PERBANDINGAN ALGORITMA INDOBERT, NAIVE BAYES, SVM, DAN KNN TERHADAP ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI M-PASPOR DI GOOGLE PLAY STORE

PRAKOSO, SINDU and Tania, Ken Ditha (2024) PERBANDINGAN ALGORITMA INDOBERT, NAIVE BAYES, SVM, DAN KNN TERHADAP ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI M-PASPOR DI GOOGLE PLAY STORE. Undergraduate thesis, Universitas Sriwijaya.

[thumbnail of RAMA_57201_09031382126160_cover.png]
Preview
Image
RAMA_57201_09031382126160_cover.png - Accepted Version

Download (82kB) | Preview
[thumbnail of RAMA_57201_09031382126160.pdf] Text
RAMA_57201_09031382126160.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_57201_09031382126160_TURNITIN.pdf] Text
RAMA_57201_09031382126160_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_57201_09031382126160_0018078502_01_front_ref.pdf] Text
RAMA_57201_09031382126160_0018078502_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (455kB)
[thumbnail of RAMA_57201_09031382126160_0018078502_02.pdf] Text
RAMA_57201_09031382126160_0018078502_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (295kB) | Request a copy
[thumbnail of RAMA_57201_09031382126160_0018078502_03.pdf] Text
RAMA_57201_09031382126160_0018078502_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (217kB) | Request a copy
[thumbnail of RAMA_57201_09031382126160_0018078502_04.pdf] Text
RAMA_57201_09031382126160_0018078502_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (668kB) | Request a copy
[thumbnail of RAMA_57201_09031382126160_0018078502_05.pdf] Text
RAMA_57201_09031382126160_0018078502_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (150kB) | Request a copy
[thumbnail of RAMA_57201_09031382126160_0018078502_06_ref.pdf] Text
RAMA_57201_09031382126160_0018078502_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (105kB) | Request a copy
[thumbnail of RAMA_57201_09031382126160_0018078502_07_lamp.pdf] Text
RAMA_57201_09031382126160_0018078502_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Attribution Share Alike.

Download (697kB) | Request a copy

Abstract

The development of information technology is very fast along with the progress of the times making all aspects of life switch to digital. The M-Passport application is an application that can be used by the public to apply for new passports and passport replacements online. The M-Passport application has various responses, both positive, negative and neutral, from users listed in reviews on the Google Play Store. With the large amount of review data, sentiment analysis is needed to understand sentiment patterns efficiently. This study compares the performance of the Naïve Bayes, SVM, KNN, and IndoBERT algorithms in sentiment analysis of M-Passport application reviews.. The results show that the IndoBERT algorithm excels with 99% accuracy, followed by SVM with 98% accuracy, while Naïve Bayes and KNN have 91% and 67% accuracy respectively.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Sentiment Analysis, M-Paspor, IndoBERT,Naïve Bayes, SVM, KNN
Subjects: T Technology > T Technology (General) > T58.6-58.62 Management information systems
Divisions: 09-Faculty of Computer Science > 57201-Information Systems (S1)
Depositing User: Sindu Prakoso
Date Deposited: 10 Jan 2025 05:01
Last Modified: 10 Jan 2025 05:01
URI: http://repository.unsri.ac.id/id/eprint/163667

Actions (login required)

View Item View Item