ANALISIS SENTIMEN ULASAN PRODUK MENGGUNAKAN BIDIRECTIONAL LONG SHORT-TERM MEMORY DAN WORD EMBEDDING

HAIRUNNISA, NADIA RIZKY and Abdiansah, Abdiansah and Yusliani, Novi (2023) ANALISIS SENTIMEN ULASAN PRODUK MENGGUNAKAN BIDIRECTIONAL LONG SHORT-TERM MEMORY DAN WORD EMBEDDING. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021281823039.pdf] Text
RAMA_55201_09021281823039.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (6MB) | Request a copy
[thumbnail of RAMA_55201_09021281823039_TURNITIN.pdf] Text
RAMA_55201_09021281823039_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (8MB) | Request a copy
[thumbnail of RAMA_55201_09021281823039_0001108401_0008118205_01_front_ref.pdf] Text
RAMA_55201_09021281823039_0001108401_0008118205_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[thumbnail of RAMA_55201_09021281823039_0001108401_0008118205_02.pdf] Text
RAMA_55201_09021281823039_0001108401_0008118205_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021281823039_0001108401_0008118205_03.pdf] Text
RAMA_55201_09021281823039_0001108401_0008118205_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (209kB) | Request a copy
[thumbnail of RAMA_55201_09021281823039_0001108401_0008118205_05.pdf] Text
RAMA_55201_09021281823039_0001108401_0008118205_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (782kB) | Request a copy
[thumbnail of RAMA_55201_09021281823039_0001108401_0008118205_04.pdf] Text
RAMA_55201_09021281823039_0001108401_0008118205_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_55201_09021281823039_0001108401_0008118205_06.pdf] Text
RAMA_55201_09021281823039_0001108401_0008118205_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (8kB) | Request a copy
[thumbnail of RAMA_55201_09021281823039_0001108401_0008118205_07_ref.pdf] Text
RAMA_55201_09021281823039_0001108401_0008118205_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (463kB) | Request a copy
[thumbnail of RAMA_55201_09021281823039_0001108401_0008118205_08_lamp.pdf] Text
RAMA_55201_09021281823039_0001108401_0008118205_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (105kB) | Request a copy

Abstract

Sentiment analysis is a computational study of human opinions, sentiments, emotions, and behavior toward entities or attributes expressed through written text. Sentiment analysis plays a significant role for companies and organizations because public opinion about their products and services is valuable for business strategy and evaluation. This research developed a system to classify product review sentiment using Bidirectional Long Short-Term Memory (Bi-LSTM) algorithm and Word Embedding, Word2Vec as the embedding layer. The built system uses two models, the base model, which has the same parameter configuration as the CNN model used in previous research, and the tuned model, whose parameter configuration is based on the results of hyperparameter tuning. The results showed that the second model has the best performance with an accuracy of 90.33%, precision of 99.41%, recall of 90.29%, and F1-Score of 94.61%.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Sentimen Analisis, Ulasan Produk, Bidirectional Long Short Term-Memory, Word Embedding, Word2Vec
Subjects: Q Science > QA Mathematics > QA75-76.95 Calculating machines > QA76.9.B45 Big data. Machine learning. Quantitative research. Metaheuristics.
Q Science > QA Mathematics > QA8.9-QA10.3 Computer science. Artificial intelligence. Computational complexity. Data structures (Computer scienc. Mathematical Logic and Formal Languages
T Technology > T Technology (General) > T1-995 Technology (General)
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Nadia Rizky Hairunnisa
Date Deposited: 29 May 2023 04:15
Last Modified: 29 May 2023 04:15
URI: http://repository.unsri.ac.id/id/eprint/105630

Actions (login required)

View Item View Item