PERBANDINGAN ANALISIS STATIS DAN DINAMIS PADA DETEKSI WANNACRY RANSOMWARE

DWIYONO, LUQMAN AGUS and Stiawan, Deris and Afifah, Nurul (2025) PERBANDINGAN ANALISIS STATIS DAN DINAMIS PADA DETEKSI WANNACRY RANSOMWARE. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011382025148_cover.jpg] Image
RAMA_56201_09011382025148_cover.jpg - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (270kB) | Request a copy
[thumbnail of RAMA_56201_09011382025148.pdf] Text
RAMA_56201_09011382025148.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_56201_09011382025148_TURNITIN.pdf] Text
RAMA_56201_09011382025148_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (6MB) | Request a copy
[thumbnail of RAMA_56201_09011382025148_0003047905_8958340022_01_front_ref.pdf] Text
RAMA_56201_09011382025148_0003047905_8958340022_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (947kB)
[thumbnail of RAMA_56201_09011382025148_0003047905_8958340022_02.pdf] Text
RAMA_56201_09011382025148_0003047905_8958340022_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (726kB) | Request a copy
[thumbnail of RAMA_56201_09011382025148_0003047905_8958340022_03.pdf] Text
RAMA_56201_09011382025148_0003047905_8958340022_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (717kB) | Request a copy
[thumbnail of RAMA_56201_09011382025148_0003047905_8958340022_04.pdf] Text
RAMA_56201_09011382025148_0003047905_8958340022_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_56201_09011382025148_0003047905_8958340022_05.pdf] Text
RAMA_56201_09011382025148_0003047905_8958340022_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (221kB) | Request a copy
[thumbnail of RAMA_56201_09011382025148_0003047905_8958340022_06_ref.pdf] Text
RAMA_56201_09011382025148_0003047905_8958340022_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (224kB) | Request a copy
[thumbnail of RAMA_56201_09011382025148_0003047905_8958340022_07_lamp.pdf] Text
RAMA_56201_09011382025148_0003047905_8958340022_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (545kB) | Request a copy

Abstract

Ransomware is a type of malware that encrypts the victim's data and demands a ransom to restore access, with WannaCry being one of the most notorious variants exploiting EternalBlue on the SMB protocol. This study compares static and dynamic analysis methods in detecting WannaCry ransomware to evaluate their effectiveness. Static analysis is performed without executing the ransomware, using tools such as Exeinfo PE, HxD Editor, and PeStudio to identify its internal structure. On the other hand, dynamic analysis involves executing the ransomware in an isolated environment using tools like Process Monitor, Wireshark, and RegShot to observe its runtime behavior. The study results show that both methods achieve a 100% detection rate, each with its strengths: static analysis excels in initial detection speed and safety, while dynamic analysis provides a deeper understanding of the ransomware's behavior. The combination of these methods offers a more comprehensive approach to detecting and understanding WannaCry ransomware, which is expected to serve as a foundation for developing more effective detection methods in the future.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: WannaCry, ransomware, analisis statis, analisis dinamis, deteksi malware.
Subjects: T Technology > T Technology (General) > T1-995 Technology (General)
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: Luqman Agus Dwiyono
Date Deposited: 16 Jan 2025 13:45
Last Modified: 16 Jan 2025 13:45
URI: http://repository.unsri.ac.id/id/eprint/165177

Actions (login required)

View Item View Item