PERBANDINGAN SELEKSI FITUR PARTICLE SWARM OPTIMIZATION (PSO), ANT COLONY OPTIMIZATION (ACO), DAN GENETIC ALGORITHM (GA) PADA KLASIFIKASI KANKER PARU-PARU

SIMBOLON, ICHIRO GABRIEL RIVALDO and Kurniati, Rizki and Darmawahyuni, Annisa (2025) PERBANDINGAN SELEKSI FITUR PARTICLE SWARM OPTIMIZATION (PSO), ANT COLONY OPTIMIZATION (ACO), DAN GENETIC ALGORITHM (GA) PADA KLASIFIKASI KANKER PARU-PARU. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021282025084.pdf] Text
RAMA_55201_09021282025084.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_55201_09021282025084_TURNITIN.pdf] Text
RAMA_55201_09021282025084_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_55201_09021282025084_0012079104_8968340022_01_front_ref.pdf] Text
RAMA_55201_09021282025084_0012079104_8968340022_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (597kB)
[thumbnail of RAMA_55201_09021282025084_0012079104_8968340022_02.pdf] Text
RAMA_55201_09021282025084_0012079104_8968340022_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (351kB) | Request a copy
[thumbnail of RAMA_55201_09021282025084_0012079104_8968340022_03.pdf] Text
RAMA_55201_09021282025084_0012079104_8968340022_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (225kB) | Request a copy
[thumbnail of RAMA_55201_09021282025084_0012079104_8968340022_04.pdf] Text
RAMA_55201_09021282025084_0012079104_8968340022_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (455kB) | Request a copy
[thumbnail of RAMA_55201_09021282025084_0012079104_8968340022_05.pdf] Text
RAMA_55201_09021282025084_0012079104_8968340022_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (265kB) | Request a copy
[thumbnail of RAMA_55201_09021282025084_0012079104_8968340022_06.pdf] Text
RAMA_55201_09021282025084_0012079104_8968340022_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (147kB) | Request a copy
[thumbnail of RAMA_55201_09021282025084_0012079104_8968340022_07_ref.pdf] Text
RAMA_55201_09021282025084_0012079104_8968340022_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (173kB) | Request a copy
[thumbnail of RAMA_55201_09021282025084_0012079104_8968340022_08_lamp.pdf] Text
RAMA_55201_09021282025084_0012079104_8968340022_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (85kB) | Request a copy

Abstract

Penelitian ini bertujuan untuk menerapkan dan membandingkan metode seleksi fitur Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), dan Genetic Algorithm (GA) dalam klasifikasi kanker paru-paru menggunakan algoritma Support Vector Machine (SVM). Penelitian ini menggunakan 10000 data pasien kanker paru-paru yang terdiri dari 14 fitur dan 1 label. Proses seleksi fitur diimplementasikan untuk meningkatkan akurasi model klasifikasi dengan mengeliminasi fitur-fitur yang kurang relevan. Hasil penelitian menunjukkan bahwa metode Particle Swarm Optimization (PSO) menghasilkan akurasi tertinggi sebesar 53%, diikuti oleh Ant Colony Optimization (ACO) dengan akurasi 51%, dan Genetic Algorithm (GA) dengan akurasi 49%. Seleksi fitur menggunakan Particle Swarm Optimization (PSO) terbukti lebih efektif dibandingkan metode lainnya karena mekanisme pembaruan partikel yang memperhitungkan posisi terbaik lokal dan global, memungkinkan model fokus pada fitur yang relevan secara optimal. Dengan demikian, penerapan seleksi fitur Particle Swarm Optimization (PSO) memberikan kontribusi signifikan dalam meningkatkan performa klasifikasi kanker paru-paru menggunakan Support Vector Machine (SVM). Penelitian ini menegaskan bahwa optimalisasi fitur merupakan langkah krusial dalam pengembangan model prediksi yang lebih akurat dan efisien. Kata kunci: Klasifikasi, Support Vector Machine (SVM), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Genetic Algorithm (GA), seleksi fitur.

Item Type: Thesis (Undergraduate)
Subjects: Z Bibliography. Library Science. Information Resources > ZA Information resources > ZA4150-4380 Computer network resources
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Ichiro Gabriel Rivaldo Simbolon
Date Deposited: 23 Jan 2025 02:42
Last Modified: 23 Jan 2025 02:42
URI: http://repository.unsri.ac.id/id/eprint/166338

Actions (login required)

View Item View Item