SISTEM PAKAR DIAGNOSIS TINGKAT KEPARAHAN JERAWAT UNTUK MENENTUKAN PERAWATAN KULIT DENGAN METODE FUZZY SUGENO

SALSABILA, DITYA and Yusliani, Novi and Kurniati, Rizki (2022) SISTEM PAKAR DIAGNOSIS TINGKAT KEPARAHAN JERAWAT UNTUK MENENTUKAN PERAWATAN KULIT DENGAN METODE FUZZY SUGENO. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021281823034.pdf] Text
RAMA_55201_09021281823034.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_55201_09021281823034_TURNITIN.pdf] Text
RAMA_55201_09021281823034_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (8MB) | Request a copy
[thumbnail of RAMA_55201_09021281823034_0008118205_0012079104_01_front_ref.pdf]
Preview
Text
RAMA_55201_09021281823034_0008118205_0012079104_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Preview
[thumbnail of RAMA_55201_09021281823034_0008118205_0012079104_02.pdf] Text
RAMA_55201_09021281823034_0008118205_0012079104_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (661kB) | Request a copy
[thumbnail of RAMA_55201_09021281823034_0008118205_0012079104_03.pdf] Text
RAMA_55201_09021281823034_0008118205_0012079104_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (381kB) | Request a copy
[thumbnail of RAMA_55201_09021281823034_0008118205_0012079104_04.pdf] Text
RAMA_55201_09021281823034_0008118205_0012079104_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_55201_09021281823034_0008118205_0012079104_05.pdf] Text
RAMA_55201_09021281823034_0008118205_0012079104_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (366kB) | Request a copy
[thumbnail of RAMA_55201_09021281823034_0008118205_0012079104_06.pdf] Text
RAMA_55201_09021281823034_0008118205_0012079104_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (10kB) | Request a copy
[thumbnail of RAMA_55201_09021281823034_0008118205_0012079104_07_ref.pdf] Text
RAMA_55201_09021281823034_0008118205_0012079104_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (226kB) | Request a copy
[thumbnail of RAMA_55201_09021281823034_0008118205_0012079104_08_lamp.pdf] Text
RAMA_55201_09021281823034_0008118205_0012079104_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (430kB) | Request a copy

Abstract

Acne is a chronic inflammatory skin disease caused by excessive production of oil (sebum) characterized by comedones, papules, pustules, nodules, and cysts with varying extent and severity. Treatment of acne is based on the severity of the disease to prevent acne becoming more inflamed. This study aims to build a software that is able to detect the severity of acne by applying the Fuzzy Sugeno method, so the suitable skin care solutions will be given for users. Fuzzy Sugeno is used to solve the problem of uncertainty of disease and related symptoms or risk factors, so this method is suitable to be applied to the expert systems. The output is the severity of acne, namely mild, moderate, and severe. From the test results on the data of 50 patients with acne using the confusion matrix, shows an accuracy of 94.7% and the Misclassification (Error) Rate is 5.3%.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Acne, Expert System, Fuzzy Sugeno, Confusion Matrix
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
T Technology > T Technology (General) > T1-995 Technology (General)
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Ditya Salsabila
Date Deposited: 28 Nov 2022 03:55
Last Modified: 28 Nov 2022 03:55
URI: http://repository.unsri.ac.id/id/eprint/82831

Actions (login required)

View Item View Item