FORECASTING JUMLAH PENDUDUK INDONESIA MENGGUNAKAN DEEP LEARNING

PUTRA, ALFATH ADITYA and Supardi, Julian and Rodiah, Desty (2024) FORECASTING JUMLAH PENDUDUK INDONESIA MENGGUNAKAN DEEP LEARNING. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021281924027.pdf] Text
RAMA_55201_09021281924027.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_55201_09021281924027_TURNITIN.pdf] Text
RAMA_55201_09021281924027_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_55201_09021281924027_0010077210_0021128905_01_front_ref.pdf] Text
RAMA_55201_09021281924027_0010077210_0021128905_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (947kB)
[thumbnail of RAMA_55201_09021281924027_0010077210_0021128905_02.pdf] Text
RAMA_55201_09021281924027_0010077210_0021128905_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (257kB) | Request a copy
[thumbnail of RAMA_55201_09021281924027_0010077210_0021128905_03.pdf] Text
RAMA_55201_09021281924027_0010077210_0021128905_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (95kB) | Request a copy
[thumbnail of RAMA_55201_09021281924027_0010077210_0021128905_04.pdf] Text
RAMA_55201_09021281924027_0010077210_0021128905_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (557kB) | Request a copy
[thumbnail of RAMA_55201_09021281924027_0010077210_0021128905_05.pdf] Text
RAMA_55201_09021281924027_0010077210_0021128905_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (76kB) | Request a copy
[thumbnail of RAMA_55201_09021281924027_0010077210_0021128905_06.pdf] Text
RAMA_55201_09021281924027_0010077210_0021128905_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (13kB) | Request a copy
[thumbnail of RAMA_55201_09021281924027_0010077210_0021128905_07_ref.pdf] Text
RAMA_55201_09021281924027_0010077210_0021128905_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (138kB) | Request a copy
[thumbnail of RAMA_55201_09021281924027_0010077210_0021128905_08_lamp.pdf] Text
RAMA_55201_09021281924027_0010077210_0021128905_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (746kB) | Request a copy

Abstract

The rate of population growth has three main factors, these are natality, mortality, and migration. These three factors can be used to estimate the population in the future. Based on this population prediction, it can be used for various policies in development planning in a region. In this research, the autoencoder method will be use for predict population. With this method, the input dimensions will reduce to a code, then input will be reconstructed back into an output withdimension same as before. To verify proposed method, Indonesian population data from 1950 until 2022 will be used, the results of testing with autoencoder with the best accuracy are MSE 0.000043483, MAE 0.005248234, and R2 0.990231442.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Menggunakan Deep Learning, Forecasting Jumlah Penduduk
Subjects: T Technology > T Technology (General) > T1-995 Technology (General)
T Technology > T Technology (General) > T57.6-57.97 Operations research. Systems analysis
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Alfath Aditya Putra
Date Deposited: 23 Feb 2024 04:31
Last Modified: 23 Feb 2024 04:32
URI: http://repository.unsri.ac.id/id/eprint/141039

Actions (login required)

View Item View Item