ANALISIS SENTIMEN TERHADAP KEMACETAN LALU LINTAS MENGGUNAKAN ALGORITMA RANDOM FOREST BERDASARKAN DATA PADA MEDIA SOSIAL DAN REKAMAN CCTV DI JALAN PROTOKOL PALEMBANG

ARRAFI, M. REZA FADHIL and Oklilas, Ahmad Fali (2025) ANALISIS SENTIMEN TERHADAP KEMACETAN LALU LINTAS MENGGUNAKAN ALGORITMA RANDOM FOREST BERDASARKAN DATA PADA MEDIA SOSIAL DAN REKAMAN CCTV DI JALAN PROTOKOL PALEMBANG. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011282025047_COVER.jpg]
Preview
Image
RAMA_56201_09011282025047_COVER.jpg - Cover Image
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Preview
[thumbnail of RAMA_56201_09011282025047.pdf] Text
RAMA_56201_09011282025047.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_56201_09011282025047_TURNITIN.pdf] Text
RAMA_56201_09011282025047_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_56201_09011282025047_0015107201_01_front_ref.pdf] Text
RAMA_56201_09011282025047_0015107201_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (741kB)
[thumbnail of RAMA_56201_09011282025047_0015107201_02.pdf] Text
RAMA_56201_09011282025047_0015107201_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (449kB) | Request a copy
[thumbnail of RAMA_56201_090112825047_0015107201_03.pdf] Text
RAMA_56201_090112825047_0015107201_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (653kB) | Request a copy
[thumbnail of RAMA_56201_09011282025047_0015107201_04.pdf] Text
RAMA_56201_09011282025047_0015107201_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_56201_09011282025047_0015107201_05.pdf] Text
RAMA_56201_09011282025047_0015107201_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (150kB) | Request a copy
[thumbnail of RAMA_56201_09011282025047_0015107201_06_ref.pdf] Text
RAMA_56201_09011282025047_0015107201_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (213kB) | Request a copy
[thumbnail of RAMA_56201_09011282025047_0015107201_07_lamp.pdf] Text
RAMA_56201_09011282025047_0015107201_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (881kB) | Request a copy

Abstract

This research aims to analyze public sentiment towards traffic congestion in Palembang City using Random Forest algorithm then video recording using YOLOv8 followed by Random Forest. The method used includes data collection from Social Media platforms and videos about traffic jams, followed by analysis using object detection techniques and sentiment classification. Calculation of video recordings obtained an accuracy result of 89.31% for motorcycles, 87.01% for cars, 100% for tricycles with an average value in the video truth table of 92.10%. The evaluation results of the Random Forest algorithm work quite well in analyzing Social Media sentiment, with an accuracy rate of 90.90% on training data and 83.58% on test data, From a total of 66 rows of data analyzed, 14 data were found that matched or matched between Random Forest predictions and video recording data, resulting in an accuracy rate of 21.21%. Because the accuracy value is quite low, it is recommended to use other better methods, this research shows social media as an alternative source of information in monitoring traffic conditions.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: sentiment analysis, traffic jam, yolov8, random forest social media, video recording
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: M.Reza Fadhil Arrafi
Date Deposited: 11 Apr 2025 01:35
Last Modified: 11 Apr 2025 01:35
URI: http://repository.unsri.ac.id/id/eprint/161242

Actions (login required)

View Item View Item