DETEKSI KEPADATAN KENDARAAN DENGAN PERBANDINGAN ANALISA DATA MEDIA SOSIAL DAN ELCTRONIC TRAFFIC LAW ENFORCEMENT (ETLE) DIRLANTAS POLDA SUMSEL MENGGUNAKAN METODE K-NEAREST NEIGHBOR (K-NN)

SARI, TIARA MUTIA and Oklilas, Ahmad Fali (2025) DETEKSI KEPADATAN KENDARAAN DENGAN PERBANDINGAN ANALISA DATA MEDIA SOSIAL DAN ELCTRONIC TRAFFIC LAW ENFORCEMENT (ETLE) DIRLANTAS POLDA SUMSEL MENGGUNAKAN METODE K-NEAREST NEIGHBOR (K-NN). Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011182025009_Cover.jpeg] Image
RAMA_56201_09011182025009_Cover.jpeg - Cover Image
Available under License Creative Commons Public Domain Dedication.

Download (79kB)
[thumbnail of RAMA_56201_09011182025009.pdf] Text
RAMA_56201_09011182025009.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_56201_09011182025009_TURNITIN.pdf] Text
RAMA_56201_09011182025009_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (8MB) | Request a copy
[thumbnail of RAMA_56201_09011182025009_0015107201_01_front_ref.pdf] Text
RAMA_56201_09011182025009_0015107201_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[thumbnail of RAMA_56201_09011182025009_0015107201_02.pdf] Text
RAMA_56201_09011182025009_0015107201_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (269kB) | Request a copy
[thumbnail of RAMA_56201_09011182025009_0015107201_03.pdf] Text
RAMA_56201_09011182025009_0015107201_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (390kB) | Request a copy
[thumbnail of RAMA_56201_09011182025009_0015107201_04.pdf] Text
RAMA_56201_09011182025009_0015107201_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_56201_09011182025009_0015107201_05.pdf] Text
RAMA_56201_09011182025009_0015107201_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (66kB) | Request a copy
[thumbnail of RAMA_56201_09011182025009_0015107201_06_ref.pdf] Text
RAMA_56201_09011182025009_0015107201_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (159kB) | Request a copy
[thumbnail of RAMA_56201_09011182025009_0015107201_07_lamp.pdf] Text
RAMA_56201_09011182025009_0015107201_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (706kB) | Request a copy

Abstract

This study aims to compare data from two different sources, namely social media data and data from the Electronic Traffic Law Enforcement (ETLE) system, using the K-Nearest Neighbor method, in terms of the similarity between the actual labels and predicted results. The findings indicate that the similarity between the actual labels and predicted results for social media data reached 87.69%, while the similarity between social media data and ETLE data was 66.92%. This study provides insights into the potential use of social media data as an additional tool for analyzing road user behavior.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: K-Nearest Neighbor, Instagram social media, vehicle density
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: Tiara Mutia Sari
Date Deposited: 25 Jun 2025 01:28
Last Modified: 25 Jun 2025 01:28
URI: http://repository.unsri.ac.id/id/eprint/164420

Actions (login required)

View Item View Item