OPTIMASI NAÏVE BAYES UNTUK KLASIFIKASI SERANGAN DDOS DENGAN ARTIFICIAL BEE COLONY

MUFLIH, AJRUL AMILIN and Rini, Dian Palupi and Stiawan, Deris (2020) OPTIMASI NAÏVE BAYES UNTUK KLASIFIKASI SERANGAN DDOS DENGAN ARTIFICIAL BEE COLONY. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021381520071.pdf] Text
RAMA_55201_09021381520071.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (6MB) | Request a copy
[thumbnail of RAMA_55201_09021381520071_TURNITIN.pdf] Text
RAMA_55201_09021381520071_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (10MB) | Request a copy
[thumbnail of RAMA_55201_09021381520071_0023027804_0003047905_01_front_ref.pdf]
Preview
Text
RAMA_55201_09021381520071_0023027804_0003047905_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (417kB) | Preview
[thumbnail of RAMA_55201_09021381520071_0023027804_0003047905_02.pdf] Text
RAMA_55201_09021381520071_0023027804_0003047905_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021381520071_0023027804_0003047905_03.pdf] Text
RAMA_55201_09021381520071_0023027804_0003047905_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021381520071_0023027804_0003047905_04.pdf] Text
RAMA_55201_09021381520071_0023027804_0003047905_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_55201_09021381520071_0023027804_0003047905_05.pdf] Text
RAMA_55201_09021381520071_0023027804_0003047905_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021381520071_0023027804_0003047905_06_ref.pdf] Text
RAMA_55201_09021381520071_0023027804_0003047905_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021381520071_0023027804_0003047905_07_lamp.pdf] Text
RAMA_55201_09021381520071_0023027804_0003047905_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy

Abstract

Distributed Denial of Service (DDoS) is one of the most powerful threat on the internet. DDoS attacks target websites and online services. Taking knowledge from DDoS attack data with machine learning to learn the pattern is very important to prevent and handle such attacks, one of them is by classification using the Naïve Bayes method. To improve the performance of Naïve Bayes results, it can be done by combining them using Artificial Bee Colony during the classification process for selecting DDoS attack attribute data to be used. This study examines the effect of Naïve Bayes optimization for DDoS attack classification using Artificial Bee Colony. The accuracy of DDoS attack classification with the highest NBABC is 99.95% and only Naïve Bayes is 91.55%. The accuracy of the results shows that the application of Artificial Bee Colony for the Naïve Bayes classification has an effect with an increase in accuracy of 8.4%.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: DDoS, Naïve Bayes, Artificial Bee Colony
Subjects: Q Science > Q Science (General) > Q300-390 Cybernetics > Q325.5 Machine learning
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Users 7378 not found.
Date Deposited: 14 Aug 2020 04:31
Last Modified: 14 Aug 2020 04:31
URI: http://repository.unsri.ac.id/id/eprint/33054

Actions (login required)

View Item View Item