KLASIFIKASI PDF MALWARE PADA GARUDA KEMDIKBUD SEBAGAI AGREGATOR NASIONAL DENGAN METODE K-NEAREST NEIGHBOR

PASIN, TRI SHENA ORIVIA and Stiawan, Deris and Septian, Tri Wanda (2022) KLASIFIKASI PDF MALWARE PADA GARUDA KEMDIKBUD SEBAGAI AGREGATOR NASIONAL DENGAN METODE K-NEAREST NEIGHBOR. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011181823029.pdf] Text
RAMA_56201_09011181823029.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_56201_09011181823029_TURNITIN.pdf] Text
RAMA_56201_09011181823029_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_56201_09011181823029_0003047905_0028098902_01_font_ref.pdf]
Preview
Text
RAMA_56201_09011181823029_0003047905_0028098902_01_font_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (496kB) | Preview
[thumbnail of RAMA_56201_09011181823029_0003047905_0028098902_02.pdf] Text
RAMA_56201_09011181823029_0003047905_0028098902_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (350kB) | Request a copy
[thumbnail of RAMA_56201_09011181823029_0003047905_0028098902_03.pdf] Text
RAMA_56201_09011181823029_0003047905_0028098902_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_56201_09011181823029_0003047905_0028098902_04.pdf] Text
RAMA_56201_09011181823029_0003047905_0028098902_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (834kB) | Request a copy
[thumbnail of RAMA_56201_09011181823029_0003047905_0028098902_05.pdf] Text
RAMA_56201_09011181823029_0003047905_0028098902_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (28kB) | Request a copy
[thumbnail of RAMA_56201_09011181823029_0003047905_0028098902_06_ref.pdf] Text
RAMA_56201_09011181823029_0003047905_0028098902_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (99kB) | Request a copy
[thumbnail of RAMA_56201_09011181823029_0003047905_0028098902_07_lamp.pdf] Text
RAMA_56201_09011181823029_0003047905_0028098902_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (944kB) | Request a copy

Abstract

Garba Rujukan Digital (GARUDA) is a digital service used for collecting archives of national publication documents in PDF format. There are sections in the PDF that can be used by hackers to carry out attacks that the file becomes PDF Malware. The dataset obtained is unprocessed data, which was analyzed using PDFiD to obtain features. The feature extraction results were used to classify multiclass labels, namely PDF-Malware, PDF-HTML, and PDF-Benign using K-Nearest Neighbor. The best K-Nearest Neighbor results are K=1 obtained a precision value of 98,2%, a recall of 98,4%, an f1-score of 98.3%, an accuracy of 98.3%, and K=3 obtained a precision value of 98%, recall of 98.4%, f1-score of 98.2%, accuracy of 98.3%.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Classification, PDF Malware, PDFiD, Multiclass, K-Nearest Neighbor
Subjects: Q Science > Q Science (General) > Q300-390 Cybernetics > Q325.5 Machine learning
T Technology > T Technology (General) > T1-995 Technology (General)
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: Tri Shena Orivia Pasin
Date Deposited: 26 Dec 2022 05:46
Last Modified: 26 Dec 2022 05:46
URI: http://repository.unsri.ac.id/id/eprint/84668

Actions (login required)

View Item View Item