OPTIMASI METODE K-MEANS DENGAN ALGORITMA PSO PADA PENGKLASTERAN DATA BERDIMENSI TINGGI

CHANDRA, ARDI WASILA and Primartha, Rifkie (2019) OPTIMASI METODE K-MEANS DENGAN ALGORITMA PSO PADA PENGKLASTERAN DATA BERDIMENSI TINGGI. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021181520014.pdf] Text
RAMA_55201_09021181520014.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (7MB) | Request a copy
[thumbnail of RAMA_55201_09021181520014_0001067709_01_front_ref.pdf]
Preview
Text
RAMA_55201_09021181520014_0001067709_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Preview
[thumbnail of RAMA_55201_09021181520014_0001067709_02.pdf] Text
RAMA_55201_09021181520014_0001067709_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (234kB) | Request a copy
[thumbnail of RAMA_55201_09021181520014_0001067709_03.pdf] Text
RAMA_55201_09021181520014_0001067709_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (259kB) | Request a copy
[thumbnail of RAMA_55201_09021181520014_0001067709_04.pdf] Text
RAMA_55201_09021181520014_0001067709_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (760kB) | Request a copy
[thumbnail of RAMA_55201_09021181520014_0001067709_05.pdf] Text
RAMA_55201_09021181520014_0001067709_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021181520014_0001067709_06.pdf] Text
RAMA_55201_09021181520014_0001067709_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (13kB) | Request a copy
[thumbnail of RAMA_55201_09021181520014_0001067709_07_ref.pdf] Text
RAMA_55201_09021181520014_0001067709_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (75kB) | Request a copy
[thumbnail of RAMA_55201_09021181520014_0001067709_08_lamp.pdf] Text
RAMA_55201_09021181520014_0001067709_08_lamp.pdf - Accepted Version
Restricted to Repository staff only

Download (304kB) | Request a copy
[thumbnail of RAMA_55201_09021181520014_TURNITIN.pdf] Text
RAMA_55201_09021181520014_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (9MB) | Request a copy

Abstract

K-means is one of the clustering methods whose clustering results depend on the position of the initial centroid. The initial centroid commonly used in the k- means method is the initial centroid randomly generated, initial centroids that are randomly generated usually often causes k-means to be trapped in the optimum local solution, therefore in this study we will examine the effect of particle swarm optimization which are wrong one optimization algorithm that can do a global search in determining the initial centroid of k-means. Clustering k-means with random initial centroids and initial centroids from particle swarm optimization calculations are each tested on data dimensional reduction and without dimensional reduction. Based on the results of evaluation of the results of k-means clustering with the initial centroid of particle swarm optimization able to improve cluster quality, both if tested on reduction and without reduction data, namely with the percentage change value of 43.8% in data without dimensional reduction and 53.4% in the data with dimensional reduction. Although it can increase overall computational time but, the initial centroid obtained from particle swarm optimization makes the complexity of k-means work simpler.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Clustering, K-Means, Particle Swarm Optimization, Principal Component Analysis, Davies Bouldin Index.
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Users 3063 not found.
Date Deposited: 18 Nov 2019 02:19
Last Modified: 18 Nov 2019 02:19
URI: http://repository.unsri.ac.id/id/eprint/16222

Actions (login required)

View Item View Item