PERBANDINGAN KINERJA KLASIFIKASI ABNORMALITAS JANTUNG JANIN DENGAN MENGGUNAKAN 10 STRUKTUR CONVOLUTIONAL NEURAL NETWORK

FAHRI, MUHAMMAD FAZRIL and ‪Siti, ‪Nurmaini (2023) PERBANDINGAN KINERJA KLASIFIKASI ABNORMALITAS JANTUNG JANIN DENGAN MENGGUNAKAN 10 STRUKTUR CONVOLUTIONAL NEURAL NETWORK. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011281924043_0002085908_01_front_ref.pdf] Text
RAMA_56201_09011281924043_0002085908_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[thumbnail of RAMA_56201_09011281924043_0002085908_02.pdf] Text
RAMA_56201_09011281924043_0002085908_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (730kB) | Request a copy
[thumbnail of RAMA_56201_09011281924043_0002085908_03.pdf] Text
RAMA_56201_09011281924043_0002085908_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (212kB) | Request a copy
[thumbnail of RAMA_56201_09011281924043_0002085908_04.pdf] Text
RAMA_56201_09011281924043_0002085908_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (6MB) | Request a copy
[thumbnail of RAMA_56201_09011281924043_0002085908_05.pdf] Text
RAMA_56201_09011281924043_0002085908_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (9kB) | Request a copy
[thumbnail of RAMA_56201_09011281924043_0002085908_06_ref.pdf] Text
RAMA_56201_09011281924043_0002085908_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (138kB) | Request a copy
[thumbnail of RAMA_56201_09011281924043_0002085908_07_lamp.pdf] Text
RAMA_56201_09011281924043_0002085908_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (683kB) | Request a copy
[thumbnail of RAMA_56201_09011281924043.pdf] Text
RAMA_56201_09011281924043.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (10MB) | Request a copy
[thumbnail of RAMA_56201_09011281924043_TURNITIN.pdf] Text
RAMA_56201_09011281924043_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (28MB) | Request a copy

Abstract

The use of Artificial Intelligence Technology in the field of Computer Vision has enabled the classification of fetal heart abnormalities by utilizing one of the Classification approaches. With technological advances, the image classification process can be implemented using Deep Learning (DL) models. This research uses the architecture of 10 Convolutional Neural Network Architectures for the Fetal Heart Abnormality Classification process. There are 10 Convolutional Neural Network Architectures namely Densenet121, Densenet169, Densenet201, InceptionV3, Resnet50, Resnet101, Resnet152, VGG16, VGG19, and Xception. The best Unseen Test performance is achieved by the Resnet101 model. Unseen performance results on Accuracy, Sensitivity, and Specificity evaluation metrics averaged 87.7%, 57% and 93.8%.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Kecerdasan Buatan, Visi Komputer, Klasifikasi, Citra Medis jantung janin, Deep Learning
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7885-7895 Computer engineering. Computer hardware
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: Muhammad Fazril Fahri
Date Deposited: 04 Aug 2023 08:32
Last Modified: 04 Aug 2023 08:32
URI: http://repository.unsri.ac.id/id/eprint/125586

Actions (login required)

View Item View Item