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ABSTRACT: An autonomous vehicle's primary function is detecting and tracking the road
course precisely and correctly without a driver's assistance. As a result, implementing
appropriate controllers is critical for improving the vehicle's stability and movement
responsiveness. The performance of adaptive Stanley controlled is eva]uateda this paper
using numerical simulations. The Stanley controller's most common geometric controller for
vehicle path tracking algorithms is compared based on their trajectoramcking analyses on
various vehicle speed maneuvers. Stanley calculates steering based on the difference between
the vehicle's lateral posam and heading angle. The difference between desired coordinates
and present coordinates of the vehicle along the path is used to calculate lateral, longitudinal,
and vehicle heading orientation angle using the future prediction control technique. The
results demonstrate that the Stanley controller outperforms the emergency trajectory with
more consistent trajectory tracking and steady-state error.
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1. INTRODUCTION

The vehicle dynamic control on the road path by regulating the vehicle lateral dynamic
motion is essential in defining the vehicle's stability and accuracy in response to the path
tracking mechanism in developing an autonomous vehicle. Vehicle accidents are frequently
caused by a human mistake in the driving task, which can be reduced if the driving duty is done
autonomously by a machine [1-3]. Therefore, an advanced control technique must be used to
drive in various road conditions, including straight, curved, and other terrain types. As an
autopilot car capable of detecting the surrounding environment, making decisions, and
navigating itself with an anti-collision system, the autonomous vehicle will replace the driver.

Autonomous vehicles require sophisticated environmental recognition, path planning,
motion tracking, and real-time allocation and need linear and nonlinear vehicle models based
on dynamic and kinematic characteristics to solve trajectory tracking problems [5-6]. Each
controller will be installed on the vehicle to follow the reference road characteristics of straight
lines, sharp corners, and obstacle avoidance.

There are many types of controls for testing the performance of autonomous vehicles, such
as using future prediction control, PID, fuzzy logic, or even modeling using state-space models.
In this scenario, the future prediction control approach provides fecdl:ﬂ:k on the vehicle's future
position as the intended path compared to its present coordinate. The heading angle error,
longitudinal error, and lateral error are calculated from the global coordinates of reference
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points to the current vehicle's local position [7]. Certain variables or parameters must be
compared to guarantee vehicle stability to fulfill the control objectives. Those variables include
yaw rate and sideslip angle for a quick and exact reaction of required route tracking potential.
In addition, a robust and precise route tracking algorithm with an appropriate controller is
needed to achieve trajectory tracking amid unfavorable circumstances [8-10].

The effectiveness of steering control law on vehicle models is being investigated ufhg
primary controllers such as the Stanley Controller. The efficacy of the Stanley controller will
be analyzed at a speed of 10 m/s-25 m/s. The accuracy of the proposed controller is measured
by the resulting lateral and yaw errors. In addition to this, to get optimal accuracy, the controller
gain will be calculated using the particle swarm optimization (PSQO) algorithm.

2. MODEL DﬁNAMIC VEHICLE

The dynamic model is based on the two degrees of freedom (DOF) of a bicycle model,
which primarily consists of y§ motion and lateral acceleration utilizing Newton's second
equation of motion to describe the forces and moments acting on the vehicle body and tire.

This model is suitable for capturing the vehicle's lateral dynamics in low and medium-
speed environments. Because it does not have enough tire force style, this model is sufficient
to be applied to the roadway in most autonomous vehicle maneuvering analyses. However, the
linear model is not ideal in many designs and cases, following a reference path with a small
turning radius or high-speed maneuvers. Fig. 1 and 2 demonstrate the typical automobile
terminology used when modeling a vehicle and a linear bicycle model.
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Fig. 1. Vehicle view and its standard nomenclature used [6]
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Fig. 2. Linear Bicycle Model [6]

Lateral Motion equation:

mv(ﬁ’+r)=(Fyf+ F;,r)—r (1)
Y aw Motion equation:
Lr' =l . Fyp— I, .F, (2)
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Since this simplest planar is a linearized model which all the forces are simplified, the
vehicle model may be reduced into a state-space model representation by rearranging the yaw
and lateral motion equations, as shown in Equation 3:

x =Ax + Bu (3)
y=Cx+Du

where A, B, C, D, and the vehicle parameters are classified as followed:

o) g CrleCrip) (4)
A = mv mu?
I [T —Cplf—Cri}
Iz Izv
[ Cr (5)
mv
B=lens
L Iz
[(—C/=Cr)  (Crlr=Cyly) (6)
C= m mu2
0 1
€1 (7)
D= m]
[ 1

The characteristics of the vehicle are based on the minivan that will be utilized in the
analysis, vehicle parameter presented in Table 1. I#fhe vehicle yaw stability control, the first
equation of the linear state-space model, x' = [f,r/, 1s used to create the sideslip angle and yaw
rate response. Next, the actual vehicle's sideslip and yaw rate using the suggested controller
will be compared to the desired response to determine the tracking control.

Table 1: Vehicle variables and parameters

Symbol Unit Values Remarks
m kg 2023 vehicle mass
I kg.m? 6286 vehicle yaw inertia
Ir kg.m’ 900 vehicle roll inertia
I m 1.90 distance Centre of Gravity —[egar axle
ly m 1.26 distance Centre of Gravity — front axle
C, N/ rad 40200 cornering stiffness of Be rear tire
Cr N/ rad 62800 cornering stiffness of the front tire
v km/h 30 to 50 vehicle velocity interval

3
In contrastg the linear vehicle model, the nonlinear vehicle model may be represented and
stimulated like an actual vehicle for controller validation and assessment since all internal and
external pressures are considered (Fig. 3). However, the tire forces are the most critical
component that impacts the model since they disturb the vehicle's motion.
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Fig. 3. Nonlinear vehicle model with 7 DOF [7]

The tire model provides the proper tire dynamics in the real world [9]. The vehicle's forces and
moments are represented by the equations [10]:

E. = Fycos8p — Fyi5indp, + Frpcos8p — Fypsinéyp,. + Fzcos6, — Fyzsind, +
Fr4c086, — FyuSiné,,. (8)

E, = Fysindp + Fy1c0587; + Fypsindy, + F, 0565, + Fasind,, + Fyscos68, +
Fy4s5indyr + Fy4c0868,, 9)

M, = I[(=Fy,€086¢; + F,,15in0p — Fpc0565, + F),8inép,) + [ (Fy3c086, —
Fy35ind,; + Frac058, — Fyusind,,.) + L(Fysindp, + F1c058r + Fpsindp, +
Fyyc058¢,) + I(—Fy3sindy, — F3c056, — Fyysiné,,. — Fyucosé,, (10)

Fx's lateraire force is characterized as a linear function of tire cornering ffness and tire
sideslip angle for lower slip angle and slips ratio conditions. In contrast, Fy's longitudinal tire
force is given as a linear function of braking stiffness and tire slip ratio. Otherwise, the lateral
and longitudinal tire forces show nonlinear behavior at increasing slip angles and slip ratios.
While nonlinear vehicle models have varying degrees of freedom (DOF), throughout this case,
it has seven DOF, which indicate the vehicle's dynamic motion and complexity. The seven
degrees of freedom (DOF) are lateral, longitudinal, yaw, and four tire-wheel forces.

3. KINEMATIC

Kinematic motion is studying a vehicle's motion without respect for the vehicle's internal
and external forces, inertia, or energy. Kinematics may be defined in terms of the vehicle's
location, velocity, and acceleration [11]. Kinematic modeling is an essential method for
determining the vehicle's lateral motion concerning its sf#ed and acceleration, as well as its
yaw motion. In addition to formulating the route tracking error between the planned and actual
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trajectory of the vehicle location, it is frequently used with dynamic models to develop
controller algorithms.

Because the model assumes just one wheel per axle, it ignores the influence of slip from
each wheel in the vehicle's direction, which is finally defined as:

x cos® 0], (11)
Y]|=|sino 0 [t,b]
8’ 0o 1

The x represents longitudinal velocity, y represents lateral velocity, & is the vehicle's
orientation, and represents the vehicle's yaw rate. Because longitudinal is considered constant
and does not aid with route tracking guidance, only lateral or left/proper movement with yaw
rate is required in the controller.

As reference point x4, ys, and G may be acquired from the reference route established,
getting the global coordinates of the location and heading orientation of the vehicle is also
valuable for future prediction control or error computation. The vehicle's current location is
also stored in x., y., and &., allowing for comparison and error computation when the reference
point is subtracted. Matrix translation from global coordinate to vehicle local coordinate yields
a longitudinal error, x., lateral error, y., and heading error [12-13] as in equation follow:

xel | cosB, sinB, 0][Xa— *c
Ye| = |—sinB, cosB, (]l Ya — Ye
ee 0 0 1 ed - ec ”2J

4. CONTROL STRUCTURE

The proposed path tracking control system will be modeled after the block design shown
in Fig. 4. This block diagram's overall control system demonstrates that the first stfff in
developing the vehicle path tracking is to create a reference route or desired path using x and
y coordinates and a vehicle heading angle. Before feeding back to the lateral controller, the
error computation between the intended path and the predicted vehicle fcation is assessed.
Next, the nonlinear/linear lateral controller will estimate the appropriate steering wheel angle
to achieve zero path error. The vehicle model, Ehich includes both dynamic and kinematic
characteristics, will then create vehicle motion with the proper sideslip angle and yaw rate.
Consequently, the suggested control block diagram above is based on yaw rate monitoring. If
the lateral error is significant, a larger steering angle is generated to rotate the position vehicle
towards the intended route using a feedback closed-loop system using future prediction control.

PSO
/ Algorithm
Desired Heafling
TrajECtO v error Stanley Wheel Steering Vehicle o
Controller Dynamic ~ [Position

Fig. 4. Stanley controller with PSO algorithm for path tracking
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2
The particle swarm optimization technique is based on stochastic processes a.nd is built
ound a population of organisms/particles. This method is based on a model of a live creature,
such as flocks of birds. These creatures then interact based on social-psychological connections
in the same manner as live species do, and they can adapt to diverse conditions.

In order to find the best solution, starting orgfllisms/particles must be produced at random.
The method follows an absolute path by utilizing solution particle location and particle velocity
vectors as a guide. We may decide that a specific solution within a particular optimization
period is determined by the velocity vector, which defines our best solution.

It is calculated as a fitness funcgn, also known as the capacity to discover a better
solution. This type of vector denotes the personal best values for each organism inside the
system and is referred to as the unique best solution (pBest). In contrast, each particle swarm
with'a every singular moment has its best global position called gBest.

Initial locations for each organism within the search space are created randomly, which is
finally defined in equatfh (13). The algorithm then performs optimization cycles, with each
iteration searching for the current personal best solution (pBest) and global best solution
(gBest). Eq. 1 shows the core of the optimization algorithm, while Eq. 2 stands for updating
the particle location after each optimization cycle.

vy = vy + cyrand () (p; — x;) + czRand()(pg — x;) (13)

X; =%+ v (14)

5. STANLEY CONTROLLER

The Stanley Controller has demonstrated excellent data perception and path planning
capabilities. In addition, it provides excellent vehicle steering in both forward and backward
directions. Not only that, but tests have shown that, despite its simplicity, the Stanley Controller
outperforms other controllers, outperforming the Pure Pursuit Controller with more excellent
transient responsiveness and reduced overshoot. Stanley Controller previously won the
DARPA @and Challenge with an autonomous vehicle utilizing an intuitive steering control

le [12]. A nonlinear feedback function of the cross-track error (lateral error) is assessed from
the front axle center to the nearest path point in the Stanley Controller technique, as shown in
Fig. 5. The control law idea is preserved by steering the front wheels and maintaining them
aligned with the provided path by calculating the steering angle and heading error [13-14]. As
a result of the control law, the intended path tracking effect is achieved, with the conclusion
that as the lateral error rises, the wheels are guided closer to the route.

Mearast Point
on Path

Lateral error

Fig. 5. Stanley controller design [4]
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The Stanley Controller, which is the most basic and widely used @@ntroller nowadays, is
based on two properties: the heading error, which is the difference between{dhe trajectory
direction and the vehicle direction of motion, and the lateral error, which is determined by
evaluating the orientation of the vehicle's trajectory path. The vehicle's instantancous velocity
is represented by v. The mathematical equation for Stanley Controller is [12]:

8=¢@+tan! [k%) (15)

6. RESULTS

Stanley controller performance analysis was carried out on the emergency trajectory type.
Two-turn maneuvers are carried out by autonomous vehicles in a short time. The optimal
controller gain is determined using the PSO algorithm. Determination of the optimal gain is
calculated with the smallest lateral error RMSE fitness function.

desired
= = =Stanley
50 100 150
X (m)
Fig. 6. Performance Stanley controller for the emergency trajectory of 20 m/s vehicle
speed

lateral error (m)

2 4 6 8 10
time (s)

Fig. 7. Performance Stanley controller for lateral position tracking of various vehicle
speed
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Fig. 8. Performance Stanley controller for yaw tracking of various vehicle speed
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Fig. 9. Performance Stanley controller for steering of various vehicle speed

According to graphs, lateral position errors have increased with increasing the vehicle
speed (Fig. 7). For example, there has been a rise in RMSE lateral position with the vehicle
speed of 20 m/s. As a result, the error becomes 1.5 m.

The highest yaw error was in vehicle speeds above 20 m/s with road friction 1 (Fig. 8). As
we can see oifgfhe graphs, yaw error increased significantly with vehicle speed above 20 m/s.
Fig. 9 shows the steering wheel of the autonomous vehicle with various vehicle speeds. The
aggressiveness of the steering indicated a vehicle speed of 25 m/s.

7. CONCLUSIONS

Overall, the Stanley approach excelled in most cases when the vehicle speed of the
emergency trajectory was less than 20 m/s. The route tracking of the Stanley controller is
precise with less steady-state error at varying speeds when the gain tuning parameter is set
correctly. Aggressive maneuvering can be avoided by tuning the controller gain below the
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speed of 20m/s. Further analysis can be performed by compression with other types of
controllers. In addition, it can be done by analyzing various types of trajectories.
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