ZAINUDIN, ZAINUDIN and Rini, Dian Palupi and Marieska, Mastura Diana (2021) PERBANDINGAN METODE RANDOM FOREST DAN METODE K-NEAREST NEIGHBOR (KNN) PADA KLASIFIKASI PENDERITA PENYAKIT PARKINSON. Undergraduate thesis, Sriwijaya University.
Text
RAMA_55201_09021381621079.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (4MB) | Request a copy |
|
Text
RAMA_55201_09021381621079_TURNITIN.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (7MB) | Request a copy |
|
Preview |
Text
RAMA_55201_09021381621079_0023027804_0021038607_01_front_ref.pdf - Accepted Version Available under License Creative Commons Public Domain Dedication. Download (1MB) | Preview |
Text
RAMA_55201_09021381621079_0023027804_0021038607_02.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (510kB) | Request a copy |
|
Text
RAMA_55201_09021381621079_0023027804_0021038607_03.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (346kB) | Request a copy |
|
Text
RAMA_55201_09021381621079_0023027804_0021038607_04.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (1MB) | Request a copy |
|
Text
RAMA_55201_09021381621079_0023027804_0021038607_05.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (229kB) | Request a copy |
|
Text
RAMA_55201_09021381621079_0023027804_0021038607_06.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (150kB) | Request a copy |
|
Text
RAMA_55201_09021381621079_0023027804_0021038607_07_ref.pdf - Bibliography Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (266kB) | Request a copy |
|
Text
RAMA_55201_09021381621079_0023027804_0021038607_08_lamp.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (704kB) | Request a copy |
Abstract
Penyakit Parkinson adalah penyakit neurodegeneratif paling umum kedua mempengaruhi 2-3% populasi manusia usia 65 keatas. Penyakit Parkinson dapat diagnosis melalui teknologi kedokteran, akan tetapi diagnosis awal dapat juga dilakukan menggunakan mesin pembelajaran dan data mining. Metode Random Forest dan KNN dua metode bagian dari klasifikasi, cara kerja kedua metode memiliki perbedaan dalam pengklasifikasian data. Metode Random Forest akan mengubah data menjadi pola yang berbentuk pohon-pohon keputusan selanjutnya dilakukan vote tebanyak. Sedangkan KNN mengklasifikasikan data menurut jarak kedekatan antara data latih dengan data uji. Karena cara kerja kedua metode berbeda penelitian ini akan membandingkan menggunakan data penderita penyakit Parkinson. Berdasarkan hasil penelitian metode Random Forest dengan beberapa parameter yang diujikan didapat nilai accuracy optimal sebesar 89,42 % nilai precision 90,16%, dan nilai recall 88,7%. Metode KNN hasil klasifikasi tertinggi pada k 1 dan 3 menghasilkan accuracy 93,85% precision 97,29% dan recall 90,97%. Hasil yang didapatkan tidak jauh berbeda antar kedua metode, hal ini menunjukkan kedua metode mampu mengklasifikasikan penderita penyakit Parkinson.
Item Type: | Thesis (Undergraduate) |
---|---|
Uncontrolled Keywords: | Klasifikasi, Random Forest, K-Nearest Neighbor (KNN), Penyakit Parkinson |
Subjects: | Q Science > QA Mathematics > QA75-76.95 Calculating machines > QA76.9.D343 Data mining. Database searching. Big data. T Technology > T Technology (General) > T1-995 Technology (General) > T14 Philosophy. Theory. Classification. Methodology Cf. CB478 Technology and civilization |
Divisions: | 09-Faculty of Computer Science > 55201-Informatics (S1) |
Depositing User: | Zainudin Zainudin |
Date Deposited: | 21 May 2021 03:00 |
Last Modified: | 21 May 2021 03:00 |
URI: | http://repository.unsri.ac.id/id/eprint/46555 |
Actions (login required)
View Item |