Indonesia Sign Language Recognition using Convolutional Neural Network

Dwijayanti, Suci and Suprapto, Bhakti Yudho (2021) Indonesia Sign Language Recognition using Convolutional Neural Network. The Science and Information Organization.

[thumbnail of Corresponding Author IJACSA_Indonesia] Text (Corresponding Author IJACSA_Indonesia)
Corresponding author IJACSA Indonesia.pdf

Download (595kB)

Abstract

In daily life, the deaf use sign language to communicate with others. However, the non-deaf experience difficulties in understanding this communication. To overcome this, sign recognition via human-machine interaction can be utilized. In Indonesia, the deaf use a specific language, referred to as Indonesia Sign Language (BISINDO). However, only a few studies have examined this language. Thus, this study proposes a deep learning approach, namely, a new convolutional neural network (CNN) to recognize BISINDO. There are 26 letters and 10 numbers to be recognized. A total of 39,455 data points were obtained from 10 respondents by considering the lighting and perspective of the person: specifically, bright and dim lightning, and from first and second-person perspectives. The architecture of the proposed network consisted of four convolutional layers, three pooling layers, and three fully connected layers. This model was tested against two common CNNs models, AlexNet and VGG-16. The results indicated that the proposed network is superior to a modified VGG-16, with a loss of 0.0201. The proposed network also had smaller number of parameters compared to a modified AlexNet, thereby reducing the computation time. Further, the model was tested using testing data with an accuracy of 98.3%, precision of 98.3%, recall of 98.4%, and F1-score of 99.3%. The proposed model could recognize BISINDO in both dim and bright lighting, as well as the signs from the first-and second-person perspectives.

Item Type: Other
Subjects: #3 Repository of Lecturer Academic Credit Systems (TPAK) > Corresponding Author
Divisions: 03-Faculty of Engineering > 20201-Electrical Engineering (S1)
Depositing User: Mr. Bhakti Suprapto
Date Deposited: 29 Apr 2023 14:04
Last Modified: 29 Apr 2023 14:04
URI: http://repository.unsri.ac.id/id/eprint/98217

Actions (login required)

View Item View Item