PERBANDINGAN KERNEL LINEAR, RADIAL BASIS FUNCTION, DAN POLINOMIAL PADA ALGORITMA SUPPORT VECTOR MACHINE DALAM ANALISIS SENTIMEN TERHADAP ULASAN APLIKASI SHOPEE

CHAIRUNNISA, NADIA and Utami, Alvi Syahrini and Satria, Hadipurnawan (2023) PERBANDINGAN KERNEL LINEAR, RADIAL BASIS FUNCTION, DAN POLINOMIAL PADA ALGORITMA SUPPORT VECTOR MACHINE DALAM ANALISIS SENTIMEN TERHADAP ULASAN APLIKASI SHOPEE. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021181924020.pdf] Text
RAMA_55201_09021181924020.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_55201_09021181924020_TURNITIN.pdf] Text
RAMA_55201_09021181924020_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (17MB) | Request a copy
[thumbnail of RAMA_55201_09021181924020_0022127804_0018048003_01_front_ref.pdf] Text
RAMA_55201_09021181924020_0022127804_0018048003_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[thumbnail of RAMA_55201_09021181924020_0022127804_0018048003_02.pdf] Text
RAMA_55201_09021181924020_0022127804_0018048003_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (691kB) | Request a copy
[thumbnail of RAMA_55201_09021181924020_0022127804_0018048003_03.pdf] Text
RAMA_55201_09021181924020_0022127804_0018048003_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (268kB) | Request a copy
[thumbnail of RAMA_55201_09021181924020_0022127804_0018048003_04.pdf] Text
RAMA_55201_09021181924020_0022127804_0018048003_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021181924020_0022127804_0018048003_05.pdf] Text
RAMA_55201_09021181924020_0022127804_0018048003_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (740kB) | Request a copy
[thumbnail of RAMA_55201_09021181924020_0022127804_0018048003_06.pdf] Text
RAMA_55201_09021181924020_0022127804_0018048003_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (284kB) | Request a copy
[thumbnail of RAMA_55201_09021181924020_0022127804_0018048003_07_ref.pdf] Text
RAMA_55201_09021181924020_0022127804_0018048003_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (305kB) | Request a copy
[thumbnail of RAMA_55201_09021181924020_0022127804_0018048003_08_lamp.pdf] Text
RAMA_55201_09021181924020_0022127804_0018048003_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (180kB) | Request a copy

Abstract

Sentiment analysis can help detect sentiment from a review or assessment of a topic, product, service, and so on. These reviews can be classified into reviews with positive or negative sentiments. Support Vector Machine (SVM) method is a method that can be used in the classification process in sentiment analysis systems. However, often there is data that is not separated Linearly so that the kernel function is needed in the classification process. In this research, the kernel functions to be used are Linear, RBF, and Polynomial kernels with each parameter to be determined by the hyperparameter tuning method using GridSearchCV. Then a comparative analysis will be carried out on each model based on the 3 kernel functions to get the best kernel function. The results showed that the RBF kernel with parameter values C = 10 and ɣ = 0.001 give the best performance with the same accuracy, precision, recall, and f1-score values of 0.87.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Analisis Sentimen, Support Vector Machine, Kernel Linear, Kernel RBF, Kernel Polinomial
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ1-1570 Mechanical engineering and machinery
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Nadia Chairunnisa
Date Deposited: 28 Jul 2023 07:41
Last Modified: 28 Jul 2023 07:41
URI: http://repository.unsri.ac.id/id/eprint/123398

Actions (login required)

View Item View Item