IMPLEMENTASI RANDOM FOREST UNTUK DETEKSI KEPADATAN KENDARAAN DAN PREDIKSI RUTE OPTIMAL PADA LALU LINTAS KOTA PALEMBANG MENGGUNAKAN BEE COLONY OPTIMIZATION

PRATAMA, M. REZA ARYA and Sukemi, Sukemi and Oklilas, Ahmad Fali (2025) IMPLEMENTASI RANDOM FOREST UNTUK DETEKSI KEPADATAN KENDARAAN DAN PREDIKSI RUTE OPTIMAL PADA LALU LINTAS KOTA PALEMBANG MENGGUNAKAN BEE COLONY OPTIMIZATION. Undergraduate thesis, Sriwijaya University.

[thumbnail of Cover.jpg]
Preview
Image
Cover.jpg - Cover Image
Available under License Creative Commons Public Domain Dedication.

Download (890kB) | Preview
[thumbnail of RAMA_56201_09011282126048.pdf] Text
RAMA_56201_09011282126048.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_56201_09011282126048_TURNITIN.pdf] Text
RAMA_56201_09011282126048_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_56201_09011282126048_0003126604_0015107201_01_front_ref.pdf] Text
RAMA_56201_09011282126048_0003126604_0015107201_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (880kB)
[thumbnail of RAMA_56201_09011282126048_0003126604_0015107201_02.pdf] Text
RAMA_56201_09011282126048_0003126604_0015107201_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (515kB) | Request a copy
[thumbnail of RAMA_56201_09011282126048_0003126604_0015107201_03.pdf] Text
RAMA_56201_09011282126048_0003126604_0015107201_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (729kB) | Request a copy
[thumbnail of RAMA_56201_09011282126048_0003126604_0015107201_04.pdf] Text
RAMA_56201_09011282126048_0003126604_0015107201_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_56201_09011282126048_0003126604_0015107201_05.pdf] Text
RAMA_56201_09011282126048_0003126604_0015107201_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (116kB) | Request a copy
[thumbnail of RAMA_56201_09011282126048_0003126604_0015107201_06_ref.pdf] Text
RAMA_56201_09011282126048_0003126604_0015107201_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (156kB) | Request a copy
[thumbnail of RAMA_56201_09011282126048_0003126604_0015107201_07_lamp.pdf] Text
RAMA_56201_09011282126048_0003126604_0015107201_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy

Abstract

Traffic congestion is a major problem in Palembang City due to the significant growth in the number of vehicles. This study aims to develop an artificial intelligence-based system in detecting vehicle density and predicting optimal routes. Vehicle number detection is carried out using the YOLOv11 method based on CCTV data at 15 intersections in Palembang City with training results showing an accuracy of 92%, F-1 Score of 82% and mAP@0.5 of 86.7%. In the validation and testing stages, this model achieved an accuracy of 90%, and mAP@0.5 of 81.7%. The detection data was then analyzed using the Random Forest algorithm to classify traffic conditions with a dataset of 960 rows of data achieving an accuracy of 88.53%. Furthermore, the Bee Colony Optimization algorithm was used to determine the fastest route by taking into account the distance traveled and the level of congestion. The results of the study show that the combination of the YOLOv11, Random Forest, and Bee Colony Optimization methods is able to produce an effective system in providing optimal route recommendations and helping to significantly reduce congestion. This system is expected to be a practical solution for city traffic management in the future.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: YOLOv11, Random Forest, Bee Colony Optimization, kepadatan kendaraan, rute optimal, Palembang.
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: M. Reza Arya Pratama
Date Deposited: 16 Jul 2025 04:21
Last Modified: 16 Jul 2025 04:21
URI: http://repository.unsri.ac.id/id/eprint/178736

Actions (login required)

View Item View Item