pengetahuan (rendah, sedang, tinggi) dengan intake makanan (kurang, cukup, lebih). Anda membuat pertanyaan sebagai berikut:"Apakah ada hubungan antara tingkat pengetahuan (rendah, sedang, tinggi) dengan intake makanan (kurang, cukup, lebih)?"(3)

Uji apakah yang mungkin digunakan untuk menjawab pertanyaan tersebut adalah sebagai berikut

Langkah-langkah untuk menentukan uji apakah yang mungkin digunakan untuk menjawab pertanyaan tersebut adalah sebagai berikut:

No	Langkah	Jawaban
1	Menentukan	
	variabel yang diuji	
2	Menentukan skala	
	pengukuran	
	variabel	
3	Menentukan jenis	
	hipotesis	
4	Menentukan jumlah	
	kelompok	
5	Menentukan	
	berpasangan atau	
	tidak berpasangan	
6	Menentukan Jenis	
	Tabel	
Kesi	mpulan:	

Buka data dari bentuk data excel ke dalam lembar kerja SPSS (*Intake*

& Tahu_Sopiyudin D.xls)

- Lakukan uji *Chi square* seperti latihan di sebelumnya
- Output SPSS

tingkat pengetahuan * Intake kalori Crosstabulation

				Intak	e kalori	Total	
			kurang	cukup	lebih		
tingkat	rendah	Count	11	29	1	41	
pengetahuan		Expected Count	9.8	19.7	11.5	41.0	
		% within tingkat pengetahuan	26.8%	70.7%	2.4%	100.0%	
	sedang	Count	12	19	27	58	
		Expected Count	13.9	27.8	16.2	58.0	
		% within tingkat pengetahuan	20.7%	32.8%	46.6%	100.0%	
	tinggi	Count		0	θ	1	
		Expected Count	.2	.5	.3	1.0	
		% within tingkat pengetahuan	100.0%	.0%	.0%	100.0%	
Total		Count	24	48	28	100	
		Expected Count	24.0	48.0	28.0	100.0	
		% within tingkat pengetahuan	24.0%	48.0%	28.0%	100.0%	

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	27.485	4	.000	
Likelihood Ratio	32.283	4	.000	
Linear-by-Linear Association	8.253	1	.004	
N of Valid Cases	100			

a :	3 cells (33.3%)	have expected	count less that	n 5. The minimu	m expected count is	s .24.
-----	-----------------	---------------	-----------------	-----------------	---------------------	--------

- Interpretasi
 - Tabel pertama menggambarkan deskripsi masing-masing sel untuk nilai observed dan expected. Nilai observed untuk sel a, b, c, d, e, f, g, h, i masingmasing 11, 29,1, 12, 19, 27, 1, 0, 0. Sedangkan nilai expectednya masingmasing 9.8, 19.7, 11.5, 13.9, 27.8, 16.2, 0.2, 0.5, 0.3.
 - 2. Tabel 3 x 3 ini tidak layak untuk diuji dengan *chi square* karena sel yang nilai *expected* kurang dari lima ada 33.3 % jumlah sel. Selain itu terdapat sel dengan nilai observed nol.
- Langkah selanjutnya adalah melakukan penggabungan sel. Anda memutuskan untuk menggabungkan kelompok pengetahuan tinggi dengan kelompok pengetahuan sedang. Alasan anda menggabungkan kedua kelompok karena jumlah subyek yang

termasuk ke dalam kelompok pengetahuan tinggi sedikit (satu subyek) sehingga digabung dengan kelompok subyek dengan pengetahuan sedang.

Lakukan transformasi data, langkah-langkahnya berikut ini:

Transform......Recode into different variable

Gambar 62. Proses Pengkodean Variabel Baru

• Masukkan tahu_2 ke dalam output variabel

🛞 Intake kalori [intake]	1	Numeric ⊻ariable -> Output Variable: peng -> tahu2 Numeric ⊻ariable -> Output Variable
		*
	hanna	Did and New Values 3

Gambar 63. Kotak Dialog "Recode into Different Variables"

- Klik kotak change
- Klik old and values
- Isilah kotak old value dan kotak new values (selanjutnya ikuti logika berfikir)
- Logikanya adalah:
- Kode 1 (old value), diubah menjadi kode 1 (new value)
- Kode 2 (old value), diubah menjadi kode 2 (new value)
- Kode 3 (old value), diubah menjadi kode 2 (new value)

Old Value	New Value 2
• Value: 3 1	Value: 2 System-missing
C System-missing	C Copy old value(s)
C System- or user-missing	01d> New:
C Range:	
through	E 2-> 2
C Range:	
Lowest through	Bemove
C Range:	Output variables are strings Width: 8
through highest	Convert numeric strings to numbers ('5'>!
C All ather unlines	

Gambar 64. Kotak Dialog "Recode into Different Variables: Old and New Values"

- Sampai tahap ini, Anda akan memperoleh tampilan sebagai berikut
- Proses telah selesai, klik *continue*
- OK, dan lihat hasilnya

_ile Edit	Eoit View Data Iransform Analyze Graphs Utilities Wind Eoit View Data Iransform Analyze Graphs Utilities Wind				
1 : tahu2	shu2 1				
1 E	intake	peng	tahu2	var	
1	kurang	rendah	rendah 🕶		
2	kurang	rendah	rendah		
3	kurang	rendah	rendah		
4	kurang	rendah	rendah		
5	kurang	rendah	rendah		
6	kurang	rendah	rendah 🖌	1	
7	cukup	rendah	rendah		
8	cukup	rendah	rendah	0.00	
9	cukup	rendah	rendah		
10	cukup	rendah	rendah		
11	cukup	sedang	sedang+		

Uji hipotesis apa yang akan dipilih setelah dilakukan penggabungan sel?

Langkah-langkahnya berikut ini:

Langkah	Jawaban
Menentukan variabel yang	
diuji	
Menentukan skala pengukuran	
variabel	
Menentukan jenis hipotesis	
Menentukan jumlah kelompok	
Menentukan berpasangan atau	
tidak berpasangan	
Menentukan Jenis Tabel	
npulan:	
	Langkah Menentukan variabel yang diuji Menentukan skala pengukuran variabel Menentukan jenis hipotesis Menentukan jumlah kelompok Menentukan berpasangan atau tidak berpasangan Menentukan Jenis Tabel npulan:

- Lakukan uji seperti latihan sebelumnya
- Output hasil

TAHU2 * Intake kalori Crosstabulation

				In	take kal	ori	Total	
				kurang	cukup	lebih		
TA	HU2	rendah	Count	11	29	1	41	
			Expected	9.8	19.7	11.5	41.0	
			Count					
			% within	26.8%	70.7%	2.4%	100.0%	
			TAHU2					
		sedang+	Count	13	19	27	59	
			Expected	14.2	28.3	16.5	59.0	
			Count					
			% within	22.0%	32.2%	45.8%	100.0%	
			TAHU2					
	Total		Count	24	48	28	100	
			Expected	24.0	48.0	28.0	100.0	
			Count					
			% within	24.0%	48.0%	28.0%	100.0%	
			TAHU2					
Chi-Squa	are To	ests						

	Value	df	Asymp. Sig. (2-sided))
Pearson Chi-Square	23.928	2	.000	
Likelihood Ratio	29.196	2	.000)
Linear-by-Linear Association	10.696	1	.001	
N of Valid Cases	100			

a 0 cells (.0%) have expected count less than 5. The minimum expected count is 9.84.

- Interpretasi:
 - 1. Tabel pertama menggambarkan deskripsi masing-masing sel untuk nilai observed dan expected
 - Tabel 2 x 3 ini layak untuk diuji dengan chi square karena tak ada sel yang bernilai
 0, dan tidak ada nilai *expected* yang kurang dari 5
 - 3. Tabel kedua menunjukkan hasil uji chi square. Nilai yang dipakai adalah pada nilai *Pearson Chi Square*. Nilai *significancy*nya adalah < 0.001. Oleh karena p < 0.05, maka dapat diambil kesimpulan bahwa "terdapat hubungan antara pengetahuan dengan intake makanan" atau p value <0.001 menunjukkan adanya bukti yang kuat untuk menolak hipotesa nul, tidak ada hubungan antara pengatahuan dengan intake makanan.</p>

3. UJI MCNEMAR

OLAHRAGA OTAK 18.

Anda ingin mengetahui peran penyuluhan mengenau perilaku hidup bersih dan sehat terhadap pengetahuan responden mengenai PHBS. Sebelum penyuluhan, Anda terlebih dahulu mengukur tingkat pengetahuan responden yang diklasifikasikan menjadi tinggi dan kurang. Setelah dilakukan penyuluhan, Anda kembali mealukan pengukuran tingkat pengetahuan(1=kurang, 2=tinggi)

Uji apakah yang mungkin digunakan untuk menjawab pertanyaan tersebut adalah sebagai berikut:

No	Langkah	Jawaban
1	Menentukan	
	variabel yang diuji	
2	Menentukan skala	
	pengukuran	
	variabel	
3	Menentukan jenis	
	hipotesis	
4	Menentukan jumlah	
	kelompok	
5	Menentukan	
	berpasangan atau	
	tidak berpasangan	
6	Menentukan Jenis	
	Tabel	
Kesi	impulan:	

Langkah-langkah untuk menentukan uji apakah yang mungkin digunakan untuk menjawab pertanyaan tersebut adalah sebagai berikut:

• Masukkan data dibawah ini

No	Tahu_Sebelum	Tahu_Sesudah
1	2	2
2	1	1
3	2	1
4	1	1
5	2	1
6	2	1
7	1	1
8	2	1
9	2	1
10	1	1
11	2	1
12	2	2
13	1	2
14	2	2
15	1	2
16	1	2
17	2	1
18	2	2
19	2	1
20	1	1

- Analyze......descriptive... statistics......crosstabs
- Masukkan variabel Tahu_Sebelum ke dalam rows
- Masukkan variabel Tahu_Sesudah ke dalam *coloumn*
- Aktifkan kotak *statistics*......lalu pilih *McNemar* pada kanan bawah kotak, lalu *continue*......

C <u>h</u> i-square	Correlations	Continue
Nominal	Ordinal	Cancel
Contingency coefficient Phi and Cramér's V	□ <u>G</u> amma □ <u>S</u> omers' d	Help
🗂 Lambda	📕 Kendall's tau- <u>b</u>	
Uncertainty coefficient	📕 Kendall's tau- <u>c</u>	
Nominal by Interval	<u> К</u> арра	
🗖 <u>E</u> ta	🗖 Risk	
ur Englar		
Cochran's and Mantel-Haen	szel statistics	

Gambar 66. Kotak Dialog "Crosstabs: Statistics "Mc Nemar"

• Proses telah selesai...*continue*, OK

 $_{\rm Page}119$

- Output Data
- Contoh interpretasi
 - Output bagian pertama menunjukkan hasil tabel silang.

.....

.....

BAB VI APLIKASI UJI STUDENT T TEST DAN ANOVA

Prosedur ini digunakan untuk membandingkan rata-rata sampel independen ataupun sampel berpasangan dengan menghitung *Student t-test* dan menampilkan probabilitas dua arah selisih dua rata-rata(2).Pada bab VI, pembahasan pada *COMPARE MEANS* meliputi:

1. MEANS

Bagian ini membahas hal yang sama pada statistik deskriptif, dengan penyajian subgroup dan ditambah dengan uji linearitas.

2. T TEST

Bagian ini membahas uji t yang meliputi:

- a. Uji t untuk dua sampel independen
- b. Uji t untuk dua sampel berpasangan

3. ANOVA

Jika uji t digunakan untuk uji terhadap variabel independen yang terdiri dari lebih 2 kategori.

A. MEANS

Tujuan pembahasan ini adalah untuk mendapatkan serangkaian statistik deskriptif dari berbagai masukan data. Dalam hal ini tidak ada inferensi statistik atau uji terhadap suatu hipotesis.

OLAHRAGA OTAK 19.

Seorang peneliti menyajikan data umur, berat badan dan tinggi badan wanita manula yang menderita patah tulang pinggul serta kebiasaan kegiatan fisik mereka di Geelong, Australia (15)

Penyelesaian:

Oleh karena akan diketahui bagaimana statistik deskriptif dari data di atas, dan populasi diketahui berdistribusi normal, maka dipakai *Means* pada menu *compare means* untuk mengerjakannya.

1. Buka data 'Hip Fracture Najm.sav'

2. Pengolahan data dengan SPSS: Menu Analyze......Compare Means.....Means.

Gambar 63. Tahap : Analyze..... Compare Means...... Means

 Masukkan variabel umur (CurrentAge), berat badan(Weight) dan tinggi (Height) ke Dependent List dan masukkan variabel patah tulang pinggul(hip_fracture_status) ke Independent List.

	Dependent List: Ontions
Physical_Activity_Statu	CurrentAge [CurrentA CurrentAge [CurrentAge [Cur
	Independent List:
	hip_fracture_status

4. Oleh karena akan ada dua layer, maka tekan *NEXT*

*** Managemen dan Analisis data di Bidang Kesehatan***

5. Kemudian klik variabel physical_activity_status, lalu klik tanda panah maka variabel tinggal berpindah ke Independent List sebagai layer kedua

💦 Drinking Status [drinkst	Dependent List:
	Layer 3 of 3
	Pre <u>v</u> ious <u>N</u> ext
	Independent List:

6. Untuk Kolom options, tidak dilakukan perubahan, continue--OK

Harmonic Mean 1	Median Grouped Median Std. Error of Mean Sum Minimum Maximum Range First Last Variance Kurtosis Std. Error of Kurtosis Std. Error of Kurtosis Std. Error of Skewne Harmonic Mean	Þ	Mean Number of Cases Standard Deviation
-----------------	--	---	---

Gambar 66. Kotak Dialog'Options'

7. Output SPSS dan analisis:

Means

<u>NAJMAH, SKM, MPH</u> <u>Public health Faculty, UNSRI</u>

			Ca	ses		
	Inclu	ıded	Excl	uded	То	tal
	Ν	Percent	Ν	Percent	Ν	Percent
CurrentAge * Hip Fracture status * hip_fracture_status * Physical_Activity_Status	496	99.8%	1	.2%	497	100.0%
Weight * Hip Fracture status * hip_fracture_status * Physical_Activity_Status	496	99.8%	1	.2%	497	100.0%
Height * Hip Fracture status * hip_fracture_status * Physical_Activity_Status	496	99.8%	1	.2%	497	100.0%

Case Processing Summary

<u>NAJMAH, SKM, MPH</u> <u>Public health Faculty, UNSRI</u>

			Report	ı.		
Hip Fracture	hip_frac ture_sta		otivity Status	CurrentAge	Weight	Height
Status	ius o		Moon	71.64	64 0300	157 6051
NO	U	Active	Mean	11.04	04.0000 170	157.000 i 170
			N Otal Daviation	170 5 000	10 52020	5 06000
		• • • • • • • •	Std. Deviation	5.223	10.53830	5.00220
		Sedentary	Mean	/6.55	67.1620	156.3279
			Ν	1/9	1/9	1/9
			Std. Deviation	6.779	13.38268	6.10123
		Limited	Mean	81.58	64.2800	154.7558
			Ν	95	95	95
			Std. Deviation	4.915	14.46633	6.74150
		Total	Mean	75.67	65.3268	156.5004
			Ν	452	452	452
			Std. Deviation	6.925	12.65348	6.15479
Yes	1	Active	Mean	72.13	62.0625	162.2187
1			Ν	8	8	8
			Std. Deviation	3.720	6.34529	6.10936
		Sedentary	Mean	77.13	63.4400	156.0267
			Ν	15	15	15
			Std. Deviation	7.999	13.86088	3.67024
		Limited	Mean	82.90	59.1667	155.4524
1			Ν	21	21	21
			Std. Deviation	5.839	10.57163	7.07889
		Total	Mean	78.98	61.1500	156.8784
			Ν	44	44	44
			Std. Deviation	7.510	11.18002	6.34990
	Total	Active	Mean	71.66	63.9548	157.8035
1			Ν	186	186	186
			Std. Deviation	5.161	10.38943	5.74171
1		Sedentary	Mean	76.60	66.8742	156.3046
1			Ν	194	194	194
			Std. Deviation	6.859	13.42038	5.94269
1		Limited	Mean	81.82	63.3543	154.8819
1			Ν	116	116	116
			Std. Deviation	5.093	13.94295	6.77762
		Total	Mean	75.97	64.9563	156.5340
1			Ν	496	496	496
			Std. Deviation	7.034	12.57576	6.16672

Gambar 67. Output Data

Interpretasi:

Output pada bagian pertama menghitung apakah semua data telah diproses. Oleh karena terdapat angka 99.8 %, berarti ada beberapa data yang tidak lengkap tidak diproses.

Bagian kedua terlihat, pada bagian baris ada dua layer, yaitu hip fracutre (kode 0 dan 1), serta kebiasaan kegiatan fisik sebagai layer kedua. Berarti data dipecah menjadi wanita manula yang menderita patah tulang pinggul dengan kegiatan fisik aktif, sedang, terbatas serta wanita manula yang tidak menderita patah tulang pinggul dengan kegiatan fisik aktif, sedang, dan terbatas.

Pada bagian kolom, terlihat data-data numerik, yaitu mengenai umur, berat badan dan tinggi badan. Sebagai contoh, pada baris pertama dapat diartikan ada 178 wanita manula tanpa patah tulang pinggul dengan kebiasaan melakukan aktifitas fisik aktif dengan rata-rata umur, tinggi dan berat badan berturut turut; 72 tahun, 158 cm dan 64 kg.

Sedang contoh analisis dapat dilakukan seperti:

- Rata-rata berat tinggi badan wanita dengan atau tanpa patah tulang dengan kebiasaan beraktifitas fisik sedang dan terbatas tidak menunjukkan perbedaan yang signfikan 156 cm dan 155 cm masing-masing.
- Rata-rata umur pada wanita yang menderita patah tulang dengan kegiatan fisik aktif, sedang dan terbatas tidak jauh berbeda dengan wanita yang tidak menderita patah tulang dengan kegiatan fisik yang sama.
- Umumnya, wanita manula yang lebih tua memiliki aktifitas fisik yang terbatas dibandingkan umur yang lebih muda dan berat badan serta tinggi badan yang lebih rendah pada kelompok patah tulang dan tidak patah tulang.

Demikianlah analisis lainnya dapat dilakukan sesuai dengan kebutuhan informasi yang diperlukan.

B. PAIRED SAMPEL T TEST (UJI T UNTUK DUA SAMPEL YANG BERPASANGAN/PAIRED)

Analisis perbandingan untuk dua sampel yang berpasangan akan dilakukan. Dua sampel yang berpasangan diartikan sebagai sebuah sampel dengan subjek yang sama namun mengalami dua perlakuan atau pengukuran yang berbeda. Misal kita ingin mengetahui kadar kolesterol sebelum dan sesudah pemberian obat X, atau kita ingin mengetahui derajat IQ seseorang sebelum dan sesudah mulitvitamin otak Z.

OLAHRAGA OTAK 20.

Produsen obat diet (penurun berat badan) ingin mengetahui apakah obat yang diproduksinya benar-benar mempunyai efek terhadap penurunan berat badan konsumen. Untuk itu, sebuah sampel yang terdiri atas 10 orang masing-masing diukur berat badannya, dan kemudian setelah sebulan meminum obat tersebut, kembali diukur berat badannya. Berikut adalah hasilnya (angka dalam kilogram)(2)

Hipotesis dalan penelitan ini:

Ho= kedua rata-rata berat badan adalah identik (rata-rata populasi berat sebelum dan sesudah minum obat adalah sama/tidak berbeda secara nyata)

Ha= kedua rata-rata badan adalah tidak identik (rata-rata populasi berat sebelum dan sesudah minum obat adalah tidak sama/ berbeda secara nyata)

File Edit	View Data	Transform A
	s 💷 🔊	
14 :		
l Î.	sebelum	sesudah
1	76.85	76.22
2	77.95	77.89
3	78.65	79.02
4	79.25	80.21
5	82.65	82.65
6	88.15	82.53
7	92.54	92.56
8	96.25	92.33
9	84.56	85.12
10	88.25	84.56
11		

Gambar 68. Data Berat Badan Sebelum dan Sesudah Penggunaan Obat Diet

Langkah-langkah pengolahan data:

Analisa soal yaitu kasus terdiri atas dua sampel yang berhubungan atau berpasangan satu dengan yang lain, yaitu sampel sebelum makan obat dan sampel sesudah makan makan obat. Disini diketahui populasi berdistribusi normal dan karena sampel sedikit, dipakai uji t untuk dua sampel yang berpasangan (paired).

- a. Masukkan data pada gambar 68
- b. Dalam menu utama SPSS, pilih menu *Analyze*, pilih sub menu *Compare Means*, dari serangkaian pilihan test, sesuai kasus pilih *Paired-Samples t test*.

Gambar 69. Tahap 1: *Analyze-Compare Means-Paired* Samples T Test Berat Badan Sebelum dan Sesudah Penggunaan Obat Diet

c. Paired variabels atau variabel yang akan diuji. Oleh karena itu disini akan diuji data sebelum dan sesudah, maka klik variabel Berat Badan Sebelum dan Sesudah diintervensi obat Diet, maka akan terlihat pada kolom *Current Selection* di bawah, terdapat keterangan untuk variabel 1 dan 2. Kemudian klik tanda panah. Variabel sebelum dan sesudah harus dipilih bersamaan, jika tidak, SPSS tidak dapat menginput dalam kolom *Paired Variables*

🛞 Berat Badan Sebelum [Paired Variables:	OK
₩ Berat Badan Setelah D	sebelum - sesudari	Paste
	ন	Rese
		Cance
		Help
Current Selections		
Variable 1:		
Variable 2:		Options

Gambar 70. Kotak Dialog Paired t test

d. Untuk kolom Option atau pilihan lain, tampil di layar. Pengisian, Pertama: untuk Confidence Interval sebagai default, SPSS menggunakan 95 %. CI bisa diubah sesuai dengan ketentuan dari setiap peneliti. Kedua: untuk Missing values atau data hilang. Oleh karena dalam kasus semua pasangan data komplit (tidak ada data kosong), maka abaikan saja bagian ini (tetap pada default dari SPSS, yaitu Exclude Cases Analysis by Analysis)....... Continue

Confidence Interval: 95 %	Continue
Missing Values	Cancel
Exclude cases analysis by analysis Exclude cases listwise	Help

Gambar 71. Kotak Dialog Paired t test : Options

e. Output SPSS dan Analisis

T-Test

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Berat Badan Sebelum Diet	84.5100	10	6.63931	2.09953
	Berat Badan Setelah Diet	83.3090	10	5.58235	1.76530

Paired Samples Correlations

	N	Correlation	Sig.
Pair Berat Badan Sebelu 1 Diet & Berat Badan Setelah Diet	m 10	.943	.000

Gambar 72. Output Data

f. Interpretasi

Analisis bagian pertama terlihat ringkasan statistik dari kedua sampel. Untuk berat badan sebelum minum obat, konsumen mempunyai berat rata-rata 85 kg sedangkan setelah minum obat, konsumen mempunyai berat rata-rata 83 kg.

Output bagian kedua adalah hasil korelasi antara kedua variabel, yang menghasilkan angka 0.943 dengan nilai probabilitas jauh di bawah 0.05 (lihat nilai signifikansi output <0.001) yang dapat diinterpretasikan bahwa korelasi antara berat sebelum dan sesudah minum obat sangat erat dan benar-benar berhubungan secara nyata.

Output bagian ketiga (Paired Sample Test):

Pengambilan Keputusan: Terdapat perbedaan mean sebesar 1.2 kg berat badan sebelum dan sesudah internvesi pada sampel penelitan. Di populasi umum, kita percaya 95 % bahwa perbedaan mean berada pada rentang -0.45 kg (BB sebelum konsumsi obat diet berkurang 0.45 kg dibandingkan setelah konsumsi obat diet) dan 2.85 kg (BB konsumsi obat diet 2.85 kg lebih besar dibandingkan BB setelah konsumsi obat diet). Nilai P, 0.134 mengindikasikan bukti yang lemah untuk menolak hipotesa nul 'rata-rata populasi berat sebelum dan sesudah minum obat adalah sama/tidak berbeda secara nyata'.

C. INDEPENDENT SAMPLE T TEST

Kategori dependen adalah variabel numerik, sedangkan variable independennya adalah variabel kategori. Tujuan untuk mengetahui apakah ada perbedaan means (rata-rata) variabel numerik pada beberapa kategori variabel kategorik

OLAHRAGA OTAK 21.

Apakah ada perbedaan rata-rata tinggi badan pada kelompok wanita lansia dengan patah tulang pinggul dan tidak atau apakah ada hubungan antara tinggi badan (height) dan resiko patah tulang pinggul (hip_fracture_status) pada wanita lansia? (Buka data; *Hip Fracture Najm.sav*) (15)

Langkah-langkah:

• Uji normalitas variabel numerik, tinggi badan (height)

		10		anty		
	Kolm	logorov-Smir	nov ^a		Shapiro-Wilk	
	Statistic	df	Sig.	Statistic	df	Sig.
Height	.029	497	.200*	.998	497	.683

Tasts of Normality

a. Lilliefors Significance Correction

*. This is a lower bound of the true significance.

- Disribusi variabel height berdistribusi normal (P value=0,20)
- Lanjutkan uji Student t test, Klik *Analyze---Compare Means—Independent Samples T test*

Gambar 73. Proses pemilihan Independent-Samples T Test

- Masukkan variabel '*Height*' ke kolom 'test variable' dan variabel hip_fracture_status ke kolom 'grouping variable, lalu klik *Define variable*, masukkan kode hip fracture status yaitu 0 (non fracture group) dan 1 (fracture group)
- Klik Ok

CurrentAge [CurrentAge] Weight [Weight] Hip Fracture status [var Physical_Activity_Statu Drinking Status [drinkst Grouping Variable: hip_fracture_status(01)		Test Variable(s):
Grouping Variable: hip_fracture_status(01)	CurrentAge [CurrentAge] Veight [/Veight] Hip Fracture status [var Physical_Activity_Statu Drinking Status [drinkst	
hip_fracture_status(01)		
24		Grouping Variable:
Define Groups		Grouping Variable:

• Output SPSS

	Group Statistics								
	hip_frac ture_sta								
	tus	Ν	Mean	Std. Deviation	Std. Error Mean				
Height	0	452	156.5004	6.15479	.28950				
	1	45	156.8811	6.27735	.93577				

Independent Samples Test

		Levene's Test Varia	for Equality of ances	t-test for Equa	ality of Means
			1		
		F	Sig.	ts	df
Height	Equal variances assumed	.082	.775	395	495
	Equal variances not assumed			389	52.778

Independent Samples Test

		t-test	for Equality	of Means	t-test for Equa	ality of Means
					95% Confidenc Differ	e Interval of the ence
		Sig. (2-	Mean	Std. Error		
		tailed)	Difference	Difference	Lower	Upper
Height	Equal variances assumed	.693	38067	.96381	-2.27433	1.51299
	Equal variances not assumed	.699	38067	.97953	-2.34555	1.58421

Interpretasi:

• Menguji varians

Pada kota Levene's test (nama uji hipotesa untuk menguji varians), nilai p=0.775. Karena nilai p >0.05 maka varians data kedua kelompok sama (Terima Ho). Tetapi hal yang perlu diingat, kesamaan varians tidak menjadi syarat mutlak untuk dua kelompok tidak berpasangan. Karena varians sama, hasil uji t yang dilihat pada baris pertama (Equal variances assumed).

Perbedaan rata-rata (Mean difference)= -0.38, mengindikasi tinggi rata-rata wanita manula pada kelompok patah tulang lebih rendah 0.38 cm dibandingkan tinggi rata-rata wanita manula pada kelompok tidak patah tulang. P value=0.699 (95 % CI -2.27, 1.51), menunjukkan lemahnya kekuatan signifikansi untuk menolak hipotesa nul' tidak ada perbedaan tinggi badan antara wanita dengan patah tulang dan tidak patah tulang pinggul. Di populasi umum, tingkat kepercayaan 95 % mengindikasi bahwa perbedaan rata-rata tinggi badan wanita manula berada dalam rentang -2.27 (lebih rendah 2.27 pada kelompok patah tulang) dan 1.151 cm (lebih tinggi 1.151 cm pada kelompok patah tulang) di populasi umum.

D. ONE WAY ANOVA

Uji F atau ANOVA digunakan untuk pengujian lebih dari dua kategori pada variabel independen. Asumsi yang digunakan pada pengujian ANOVA:

- 1. Populasi-populasi yang akan diuji berdistribusi normal
- 2. Varians dari populasi-populasi tersebut adalah sama
- 3. Sampel tidak berhubungan satu sama lain.

OLAHRAGA OTAK 22. (5)

Apakah ada perbedaan antara berat badan lahir bayi pada kelompok umur ibu yang berbeda?? (Open **Data Sutanto.sav**)

Langkah-langkah uji Anova:

- Lakukan uji normalitas terhadap variabel numerik, berat bayi lahir dan Uji varians. Kita asumsikan data yang kita miliki mempunyai distribusi yang normal dan varians data yang sama.
- Lakukan uji Anova.....Klik Analyze, Compare Means, One Way Anova.

Gambar 74. Proses 'Compare Means-One-Way Anova'

• Kotak Dependent List diisi variabel numerik (bbbayi) dan kotak Factor diisi variabel kategori (umur kelompok)

(UMUR IBU [umur]	Dependent List:	ок
TINGKAT PENDIDIKA STATUS KEBJA IBU (BERAT BADAN BAY	Paste
JUMLAH ANAK IBU [a		<u>R</u> eset
★ MENYUSUI SECARA ★ KADAR HB IBU PENG	-	Cancel
KADAR HB IBU PENG	Eactor:	Help
* RISIKU PADA WAKTU	•••••••	
	Contrasts Post Hoc	Options

Gambar 75. Kotak Dialog 'One-Way Anova'

• Klik tombol *Posthoc*, pilih *Bonferroni*.

One-Way ANOVA: Post Hoc Multiple Con	iparisons 🛛 🔀
Equal Variances Assumed LSD S-N-K Wa Bonferroni Tukey Typ Sidak Tukey's-b Du Scheffe Duncan R-E-G-W F Hochberg's GT2 R-E-G-W Q Gabriel	Iler-Duncan re I/Type II Error Ratio: 100 mett htrol Category: Last st 2-sided C < Control C > Control
Equal Variances Not Assumed Tamhane's T2 Dunnett's T3 Ga Significance level: .05	nes-Howell 🔽 Dunnett's C
Co	ntinue Cancel Help

Gambar 76. Kotak Dialog 'One Way Anova: Bonferroni'

• Klik tombol Options, pilih Descriptives.

One-Way ANOVA: Options	
Statistics Descriptive Fixed and random effects Homogeneity of variance test Brown-Forsythe Welch	Continue Cancel Help
 Means plot Missing Values Exclude cases analysis by analys Exclude cases listwise 	is

Gambar 77. Kotak Dialog 'One Way Anova : Options'

- Klik Continue, OK.
- Hasil *outputn*ya sebagai berikut

Oneway

Descriptives

Berat badan lahir bayi

					95% Confider	nce Interval for		
					Me	an		
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
<20	7	2942.86	390.969	147.773	2581.27	3304.44	2600	3500
20-30	33	3227.27	561.957	97.824	3028.01	3426.53	2400	4100
>30	10	3140.00	761.869	240.924	2594.99	3685.01	2100	4000
Total	50	3170.00	584.232	82.623	3003.96	3336.04	2100	4100

ANOVA

Berat badan lahir b	bayi		
	Sum of		
	Squares	df	

	Squares	df	Mean Square	F	Sig.
Between Groups	478402.6	2	239201.299	.692	.506
Within Groups	16246597	47	345672.285		
Total	16725000	49			

Post Hoc Tests

Multiple Comparisons

2011011011						
		Mean Difference			95% Confide	ence Interval
(I) kelompok umur	(J) kelompok umur	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
<20	20-30	-284.42	244.656	.753	-891.82	322.99
	>30	-197.14	289.740	1.000	-916.48	522.19
20-30	<20	284.42	244.656	.753	-322.99	891.82
	>30	87.27	212.231	1.000	-439.63	614.18
>30	<20	197.14	289.740	1.000	-522.19	916.48
	20-30	-87.27	212.231	1.000	-614.18	439.63

Dependent Variable: Berat badan lahir bayi Bonferroni

Interpretasi:

a. Nilai Mean dan Standar Deviasi dari setiap kelompok. Rata-rata berat bayi pada mereka yang berusia < 20 tahun adalah 2942,86 gram dengan standar deviasi 390,969 gram, pada mereka yang berusia 20 – 30 tahun adalah 3227,27 gram dengan standar deviasi 561,957 gram, pada mereka yang berusia >30 tahun adalah 3140 gram dengan standar deviasi 761,869 gram.

b. Uji Anova

- p value (sig) < alpha : Ho ditolak, berarti ada perbedaan antara berat badan lahir bayi pada kelompok umur ibu
- p value (sig) > alpha : Ho diterima, berarti tidak ada perbedaan antara berat badan lahir bayi pada kelompok umur ibu
- pada tabel diatas diperoleh nilai Sig =0,506 > alpha 0,05, berarti dapat disimpulkan bahwa ada bukti yang lemah untuk menolak hipotesa nul bahwa tidak ada perbedaan antara berat badan bayi lahir dengan kelompok umur ibu. Derajat kepercayaan 95% menunjukkan interval yang luas dan berkisar antara nilai dan +, yang berarti, berat badan bayi lahir di populasi pada perbandingan ibu dengan kelompok umur 20-30 dan >30 tahun bisa lebih rendah atau lebih tinggi dari kelompok umur dibandingkan kelompok umur < 20 tahun.

OLAHRAGA OTAK 23. Apakah ada hubungan antara tingkat pendidikan ibu dengan berat badan bayi lahir (Asumsi data berdistribusi normal dan mempunyai varians yang sama)??

BAB VII APLIKASI UJI KORELASI DAN REGRESI LINIER

NAJMAH, SKM, MPH Public health Faculty, UNSRI

Hipotesis korelasi digunakan untuk data numerik pada variabel dependen dan independen. Korelasi disamping dapat digunakan untuk mengetahui derajat/ keeratan hubungan juga dapat mengetahui arah hubungan kedua variabel numerik. Perhatikan panduan interpretasi hasil uji hipotesis korelatif di bawah ini:

Parameter	Nilai	Interpretasi
Kekuatan Korelasi (r)	0,00 - 0,25	tidak ada hubungan/ lemah
	0,26 - 0,50	hubungan sedang
	0,51 - 0,75,	hubungan kuat
	0,76 - 1,00,	hubungan sangat kuat/
		sempurna
Nilai p	P < alpha	Terdapat korelasi yang bermakna antara dua variabel yang diuji
	P > alpha	Tidak terdapat korelasi yang bermakna antara dua variabel yang diuji
Arah korelasi	+ (positif)	Searah. Semakin besar
		nilai satu variabel, semakin
		besar pula nilai variabel
		yang diuji
	- (negatif)	Berlawanan arah. Semakin
		besar nilai satu variabel,
		semakin kecil nilai
		variabel lainnya.

Tabel 17.	Panduan	Interpretasi	hasil	uji	Hipotesis	berdasarkan	kekuatan
korelasi, 1	nilai p dan	arah korelasi	i.(3)				

A. UJI KORELASI PEARSON DAN REGRESI LINEAR SEDERHANA OLAHRAGA OTAK 24.

Kita ingin mengetahui korelasi antara total kolesterol dan Bodi mass index (body mass index/BMI). Dirumuskan pertanyaan sebagai berikut:"*Adakah korelasi antara skor total kolesterol dengan skor Bodi Mass Index*?" (Buka Data: Regresi_Korelasi_Julie S.sav(16))

Uji apakah yang mungkin digunakan untuk menjawab pertanyaan tersebut adalah sebagai berikut.

Langkah-langkah untuk menentukan uji apakah yang mungkin digunakan untuk menjawab pertanyaan tersebut adalah sebagai berikut(3)

No	Langkah	Jawaban
1	Menentukan	
	variabel yang diuji	
2	Menentukan skala	
	pengukuran	
	variabel	
3	Menentukan jenis	
	hipotesis	
4	Menentukan Jenis	
	Tabel	
Kesi	mpulan:	
	••••••	

- 1. Memeriksa syarat uji parametrik: sebaran data harus normal (wajib)
- 2. Bila memenuhi syarat (sebaran data normal), maka dipilih Uji Korelasi Pearson
- 3. Bila tidak memenuhi syarat (sebaran data tidak normal) maka diupayakan untuk melakukan transformasi data supaya sebaran menjadi normal.
- 4. Bila sebaran data hasil transformasi normal, maka dipilih uji korelasi Pearson
- 5. Jika sebaran hasil transformasi tidak normal, maka dipilih uji alternatifnya (*Uji Korelasi Spearman*)

Uji Normalitas

- Lakukan uji normalitas untuk data variabel depresi dan variabel ansietas.
- Analyze......Descriptive statistics.....Explore. Masukkan variabel skor total kolesterol (totchol) dan BMI (bmi) ke dalam dependen list.

P provvid	.	Dependent List:	Statistics
sex	-	Totchol	Plo <u>t</u> s
🖗 age			Options
✓ hgt		Eactor List:	
brni who			
genid			
🗞 smoke		Label <u>C</u> ases by:	
🔥 bmi_c		- (-)	
Display			
Both ○ Statistics Statis Statistics Statistics Statistics Statistic	O Plots		

Gambar 79. Kotak Dialog" Explore"

- 2. Pilih Both pada display
- 3. Aktifkan Plots....*factor level together* pada Boxplots (untuk menampilkan boxplots), Aktifkan *Normality plots with tests*....Ok

Boxplots		Continue
<u>Factor levels together</u>	Histogram	Cancel
	<u>Trategram</u>	Help
Normality plots with tests Spread vs. Level with Lev	Dene Test	
Normality plots with tests Spread vs. Level with Lev None Rower estimation	Pene Test	
Normality plots with tests Spread vs. Level with Lev None Dewer estimation Dransformed Power	Natural log	

Gambar 80. Kotak Dialog" Explore: Plots"
<u>NAJMAH, SKM, MPH</u> <u>Public health Faculty, UNSRI</u>

4. Output Data

	5			
	-	-	Statistic	Std. Error
totchol	Mean	-	5.4364	.07117
	95% Confidence Interval for	Lower Bound	5.2962	
	Mean	Upper Bound	5.5766	
	5% Trimmed Mean		5.4075	
	Median		5.4000	
	Variance		1.211	
	Std. Deviation		1.10029	
	Minimum		2.40	
	Maximum		9.70	
	Range		7.30	
	Interquartile Range		1.50	
	Skewness		.437	.157
	Kurtosis		.676	.314
bmi	Mean		25.1175	.28833
	95% Confidence Interval for	Lower Bound	24.5495	
	Mean	Upper Bound	25.6855	
	5% Trimmed Mean		24.8664	
	Median		24.7700	
	Variance		19.869	
	Std. Deviation		4.45745	
	Minimum		15.81	
	Maximum		46.47	
	Range		30.66	
	Interquartile Range		5.85	
	Skewness		1.101	.157
	Kurtosis		2.990	.314

Descriptives

	Kolmogorov-Smirnov ^a				Shapiro-Wilk	
	Statistic	df	Sig.	Statistic	df	Sig.
totchol	.060	239	.036	.988	239	.037
bmi	.054	239	.085	.943	239	.000

Tests of Normality

a. Lilliefors Significance Correction

- 5. Interpretasi :
 - Bagian pertama adalah statistik deskriptif untuk variabel skor total kolesterol dan skor BMI. Ingat prinsip bahwa kita harus selalu mempelajari deskripsi variabel sebelum melangkah pada proses selanjutnya
 - b. Sebagaimana kesepakatan, kita menggunakan hasil uji Kolmogorov-Smirnov atau Shapiro-Wilk untuk menguji apakah sebaran data normal atau tidak. Pada uji test of normality Kolmogorov-Smirnov, nilai p dari total kolesterol=0.036 dan BMI=0.085. Oleh karena nilai skor BMI dan total kolesterol berada >0.01, maka ada bukti yang sedang untuk menolak hipotesa nul, dalam hal ini kita bisa menyimpulkan bahwa data mempunyai sebaran data normal.
- 6. Melakukan Uji Pearson
 - a. Analyze.....Correlate....Bivariate

Gambar 81. Proses Analisis Korelasi Pearson

- b. Masukkan kedua variabel ke dalam kotak variabel
- c. Pilih Uji Pearson pada kotak Correlation Coefficients
- d. Pilih two tail pada test of significance.....OK

 proxyid sex age 		⊻ariables: ∳ bmi ∳ totchol	Options
<pre></pre>	-		
Correlation	Coefficients	Spearman	
• Test of Sign	ificance		
Elag signific	ant correlations		

Gambar 82. Kotak Dialog "Bivariate Correlation"

e. Output

Correlations

	Correlation	าร	
		bmi	totchol
bmi	Pearson Correlation	1	.364**
	Sig. (2-tailed)		.000
	Ν	239	239
totchol	Pearson Correlation	.364**	1
	Sig. (2-tailed)	.000	
	Ν	239	239

**. Correlation is significant at the 0.01 level (2-tailed).

f. Interpretasi:

Dari hasil di atas diperoleh nilai sig <0.001 yang menunjukkan bahwa korelasi antara skor total kolesterol dan skor indeks bodi mass adalah bermakna. Nilai korelasi Pearson sebesar 0.364 menunjukkan korelasi positif dengan kekuatan korelasi yang sedang

g. Jika kita ingin membuat prediksi terhadap skor total kolesterol berdasarkan skor BMI, kita menggunakan *UJI REGRESI LINEAR SEDERHANA*

Langkah-langkah uji Regresi Linear Sederhana:

a. Analyze...... Regression...... Linear.

Gambar 79. Proses Analisi "Regresi Linear"

- b. Pilih variabel yang akan dianalisis, masukkan ke dalam kotak dependen (skor total kolesterol) dan independen (skor BMI).
- c. Klik OK.
- d. Outputnya sebagai berikut

 $_{age}148$

Regression

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	bmi ^a		Enter

a. All requested variables entered.

b. Dependent Variable: totchol

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.364 ^a	.133	.129	1.02688

a. Predictors: (Constant), bmi

ANOVA^b

			-			
Mode	I	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	38.221	1	38.221	36.246	.000 ^a
	Residual	249.912	237	1.054		
	Total	288.133	238			

a. Predictors: (Constant), bmi

b. Dependent Variable: totchol

Coefficients^a

		Unstandardize	ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	3.178	.381		8.344	.000
	bmi	.090	.015	.364	6.020	.000

a. Dependent Variable: totchol

Interpretasi:

- a. Koefisien Determinasi : R square. Pada tabel diatas diperoleh nilai 0,113. Berarti bahwa persamaan garis regresi yang kita peroleh dapat menerangkan 13,3% variasi nilai IBM
- b. Tabel Anova : melihat kecocokan (fitness) dari model terhadap data yang ada.
 - p value (sig) < alpha : Ho ditolak, berarti model regresi sederhana cocok dengan data yang ada

- p value (sig) > alpha : Ho diterima, berarti model regresi sederhana tidak cocok dengan data yang ada
- Pada tabel diatas diperoleh Sig < 0,0001< alpha 0,05 berarti bahwa model regresi sederhana cocok dengan data yang ada.
- c. Coefficients (a): untuk menentukan/ membuat persamaan regresi, nilai ini dapat dilihat pada kolom B. Nilai (a) didapat dari nilai Constant dan (b) dari nilai.

 $\mathbf{Y} = \mathbf{a} + \mathbf{b}\mathbf{x}$

Y= Skor total kolesterol dan x = nilai BMI

Skor Total Kolesterol = 3.18 + 0,09 (nilai BMI)

B. UJI KORELASI SPEARMAN

Langkah-langkah Uji Korelasi Spearman.(3)

- 1. Memeriksa syarat uji parametrik: sebaran data harus normal (wajib)
- 2. Bila memenuhi syarat (sebaran data normal), maka dipilih uji korelasi pearson
- 3. Bila tidak memenuhi syarat (sebaran data tidak normal) maka diupayakan untuk melakukan transformasi data supaya sebaran menjadi normal.
- 4. Bila sebaran data hasil transformasi normal, maka dipilih uji korelasi Pearson
- Jika sebaran hasil transformasi tidak normal, maka dipilih uji alternatifnya (*uji korelasi Spearman*)

OLAHRAGA OTAK 25.

Kita asumsikan data hubungan antara tingkat kolesterol dan bodi mass index (BMI) berdistribusi tidak normal dan transformasi tidak bisa membuat distribusi menjadi normal, alternatifnya kita menggunakan Melakukan Uji Spearman, dengan langkah-langkah sebagai berikut;

- A. Klik Analyze......Correlate....Bivariate
- B. Masukkan total kolesterol dan BMI ke dalam kotak variabel
- C. Pilih Uji Spearman pada kotak Correlation Coefficients
- D. Pilih two tail pada test of significance.....OK

 provyd sex age hgt wgt bmi_who genid smoke bmi c Correlation Coefficients Pearson Kendall's tau-b Spearman Test of Significance Two-tailed One-tailed Flag significant correlations 	A provuid	Variables:	Options
Image: Wogt Image: Borning with the second secon	<pre></pre>	for totchol	
genid smoke bmi c Correlation Coefficients Pearson Kendall's tau-b Spearman Test of Significance I wo-tailed One-tailed I wo-tailed One-tailed			
Image: Second Secon	💑 genid 🖉 📕		
 Pearson	A bmi c		
Test of Significance	Pearson Kendall's t	au-b 🗹 Spearman	
Elag significant correlations	Test of Significance Jwo-tailed One-tail	ed	
	Elag significant correlation	18	

Gambar 80. Kotak Dialog" Bivariate Correlations-Spearman"

E. Output

Nonparametric Correlations

		Correlations		
	-		bmi	totchol
Spearman's rho	bmi	Correlation Coefficient	1.000	.405**
		Sig. (2-tailed)		.000
		Ν	239	239
	totchol	Correlation Coefficient	.405	1.000
		Sig. (2-tailed)	.000	
		Ν	239	239

**. Correlation is significant at the 0.01 level (2-tailed).

F. Interpretasi:

Dari hasil di atas, diperoleh nilai p <0.001 yang menunjukkan bahwa korelasi antara kadar kolesterol dan bodi mass index bermakna. Nilai korelasi Spearman sebesar 0.405 menunjukkan bahwa arah korelasi positif dengan kekuatan korelasi sedang.

OLAHRAGA OTAK 26.

Bagaimana korelasi antara total kolesterol dan umur responden, total kolesterol dan berat badan responden?(Buka Data: Regresi_Korelasi_Julie S.sav(16))

BAB VII VISUALISASI GRAFIK

Visualisasi grafik merupakan salah satu teknik analisis deskriptif dengan penggambaran secara visual sehingga data menjadi lebih interaktif dalam penyajian data. Dalam SPSS banyak pilihan grafik yang akan ditampilkan. Untuk menjalankan prosedur ini langkah yang dilakukan sebagai berikut:

	7
Legacy Dialogs	🕨 🗽 Bar
	💭 🚻 <u>3</u> -D Bar
	🛃 Line
	Area
	Ø Pie
	High-Low
	Boxplot
	fff Error Bar
	A Population Pyramid
	NI Sector Det
	Scatter/Dot

1. Klik menu *Graphs.....Legacy Dialogs*.

Gambar 84. Proses Pembuatan Grafik

2. Pada menu *Graphs* ada beberapa grafik seperti bentuk pie, bar, histogram, dan sebagainya (Gambar 84)

Berikut ini akan dibahas beberapa contoh visualisasi grafik. Ada banyak pilihan grafik yang dapat divisualisasikan padas prosuder ini, diantaranya tipe bar, line, area, pie dan masih banyak lagi. Berikut ini beberapa contoh grafik Interactive, antara lain

A. TIPE BAR

Grafik memvisualisasikan data dalam diagram batang. Langkah-langkah:

- 1) Buka data 'Karakteristik responden_Jamban Sehat_Najm.sav'
- 2) Graphs.....Bar
- 3) Pilih jenis grafik Bar yang diinginkan, untuk ini kita memilih simple.. lalu klik define.

Bar Charts	X
Simple	
Clustered	
Stacked	
Data in Chart Are	
 Summaries for groups of Summaries of separate y Values of individual case 	f cases <u>v</u> ariables es
Define Cancel	Help

Gambar 85. Kotak Dialog 'Bar Chart'

4) Masukkan variabel 'pendidikan ibu' ke dalam ' Category Axis'. Kita bisa menampilkan grafik Bar, dalam bentuk jumlah, persentase pada 'Bar represent'. Kemudian kita bisa memberi judul dengan mengklik tombol 'titles' lalu OK

Define Simple Bar: Summari	es for Groups of Cases		X
NOMOR [no] Status Ekonomi Keluarg Status Kerja Ibu [kerjaibu] Menggunakan Jamban Umur Ibu (Tahun) [umuri	Bars Represent	O % of cases O Cum. %) tatistic Ferakhir [cliclikbu] no empty rows)	Itles Options
Use chart specifications fro	om:		
ОК	Paste Reset C	ancel Help	

Gambar 86. Kotak Dialog 'Define simple bar'

5) Output, kita bisa berkreasi lagi dengan hasil output grafik yang dihasilkan dengan mengkliknya dua kali, dan mencoba merubah warna grafik, judul dan kreasi lainnya.

NAJMAH, SKM, MPH

Public health Faculty, UNSRI

Gambar 87. Hasil Output pada Grafik Tipe Bar

B. TIPE PIE

Langkah-langkah;

1) Graphs......Legacy Dialogs.....Pie, lalu di kotak dialog 'Pie Chart', pilih ' summaries for groups of cases.

ata in Ch	art Are ——	
Summari	ies for <u>a</u> roups	of cases
🔵 Summari	ies of separate	e <u>v</u> ariable:
Values o	of individual ca	Ses

2) Masukkan variabel 'pendidikan ibu terakhir' ke kotak 'define slices by', jika kita ingin menambahkan judul pada grafik pie kita, kita tinggal mengklik 'titles' dan mengetik judul yang kita inginkan.

 ${}^{\rm Page}157$

 NOMOR [no] Status Ekonomi Keluarg Status Kerja Ibu [kerjaibu] Menggunakan Jamban Umur Ibu (Tahun) [umuri 	Slices Represent
	Define Slices by: Pendidikan Ibu Terakhir [didikbu] Panel by Rows:
	Nest variables (no empty rows)
Template	irom:

Gambar 88. Kotak Dialog 'Create Bar Chart ; Dots and Lines'

 Output, kita bisa mengcopy grafik di lembar output ke dokumen kita yang diketik di 'microsoft words' dengan mengklik kanan grafik pie, dan klik 'copy'

NAJMAH, SKM, MPH Public health Faculty, UNSRI

 $_{\rm Page}159$

Selamat mencoba dan berkreasi bentuk grafik lainnya

Daftar Pustaka

1. Sabri L, Sutanto PH. Modul Biostatistik dan Statistik Pascasarjana Program Studi IKM, Universitas Indonesia; 1999. Kesehatan Depok: Program

2. Santoso S. SPSS Versi 10, Mengolah Data Statistik secara Profesional. Jakarta: PT. Gramedia; 2002.

3. Dahlan S. Statistika untuk Kedokteran dan Kesehatan. Jakarta: PT Arkas; 2004.

4. Kirkwood BR, Sterne JA. Essential Medical Statistics India: Replika Press; 2007.

5. Hastono SP. Analisis Data. Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia; 2001.

6. Dahlan S. Besar sampel dalam penelitian Kedokteran dan Kesehatan. Jakarta: PT Arkans; 2005.

7. Elwood M. Critical appraisal of epidemiology studies and clinical trials. Third edition ed. New York: Oxford University Press; 2007.

8. SM Kalus, LH Kornman, JA Quinlivan. Managing back pain in pregnancy using a support garment, a radomised trial. An International Journal of Obstetrics and Gynaecology. 2007.

9. SPSS Incorporate. SPSS 15.0 Brief Guide. The United States: SPSS Inc; 2006.

10. Nuryanto. Teori Aplikasi SPSS dalam Mengolah Data di Bidang Kesehatan, disampaikan pada Pelatihan Aplikasi SPSS di Bidang Kesehatan'' di Aula Fakultas Kedokteran Unsri, 20 Juni 2006.; 2006.

11. Najmah, Farouk H, Hasyim H. Factors that related to mother behaviour in using healthy latrine at Musi River Zone (Puskesmas/ Public Health Center Nagaswidak). Jurnal Kedokteran dan Kesehatan FK Unsri. 2007;39(1).

12. Cooke SL. Introduction to SPSS 17. The University of Birmingham; 2010 [cited. Available from:

http://www.istraining.bham.ac.uk/documents/SPSS17_An_Introduction_to_SPSS.pdf.

13. Najmah. Hip structure associated with ageing and Hip fracture in women: Data from the geelong osteoporosis study- Data analysis

Melbourne: The University of Melbourne; 2009.

14. English D. Simple analysis of binary data. In: II EAM, editor.; 2008.

15. Pasco J, Henry M. The Geelong Osteoporosis Study, A Cohort study. Geelong, Australia: Australian Government; 2008

16. Simpson J. Data Exercise of Linear and Multiple Regression of factors related to total cholesterol. Linear and Logistic Regression. Victoria: The University of Melbourne; 2008.