IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK KLASIFIKASI CITRA NATURAL SCENE

STEFFANI, CINDY and Fachrurrozi, Muhammad and Rachmatullah, Muhammad Naufal (2022) IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK KLASIFIKASI CITRA NATURAL SCENE. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021181823010.pdf] Text
RAMA_55201_09021181823010.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_55201_09021181823010_TURNITIN.pdf] Text
RAMA_55201_09021181823010_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_55201_09021181823010_0222058001_0001129204_01_front_ref.pdf]
Preview
Text
RAMA_55201_09021181823010_0222058001_0001129204_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Preview
[thumbnail of RAMA_55201_09021181823010_0222058001_0001129204_02.pdf] Text
RAMA_55201_09021181823010_0222058001_0001129204_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (435kB) | Request a copy
[thumbnail of RAMA_55201_09021181823010_0222058001_0001129204_03.pdf] Text
RAMA_55201_09021181823010_0222058001_0001129204_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (439kB) | Request a copy
[thumbnail of RAMA_55201_09021181823010_0222058001_0001129204_04.pdf] Text
RAMA_55201_09021181823010_0222058001_0001129204_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021181823010_0222058001_0001129204_05.pdf] Text
RAMA_55201_09021181823010_0222058001_0001129204_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (772kB) | Request a copy
[thumbnail of RAMA_55201_09021181823010_0222058001_0001129204_06.pdf] Text
RAMA_55201_09021181823010_0222058001_0001129204_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (13kB) | Request a copy
[thumbnail of RAMA_55201_09021181823010_0222058001_0001129204_07_ref.pdf] Text
RAMA_55201_09021181823010_0222058001_0001129204_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (149kB) | Request a copy
[thumbnail of RAMA_55201_09021181823010_0222058001_0001129204_08_lamp.pdf] Text
RAMA_55201_09021181823010_0222058001_0001129204_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy

Abstract

Humans recognized natural scenes using their sight. Natural scene problems appear when applied to navigation robots, map recognition, and automatic surveillance systems. Researchers developed a software that can classify natural scene images using Convolutional Neural Network (CNN). The CNN method used in this study compares three architectures, namely ResNet50V2, VGG16, and EfficientNetB4. The models were trained with an image dataset which divided into 10902 training data, 2725 validation data and 3407 test data. There are six combinations of learning rate and batch size for tuning the best model, namely learning rate 0.001 batch size 12, learning rate 0.01 batch size 12, learning rate 0.01 batch size 10, learning rate 0.001 batch size 10, learning rate 0.01 batch size 8, and learning rate 0.01 batch size 8. The test results show that best architecture for natural scene image classification is EfficientNetB4 which obtains an accuracy value of 93% with learning rate 0.001 and batch size 8.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Klasifikasi, Natural Scene, Convolutional Neural Network
Subjects: T Technology > T Technology (General) > T1-995 Technology (General)
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Cindy Steffani
Date Deposited: 29 Dec 2022 02:29
Last Modified: 29 Dec 2022 02:29
URI: http://repository.unsri.ac.id/id/eprint/84883

Actions (login required)

View Item View Item