SELEKSI FITUR UNTUK MENEMUKAN POLA FITUR TERBAIK PADA SISTEM PENDETEKSI SERANGAN DDOS DENGAN MENGGUNAKAN METODE K-NEAREST NEIGHBOR (K-NN)

PRATAMA, RICKY AKBAR and Heryanto, Ahmad and Septian, Tri Wanda (2023) SELEKSI FITUR UNTUK MENEMUKAN POLA FITUR TERBAIK PADA SISTEM PENDETEKSI SERANGAN DDOS DENGAN MENGGUNAKAN METODE K-NEAREST NEIGHBOR (K-NN). Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011381823082.pdf] Text
RAMA_56201_09011381823082.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_56201_09011381823082_TURNITIN.pdf] Text
RAMA_56201_09011381823082_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (11MB) | Request a copy
[thumbnail of RAMA_56201_09011381823082_0022018703_0028098902_01_front_ref.pdf] Text
RAMA_56201_09011381823082_0022018703_0028098902_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[thumbnail of RAMA_56201_09011381823082_0022018703_0028098902_02.pdf] Text
RAMA_56201_09011381823082_0022018703_0028098902_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (394kB) | Request a copy
[thumbnail of RAMA_56201_09011381823082_0022018703_0028098902_03.pdf] Text
RAMA_56201_09011381823082_0022018703_0028098902_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (374kB) | Request a copy
[thumbnail of RAMA_56201_09011381823082_0022018703_0028098902_04.pdf] Text
RAMA_56201_09011381823082_0022018703_0028098902_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_56201_09011381823082_0022018703_0028098902_05.pdf] Text
RAMA_56201_09011381823082_0022018703_0028098902_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (62kB) | Request a copy
[thumbnail of RAMA_56201_09011381823082_0022018703_0028098902_06_ref.pdf] Text
RAMA_56201_09011381823082_0022018703_0028098902_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (89kB) | Request a copy
[thumbnail of RAMA_56201_09011381823082_0022018703_0028098902_07_lamp.pdf] Text
RAMA_56201_09011381823082_0022018703_0028098902_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (577kB) | Request a copy

Abstract

DDoS attacks are one of the main threats to security issues on the internet today which have quite a severe impact. As for knowing the best DDoS attack detection, this study applies several selection features to find the best feature pattern in detecting DDoS attacks using the K-Nearest Neighbor method. In the application of selection using several selection features, namely Random Forest Classifier (RFC), Mutual Information Classifier (MIC), Correlation Based Selection (CBS), and Lasso Regularization Regression (LRR). Based on the results of the classification using the K-Nearest Neighbor method, the mutual information classifier and random forest classifier that get the highest accuracy and are also the best at reducing features and finding the most relevant feature variables for detecting DDoS attacks.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: SISTEM PENDETEKSI SERANGAN
Subjects: T Technology > T Technology (General) > T57.6-57.97 Operations research. Systems analysis > T57.85 Network systems theory Including network analysis Cf. TS157.5+ Scheduling
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: Ricky Akbar Pratama
Date Deposited: 15 Mar 2023 08:26
Last Modified: 15 Mar 2023 08:26
URI: http://repository.unsri.ac.id/id/eprint/90914

Actions (login required)

View Item View Item