PERBANDINGAN METODE RANDOM FOREST DAN METODE K-NEAREST NEIGHBOR (KNN) PADA KLASIFIKASI PENDERITA PENYAKIT PARKINSON

ZAINUDIN, ZAINUDIN and Rini, Dian Palupi and Marieska, Mastura Diana (2021) PERBANDINGAN METODE RANDOM FOREST DAN METODE K-NEAREST NEIGHBOR (KNN) PADA KLASIFIKASI PENDERITA PENYAKIT PARKINSON. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021381621079.pdf] Text
RAMA_55201_09021381621079.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_55201_09021381621079_TURNITIN.pdf] Text
RAMA_55201_09021381621079_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (7MB) | Request a copy
[thumbnail of RAMA_55201_09021381621079_0023027804_0021038607_01_front_ref.pdf]
Preview
Text
RAMA_55201_09021381621079_0023027804_0021038607_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Preview
[thumbnail of RAMA_55201_09021381621079_0023027804_0021038607_02.pdf] Text
RAMA_55201_09021381621079_0023027804_0021038607_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (510kB) | Request a copy
[thumbnail of RAMA_55201_09021381621079_0023027804_0021038607_03.pdf] Text
RAMA_55201_09021381621079_0023027804_0021038607_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (346kB) | Request a copy
[thumbnail of RAMA_55201_09021381621079_0023027804_0021038607_04.pdf] Text
RAMA_55201_09021381621079_0023027804_0021038607_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021381621079_0023027804_0021038607_05.pdf] Text
RAMA_55201_09021381621079_0023027804_0021038607_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (229kB) | Request a copy
[thumbnail of RAMA_55201_09021381621079_0023027804_0021038607_06.pdf] Text
RAMA_55201_09021381621079_0023027804_0021038607_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (150kB) | Request a copy
[thumbnail of RAMA_55201_09021381621079_0023027804_0021038607_07_ref.pdf] Text
RAMA_55201_09021381621079_0023027804_0021038607_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (266kB) | Request a copy
[thumbnail of RAMA_55201_09021381621079_0023027804_0021038607_08_lamp.pdf] Text
RAMA_55201_09021381621079_0023027804_0021038607_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (704kB) | Request a copy

Abstract

Penyakit Parkinson adalah penyakit neurodegeneratif paling umum kedua mempengaruhi 2-3% populasi manusia usia 65 keatas. Penyakit Parkinson dapat diagnosis melalui teknologi kedokteran, akan tetapi diagnosis awal dapat juga dilakukan menggunakan mesin pembelajaran dan data mining. Metode Random Forest dan KNN dua metode bagian dari klasifikasi, cara kerja kedua metode memiliki perbedaan dalam pengklasifikasian data. Metode Random Forest akan mengubah data menjadi pola yang berbentuk pohon-pohon keputusan selanjutnya dilakukan vote tebanyak. Sedangkan KNN mengklasifikasikan data menurut jarak kedekatan antara data latih dengan data uji. Karena cara kerja kedua metode berbeda penelitian ini akan membandingkan menggunakan data penderita penyakit Parkinson. Berdasarkan hasil penelitian metode Random Forest dengan beberapa parameter yang diujikan didapat nilai accuracy optimal sebesar 89,42 % nilai precision 90,16%, dan nilai recall 88,7%. Metode KNN hasil klasifikasi tertinggi pada k 1 dan 3 menghasilkan accuracy 93,85% precision 97,29% dan recall 90,97%. Hasil yang didapatkan tidak jauh berbeda antar kedua metode, hal ini menunjukkan kedua metode mampu mengklasifikasikan penderita penyakit Parkinson.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Klasifikasi, Random Forest, K-Nearest Neighbor (KNN), Penyakit Parkinson
Subjects: Q Science > QA Mathematics > QA75-76.95 Calculating machines > QA76.9.D343 Data mining. Database searching. Big data.
T Technology > T Technology (General) > T1-995 Technology (General) > T14 Philosophy. Theory. Classification. Methodology Cf. CB478 Technology and civilization
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Zainudin Zainudin
Date Deposited: 21 May 2021 03:00
Last Modified: 21 May 2021 03:00
URI: http://repository.unsri.ac.id/id/eprint/46555

Actions (login required)

View Item View Item