PEMODELAN REGRESI LOGISTIK BINER UNTUK MENGETAHUI FAKTOR-FAKTOR YANG BERPENGARUH TERHADAP TINGKAT KEMISKINAN DI INDONESIA TAHUN 2023

RINJANI, NABILAH AMELIA and Irmeilyana, Irmeilyana and Desiani, Anita (2025) PEMODELAN REGRESI LOGISTIK BINER UNTUK MENGETAHUI FAKTOR-FAKTOR YANG BERPENGARUH TERHADAP TINGKAT KEMISKINAN DI INDONESIA TAHUN 2023. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_44201_08011282126073_Cover.jpg]
Preview
Image
RAMA_44201_08011282126073_Cover.jpg - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (306kB) | Preview
[thumbnail of RAMA_44201_08011282126073.pdf] Text
RAMA_44201_08011282126073.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_44201_08011282126073_TURNITIN.pdf] Text
RAMA_44201_08011282126073_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (8MB) | Request a copy
[thumbnail of RAMA_44201_08011282126073_0017057403_0011127702_01_front_ref.pdf] Text
RAMA_44201_08011282126073_0017057403_0011127702_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (864kB)
[thumbnail of RAMA_44201_08011282126073_0017057403_0011127702_02.pdf] Text
RAMA_44201_08011282126073_0017057403_0011127702_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (429kB) | Request a copy
[thumbnail of RAMA_44201_08011282126073_0017057403_0011127702_03.pdf] Text
RAMA_44201_08011282126073_0017057403_0011127702_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (326kB) | Request a copy
[thumbnail of RAMA_44201_08011282126073_0017057403_0011127702_04.pdf] Text
RAMA_44201_08011282126073_0017057403_0011127702_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (869kB) | Request a copy
[thumbnail of RAMA_44201_08011282126073_0017057403_0011127702_05.pdf] Text
RAMA_44201_08011282126073_0017057403_0011127702_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (235kB) | Request a copy
[thumbnail of RAMA_44201_08011282126073_0017057403_0011127702_06_ref.pdf] Text
RAMA_44201_08011282126073_0017057403_0011127702_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (244kB) | Request a copy
[thumbnail of RAMA_44201_08011282126073_0017057403_0011127702_07_lamp.pdf] Text
RAMA_44201_08011282126073_0017057403_0011127702_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (703kB) | Request a copy

Abstract

Poverty is a condition in which a person is unable to obtain sufficient resources to meet the minimum basic needs and lives below this minimum level. Indonesia is one of the countries with a low poverty percentage of 9.36%. However, several provinces in Indonesia still have relatively high poverty percentages. This study aims to identify the significant factors influencing the poverty rate in Indonesia in 2023 through partial testing of independent variables using a binary logistic regression model. The independent variables examined include the Human Development Index (HDI), population, Gross Regional Domestic Product (GRDP), gini ratio, unemployment rate, mean years of schooling, and expected years of schooling. The object of the binary logistic regression modeling is the 34 provinces in Indonesia. The model obtained from this study is π(x)=exp⁡(2.280- 2.123X_1(2) -2.341X_(5(2)) )/(1+exp⁡(2.280- 2.123X_1(2) -2.341X_5(2) )) which is interpreted as follow: having a low HDI category (X_(1(2)) ) and a medium unemployment rate category (X_(5(2)) ) reduces the probability of a high poverty rate. The modeling results indicate that two factors significantly influence the poverty rate in Indonesia in 2023, namely the Human Development Index (HDI) and the unemployment rate, with p-values from the partial test being 0.029 and 0.033, respectively.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Tingkat Kemiskinan, Regresi Logistik Biner, Faktor-Faktor Kemiskinan, Uji G, Uji Wald
Subjects: Q Science > QA Mathematics > QA273-280 Probabilities. Mathematical statistics
Divisions: 08-Faculty of Mathematics and Natural Science > 44201-Mathematics (S1)
Depositing User: Nabilah Amelia Rinjani
Date Deposited: 20 Mar 2025 05:30
Last Modified: 20 Mar 2025 05:30
URI: http://repository.unsri.ac.id/id/eprint/169534

Actions (login required)

View Item View Item