DETEKSI KEMIRIPAN DOKUMEN MENGGUNAKAN METODE DOCUMENT CLUSTERING K-MEANS CLUSTERING

KAMIL, MUHAMMAD IKHSAN and Abdiansah, Abdiansah (2023) DETEKSI KEMIRIPAN DOKUMEN MENGGUNAKAN METODE DOCUMENT CLUSTERING K-MEANS CLUSTERING. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021181823011.pdf] Text
RAMA_55201_09021181823011.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021181823011_TURNITIN.pdf] Text
RAMA_55201_09021181823011_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_55201_09021181823011_0001108401_01_front_ref.pdf] Text
RAMA_55201_09021181823011_0001108401_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (841kB)
[thumbnail of RAMA_55201_09021181823011_0001108401_02.pdf] Text
RAMA_55201_09021181823011_0001108401_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (261kB) | Request a copy
[thumbnail of RAMA_55201_09021181823011_0001108401_03.pdf] Text
RAMA_55201_09021181823011_0001108401_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (233kB) | Request a copy
[thumbnail of RAMA_55201_09021181823011_0001108401_04.pdf] Text
RAMA_55201_09021181823011_0001108401_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (271kB) | Request a copy
[thumbnail of RAMA_55201_09021181823011_0001108401_05.pdf] Text
RAMA_55201_09021181823011_0001108401_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (244kB) | Request a copy
[thumbnail of RAMA_55201_09021181823011_0001108401_06.pdf] Text
RAMA_55201_09021181823011_0001108401_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (140kB) | Request a copy
[thumbnail of RAMA_55201_09021181823011_0001108401_07_ref.pdf] Text
RAMA_55201_09021181823011_0001108401_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy

Abstract

Detection, is an action or process of identifying the presence of something that is concealed. This research aim to develop a software that can be used to detect the similarity between thesis using the K-Means Clustering method, which is one of the simplest and popular unsupervised machine learning algorithms. In this research the detection is done on 56 documents using the silhouette method to determine the optimal number of cluster and davies-bouldin index to evaluate the clustering result. The results of the research show that based on the documents studied, the optimal number of clusters was 35 clusters. In which there are 5 clusters that have a population of more than 2 documents.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Detection, K-Means Clustering, Silhouette Score, Davies-Bouldin Index
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Muhammad Ikhsan Kamil
Date Deposited: 22 Mar 2024 01:55
Last Modified: 22 Mar 2024 01:55
URI: http://repository.unsri.ac.id/id/eprint/141868

Actions (login required)

View Item View Item