ANALISIS SENTIMEN KOMENTAR INSTAGRAM MENGGUNAKAN LONG SHORT-TERM MEMORY (LSTM) DAN WORD2VEC

AHMAD, SANDY ARIB and Abdiansah, Abdiansah and Yusliani, Novi (2023) ANALISIS SENTIMEN KOMENTAR INSTAGRAM MENGGUNAKAN LONG SHORT-TERM MEMORY (LSTM) DAN WORD2VEC. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021281823064.pdf] Text
RAMA_55201_09021281823064.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021281823064_TURNITIN.pdf] Text
RAMA_55201_09021281823064_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (7MB) | Request a copy
[thumbnail of RAMA_55201_09021281823064_0001108401_0008118205_01_front_ref.pdf] Text
RAMA_55201_09021281823064_0001108401_0008118205_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (493kB)
[thumbnail of RAMA_55201_09021281823064_0001108401_0008118205_02.pdf] Text
RAMA_55201_09021281823064_0001108401_0008118205_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (268kB) | Request a copy
[thumbnail of RAMA_55201_09021281823064_0001108401_0008118205_03.pdf] Text
RAMA_55201_09021281823064_0001108401_0008118205_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (294kB) | Request a copy
[thumbnail of RAMA_55201_09021281823064_0001108401_0008118205_04.pdf] Text
RAMA_55201_09021281823064_0001108401_0008118205_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (366kB) | Request a copy
[thumbnail of RAMA_55201_09021281823064_0001108401_0008118205_05.pdf] Text
RAMA_55201_09021281823064_0001108401_0008118205_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (654kB) | Request a copy
[thumbnail of RAMA_55201_09021281823064_0001108401_0008118205_06.pdf] Text
RAMA_55201_09021281823064_0001108401_0008118205_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (78kB) | Request a copy
[thumbnail of RAMA_55201_09021281823064_0001108401_0008118205_07_ref.pdf] Text
RAMA_55201_09021281823064_0001108401_0008118205_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (150kB) | Request a copy
[thumbnail of RAMA_55201_09021281823064_0001108401_0008118205_08_lamp.pdf] Text
RAMA_55201_09021281823064_0001108401_0008118205_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (258kB) | Request a copy

Abstract

Social media is a means for people to express their opinions on various topics that occur in the world. One of the most widely used social media is Instagram. Opinions in the form of comments on Instagram are generally written using abbreviated and non-standard language. In analyzing these comments, a method is needed to sort the comments to make it easier to determine the sentiment of the comments. Long Short-Term Memory (LSTM) along with Word Embedding Word2Vec is one of the deep learning methods that are widely used in sentiment analysis research. The result of this research is a model that produces 91% accuracy, 92.70% precision, 89% recall, 90.81% f-measure. Based on the test results, the LSTM method along with Word2Vec can be used to perform sentiment analysis of Instagram comments.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Analisis Sentimen, Long Short-Term Memory, Word2Vec, Deep Learning
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Sandy Arib Ahmad
Date Deposited: 14 Aug 2023 06:32
Last Modified: 14 Aug 2023 06:32
URI: http://repository.unsri.ac.id/id/eprint/127138

Actions (login required)

View Item View Item