DWITA, EPRILA and Novi, Yusliani and Kanda Januar, Miraswan (2019) KLASIFIKASI SENTIMEN TWITTER TERHADAP TRANSPORTASI OJEK ONLINE MENGGUNAKAN METODE LEARNING VEKTOR QUANTIZATION 2 (LVQ 2). Undergraduate thesis, Sriwijaya University.
Preview |
Text
RAMA_55201_09021381520052_0008118205_0009019002_01_front_ref.pdf - Accepted Version Available under License Creative Commons Public Domain Dedication. Download (734kB) | Preview |
Text
RAMA_55201_09021381520052.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (3MB) | Request a copy |
|
Text
RAMA_55201_09021381520052_0008118205_0009019002_02.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (332kB) | Request a copy |
|
Text
RAMA_55201_09021381520052_0008118205_0009019002_03.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (733kB) | Request a copy |
|
Text
RAMA_55201_09021381520052_0008118205_0009019002_04.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (1MB) | Request a copy |
|
Text
RAMA_55201_09021381520052_0008118205_0009019002_05.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (876kB) | Request a copy |
|
Text
RAMA_55201_09021381520052_0008118205_0009019002_06.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (90kB) | Request a copy |
|
Text
RAMA_55201_09021381520052_0008118205_0009019002_07_ref.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (112kB) | Request a copy |
|
Text
RAMA_55201_09021381520052_0008118205_0009019002_08_lamp.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (655kB) | Request a copy |
|
Text
RAMA_55201_09021381520052_TURNITIN.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (20MB) | Request a copy |
Abstract
Twitter social media is widely used by the community to convey sentiments towards ojek online transportation. Data from community sentiments towards ojek online transportation can be transformed into information through sentiment analysis. Therefore, this study aims to classify sentiment data into 2 sentiment classes, namely positive sentiment, and negative sentiment. The calcification method used in this study is Learning Vector Quantization 2 (LVQ2). The results of the system show that the LVQ2 algorithm produces an optimal accuracy of 94.37% with a combination of learning rate value parameters of 0.1, widow value 0.2, the learning rate multiplier value is 0.6, the maximum number of iterations is 6 iterations, the percentage of the training data is 90%, with the training data 455, and the testing data is 55 data, and the minimum alpha is 0.01.
Item Type: | Thesis (Undergraduate) |
---|---|
Uncontrolled Keywords: | Learning Vector Quantization 2 (LVQ 2), Twitter, Sentiment Analysis, Ojek Online |
Subjects: | T Technology > T Technology (General) > T1-995 Technology (General) |
Divisions: | 09-Faculty of Computer Science > 55201-Informatics (S1) |
Depositing User: | Users 3062 not found. |
Date Deposited: | 14 Nov 2019 04:44 |
Last Modified: | 14 Nov 2019 04:51 |
URI: | http://repository.unsri.ac.id/id/eprint/16221 |
Actions (login required)
View Item |